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Abstract. The heat transfer rates and velocity profiles in a turbulent incompressible flow of air over a 2D roughened
sectioned rib channel were investigated by numerical simulation. The Reynolds number based on twice of the height
channel is 37200 for the dynamic field and 12600 for the thermal field. The numerical results for the Nusselt number and
velocity profiles are compared with experimental data. Thistest case is a generic flow used in the cooling systems of gas
turbines. The ribs induce the flow separation, increasing the turbulence levels and, by consequence, the heat transfer.The
numerical algorithm applies a consolidate Reynolds and Favre averaging process for the turbulent variables, and uses
the classicalκ − ε model. The turbulent inner layer is modeled by four velocityand one temperature wall law. Spacial
discretization is done by P1/isoP2 finite element method andtemporal discretization is implemented using a semi-implicit
sequential scheme of finite difference. The pressure-velocity coupling is numerically solved by a variation of Uzawa’s
algorithm. To filter the numerical noises, originated by thesymmetric treatment to the convective fluxes, it is adopted a
balance dissipation method. The remaining non-linearities, due to the laws of the wall, are treated by a minimal residual
method.
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1. INTRODUCTION

The transport of thermal energy by turbulent flows happens inmany situations of industrial interest. Despite the fact
that turbulence is an unwished phenomenon for many applications in aerodynamics, it can be very useful in the project of
heat exchangers. Artificial roughness elements, called "ribs", are used in many cooling system of gas turbines. Those ribs
induce the flow separation, increasing the turbulence levels and, by consequence, the heat transfer rates. In this systems
the cooling air enters from the root of the blade, flows along serpentine ducts and then exits at the back of the blade.

Patankar et. al (1977), Drain and Martin (1985), J.C. Han (1988), Liou et. al (1992),Iacovides et.al (1997) and M.
Raisee (1997) have studied the ribbed channel and the differences between these works are basically in the geometry of
the ribbed channel and in the Reynolds number of the flow. The ribbed channels studied in this work, are the ribbed
channels of Drain and Martin (1985) and of Liou et. al (1992),both have the same geometry, but the first one studied only
the dynamical field and with a Reynolds number based on twice of the channel height of 37200, while the second studied
the thermal and dynamical field, with a Reynolds number of 12600. In the experimental work of Liou et. al (1992), the
rib was made of aluminium and it was heated by a thermal film in its underside, providing a condition of constant heat
flux. The top part of the channel was insulated, so an adiabatic wall was created. The height of the rib represents twenty
percent of the height of the channel.

The main interest in the numerical modeling of this flow, is the prediction of the percentual raise in the heat transfer
levels obtained by the introduction of the ribs. The efficiency of the mechanism depends on its geometry, on the thermo-
dynamical properties of the fluid, and in the velocity field. The computational effort in order to simulate this kind of flow
depends on the Reynolds number, in the relation between the height of the rib and the height of the channel and on the
intensity of the temperature gradients involved.

In this work the numerical value of the local Nusselt number along the channel is calculated by the use of analogies
between the friction and the heat transfer in the wall region. The value of the friction velocity is calculated in this work
with the support of four different wall laws.

The solver used, named Turbo2D, is a research Fortran numerical code, that has been continuously develloped by
members of the Group of Complex Fluid Dynamics - Vortex, of the Mechanical Engineering Department of the University
of Brasília, in the last twenty years. This solver is based onthe adoption of the finite elements technique, under the
formulation of pondered residuals proposed by Galerkin, adopting in the spatial discretization of the calculus dominium
the triangular elements of the type P1-isoP2, as proposed byBrison, Buffat, Jeandel and Serres (1985). The isoP2 mesh
is obtained by dividing each element of the P1 mesh into four new elements. In the P1 mesh only the pressure field is
calculated, while all the other variables are calculated inthe isoP2 mesh.

Considering the uncertainties normally existing about theinitial conditions of the problems that are numerically sim-
ulated, it is adopted the temporal integration of the governing equations system. In the temporal integration process the
initial state corresponds the beginning of the flow, and the final state occurs when the temporal variations of the velocity,
pressure, temperature and other turbulent variables stop,in order to reach the final state, a pseudo transient occurs. The
temporal discretization of the system of the governing equations, implemented by the algorithm of Brun (1988), uses se-
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quential semi-implicit finite differences, with truncation error of order0(∆t) and allows a linear handling of the equation
system, at each time step.

The resolution of the coupled equations of continuity and momentum is done by a variant of Uzawat’s algorithm
proposed by Buffat (1981). The statistical formulation, responsible for the obtaining of the system of average equations,
is done with the simultaneous usage of the Reynolds (1895) and Favre (1965) decomposition. The Reynolds stress tensor
is calculated by theκ − ε model, proposed by Jones and Launder (1972) with the modifications introduced by Launder
and Spalding (1974). The turbulent heat flux is modeled algebraically using the turbulent Prandl number with a constant
value of 0,9.

In the program Turbo2D, the boundary conditions of velocityand temperature can be calculated by four velocity and
two temperature wall laws. The velocity wall laws used in this work are: the classical logarithm law, and the laws of
Mellor (1966), Nakayama and Koyama (1984), and Cruz and Silva Freire (1998). The temperature wall law used is the
Cheng and Ng (1982) wall law. The numerical instability resulted of the explicit calculus of the boundary conditions of
velocity, trough the evolutive temporal process, is controlled by the algorithm proposed by Fontoura Rodrigues (1990).
The numerical oscillations induced by the Galerkin formulation, resulting of the centered discretization applied to a
parabolic phenomenon, that is the modeled flow, are cushioned by the technique of balanced dissipation, proposed by
Huges and Brooks (1979) and Kelly, Nakazawa and Zienkiewicz(1976) with the numerical algorithm proposed by Brun
(1988).

In order to quantify the wideness of range and the consistence of the numerical modeling done by the solver Turbo2D,
the wall heat fluxes obtained numerically are compared to theexperimental data of Drain and Martin (1985), and the
velocity profiles are compared to the experimental data of Liou et. al (1992).

2. GOVERNING EQUATIONS

The system of non-dimensional governing equations, for a dilatable and one phase flow, without internal energy
generation, and in a subsonic regime (Mach number under 0,3)is:
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In this system of equationsρ is the fluid density,t is the time,xi are the space cartesian coordinates in tensor notation,
µ is the dynamic viscosity coefficient,δij is the Kronecker delta operator,gi is the acceleration due to gravity,T is the
absolute temperature,ui is the flow velocity ,k is the thermal conductivity,Re is the Reynolds number,Fr is the Froud
number,Pr is the Prandtl number, and the non dimensional pressure is:

p =
p − pm

ρoU2
o

(5)

Wherepm is the average spatial value of the pressure field,p is the actual value of pressure,ρ0 andu0 are the reference
values of the fluid density and the flow velocity . More detailsabout the dimensionless process are given by Brun (1988).
In order to simplify the notation adopted, the variables in their dimensionless form have the same representation as the
dimensional variables. The Reynolds, Prandtl and Froude numbers are defined with the reference values adopted in this
process.

2.1 THE TURBULENCE MODEL

In this work all the dependent variables of the fluid are treated as a time average value plus a fluctuation of this
variable in a determinate point of space and time. In order toaccount variations of density, the model used applies the
well known Reynolds (1985) decomposition to pressure and fluid density and the Favre (1965) decomposition to velocity
and temperature. In the Favre (1965) decomposition a randomize generic variableϕ is defined as:

ϕ (~x, t) = ϕ̃ (~x) + ϕ
′′

(~x, t) with ϕ̃ =
ρϕ

ρ̄
and ϕ′′ (~x, t) 6= 0. (6)
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Applying the Reynolds (1895) and Favre (1965) decompositions, to the governing equations, and taking the time
average value of those equations, we obtain the mean Reynolds equations:
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∂ũl

∂xl

δij

]
, (9)

∂(ρT̃ )

∂t
+
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In these equationsα is the molecular thermal diffusivity and two news unknown quantities appear in the momentum
(8) and in the energy equation (10), defined by the correlations between the velocity fluctuations, the so-called Reynolds
Stress, given by the tensor−ρu′′

i u′′

j , and by the fluctuations of temperature and velocity, the so-called turbulent heat flux,

defined by the vector−ρu′′

i T ′′.
The Reynolds stress of turbulent tensions is calculated by theκ − ε model, proposed by Jones and Launder (1972)

with the modifications introduced by Launder and Spalding (1974), where
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The turbulent heat flux is modeled algebraically using the turbulent Prandl numberPrt equal to a constant value of
0,9 by the relation
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In the equation (14)Cµ is a constant of calibration of the model, that values0, 09, κ represents the turbulent kinetic
energy andε is the rate of dissipation of the turbulent kinetic energy. Once thatκ andε are additional variables, we need
to know there transport equations. The transport equationsof κ andε were deduced by Jones and Launder (1972), and
the closed system of equations to theκ − ε model is given by:
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where:
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with the model constants given by:

Cµ = 0, 09 , Cε1 = 1, 44 , Cε2 = 1, 92 , Cε3 = 0, 288 , σκ = 1 , σε = 1, 3 , P rt = 0, 9 .

2.2 NEAR WALL TREATMENT

Theκ − ε turbulence model is incapable of properly representing thelaminar sub-layer and the transition regions of
the turbulent boundary layer. To solve this inconvenience,the solution adopted in this work is the use of laws of the wall
for temperature and for velocity, capable of properly representing the flow in the inner region of the turbulent boundary
layer.

There are four velocity and one temperature law of the wall implemented on Turbo 2D. The laws used in this simulation
are shown bellow, except for the classical log law, that futher explanations are unnecessary.

2.2.1 Velocity law of the wall of Mellor(1966)

Deduced from the equation of Prandtl for the boundary layer flow, considering the pressure gradient term for integra-
tion, this wall function is a primary approach to flows that suffer influence of adverse pressure gradients. Its equations
are, respectively, for the laminar and turbulent region
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where the asterisk super-index indicates dimensionless quantities of velocityu∗, pressure gradientp∗ and distance to the
wall y∗, as functions of scaling parameters to the near wall region,K is the Von Karman constant, andξp∗ is Mellor’s
integration constant, function of the near-wall dimensionless pressure gradient, determined in his work of (1966).

The intersection of both regions is considered to be the sameas the log law expressions, withy∗ = 11, 64. The
relations between the dimensionless near wall properties and the friction velocityuf are:
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The friction velocity is calculated by the relation:
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In equation (26) the termξp∗ is a value obtained from the integration process proposed byMellor (1966) and is a func-
tion of the dimensionless pressure gradient. Its values areobtained through interpolation of those obtained experimentally
by Mellor, shown in table (1).

Table 1. Mellor’s integration constant (1966)

p∗ −0, 01 0, 00 0, 02 0, 05 0, 10 0, 20 0, 25 0, 33 0, 50 1, 00 2, 00 10, 00
ξp∗ 4, 92 4, 90 4, 94 5, 06 5, 26 5, 63 5, 78 6, 03 6, 44 7, 34 8, 49 12, 13
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2.2.2 Velocity law of the wall of Nakayama and Koyama (1984)

In their work, Nakayama and Koyama (1984) proposed a derivation of the mean turbulent kinetic energy equation, that
resulted in an expression to evaluate the velocity near solid boundaries. Using experimental results and those obtained by
Strattford (1959), the derived equation is
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1
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[
3(t − ts) + ln

(
ts + 1

ts − 1

t − 1

t + 1

)]
, (29)

with
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3
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1 + p∗
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s =
eK C

1 + p∗0,34
, (30)

whereK∗ is the expression for the Von Karman constant modified by the presence of adverse pressure gradients,τ∗ is a
dimensionless shear stress,C = 5, 445 is the log-law constant and t,y∗

s andts, a value of t at positiony∗

s, are parameters
of the function.

2.2.3 Velocity law of the wall of Cruz and Silva Freire (1998)

Analyzing the asymptotic behavior of the boundary layer flowunder adverse pressure gradients, Cruz and Silva Freire
(1998) derived an expression for the velocity. The solutionof the asymptotic approach is

u =
τw

|τw|
2

K

√
τw

ρ
+

1

ρ

dpw

dx
y +

τw

|τw|
uf

K
ln

(
y

Lc

)
with Lc =

√(
τw

ρ

)2

+ 2 ν
ρ

dpw

dx
uf − τw

ρ

1

ρ
dpw

dx

, (31)

where the sub-indexw indicates the properties at the wall, K is the Von Karman constant,Lc is a length scale parameter
anduf is the friction velocity.

The proposed equation for the velocity (31) has a behavior similar to the log law far from the separation and reattach-
ment points, but close to the adverse pressure gradient, it gradually tends to Stratford’s equation (1959). The same process
was used to derive the temperature law of the wall by Cruz and Silva Freire (1998).

2.2.4 Temperature law of the wall of Cheng and Ng (1982)

For the calculation of the temperature, Cheng and Ng (1982) derived an expression for the near wall temperature
similar to the log law of the wall for velocity. For the laminar and turbulent regions, the equations are respectively

(T0 − T )y
Tf

= y∗ Pr and
(T0 − T )y

Tf

=
1

KNg

ln(y∗) + CNg , (32)

whereT0 is the environmental temperature andTf is the friction temperature, as defined by Brun (1988):
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1

RePr
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1
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)
∂T̃

∂xj

]

δ

(33)

The intersection of these regions are aty∗ = 15, 96, and the constantsKNg andCNg are, respectively, 0,8 and 12,5.

2.3 ANALOGIES EMPLOYED

In this work the wall heat flux is calculated in the non dimentional form of the Nusselt number, that for a channel can
be calculated by the following relation:

Nux =
2q

′′

xPrH

µCp(Tw − Tbulk)
(34)

In the equation above,Nux represents the local Nusselt number,q
′′

x is the local heat flux per unit of area,Pr is the
Prandtl number of the fluid, H is the height of the channel, andTw is the temperature of the wall. In 1933 Colburn
derived an expression from the Reynolds analogy, that establishes a relation between the local Stanton number, the local
friction coefficient and the Prandtl number of the fluid, valid for fluids with Prandtl numbers up to 0,5. The semi-empirical
expression derived by Colburn is:

Stx =
Cfx

2Pr
2

3

(35)
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In the equation above,Cfx represents the local friction coefficient, defined as:

Cfx

2
=

τwx

ρu2
∞

=
ρu2

fx

ρu2
∞

=
u2

fx

u2
∞

(36)

Where,ρ is the density of the fluid,u∞ is the free stream velocity of the flow,τw is the local shear stress on the wall
andufx is the local friction velocity.

The Stanton number, by definition can also be expressed as:

Stx =
q
′′

x

ρCpu∞(Tw − T∞)
(37)

Defining the bulk temperature as:

Tbulk =
Tw + T∞

2
(38)

And combining equations (34),(35),(36),(37) and (38), it is possible to estabilish a relation between the local Nusselt
number and the friction velocity, as:

Nux =
4Pr

1

3 u2
fxH

νu∞

(39)

The equation above was used to calculate the local Nusselt number along the ribbed channel. This methodology
was successful employed by Gontijo and Fontoura Rodrigues (2006a and 2006b) for turbulent flows over flat plates with
unheated starting lenghts.

3. NUMERICAL METHODOLOGY

The calculation domain used in the simulation is represented by the picture bellow.

H

L

−1.3 1.70 0.4

D

A

Calculation domain

B C

h

x

y
x/h

Figure 1. Calculation domain used in the simulation

In the picture above the values of the lenghts represented are: H = 4cm, L = 5, 76cm andh = 0, 8cm. The points
A,B,C and D, represent the sections where the profiles were taken, their coordinates are respectively -0.816x/h, 0.04x/h,
0.2x/h and 1.672x/h. The boundary inlet conditions are velocity, turbulent kinetic energy andε experimental profiles, in
the bottom wall a condition of constant heat flux was applied,in the top part an adiabatic wall was imposed, and a pressure
difference was setted up between the inlet and the outlet. The boundary wall velocity in the bottom part is calculated with
the wall laws, in a distance abouty+ = 1.5.

The meshes used in the simulation consists in a P1 mesh with 970 nodes and 1800 elements, and a isoP2 mesh with
3739 nodes and 7200 elements. Those meshes are shown in the picture bellow:
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Figure 2. P1 mesh (a), and IsoP2 mesh (b)

4. NUMERICAL RESULTS

The first interesting qualitative result presented are the velocity fields and the recicurlation regions obtained with the
use of four different velocity wall laws.
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Figure 3. Velocity fields and the recirculating regions. (a)log law, (b) law of Mellor, (c) law of Koyama and Nakayama,
(d) law of Cruz and Silva Freire
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In the figure 3,Ub is the velocity in wich the Reynolds number of the flow was based, in this case it’s value is
7, 4m/s. It is possible to notice from the picture above that there are considerable differences between the velocity
profiles calculated with the law of Koyama and Nakayama and the other laws.

Figure 4 shows the velocity profiles obtained in four different locations of the channel, respectively points A,B,C and
D (shown in figure 1). The numerical results are compared to the experimental data of Drain and Martin (1985).
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Figure 4. Velocity profiles in the positions: (a) x/h=-0.816- A, (b) x/h=0.04 - B, (c) x/h=0.2 -C, (d) x/h=1.672 - D

In figure 4, the profiles presented in letters (b) and (c) are taken above the rib, it is possible to notice that the Koyama’s
law presents a good aproach with the experimental results inthis region, while before and after the rib, in the recirculating
regions, this law is the one that produces the worse results.The other three wall laws tested produces very similar results
for the velocity field, and they all are capable to predict with a great precision the dynamical behavior of this complex
flow.

The next picture shows the pressure and the tubulent kineticenergy fields.
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Figure 5. Pressure (a), and turbulent kinetic energy (b) fields
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It is possible to notice in figure 5 that a low pressure zone occurs in the recirculation region after the rib, and that a
high turbulent kinetic energy intensity is observed in the beggining of the rib. The high values ofκ are related with high
turbulence intensity and by consequence with a higher heat transfer rate, since turbulence converts kinetic energy into
heat, this will be better visualized in figure 6.

The next analisys is done for the heat transfer along the bottow wall, where the rib is located.
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Figure 6. Nusselt number along the bottom wall (a), structure of the recirculation regions (b)

In order to quantify the raise in the heat transfer rates between the wall and the flow, induced by the presence of the
rib, figure 6 shows how the relation between the local Nusseltnumber,Nux, and the Nusselt number for a non ribbed
channel,Nus, changes along the calculation domain. The mean Nussel number for a non ribbed channel is calculated by
the Dittus-Boelter correlation:

Nus = 0.023Re0.8.P r0.4 (40)

The numerical and experimental values of the Nusselt numberalong the channel are in good agreement in the non
recirculating regions. The most important parameter of engineering interest to be obtained is the maximum relation
between the local Nusselt number (Nux) and the Nusselt number obtained with the Dittus-Boelter correlation (Nus),
because this relation gives the idea of how the heat transferis increased by the use of the rib. In this simulation the values
obtained for the highest value of the Nusselt number are veryclosed to the experimental data.It’s important to notice that
the introduction of the rib in the channel increases in 3.5 times the heat transfer between the channel and the cooling air.



Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

5. CONCLUSIONS

From the comparation between the numerical and experimental results, it is possible to conclude that the numerical
methodology employed in this work is capable to predict wellthe behavior of the velocity field.

For the heat transfer rates, in the non recirculating regions, points A,B and C (defined in figure 1), the agreement
between the numerical and experimental values is good. In the regions of boundary layer deattachment, before and after
the rib, the numerical values show heat transfer levels under the experimental results.

It is important to remind that the Colbun analogy produces great results in flows where the turbulence is in equilibrium
between production and dissipation, what does not happens in the bottom part of the flow, where the two recirculation
regions appear.

The implementation in the Turbo2D code of analogies that better represents the turbulent difusion of momentum and
heat in the recirculating regions, could raise considerable the quality of the resulting numerical modeling.
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