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Abstract. In this paper we present two methods to solve contact problems in 3D linear elasticity based on a
recently presented feasible interior point algorithm for nonlinear complementarity problems (FIPA-NCP). The
�rst method is based on the variational formulation of the elasticity equations and uses the Finite Element
Method (FEM) to discretize the continuous problem. The resultant discrete equations de�ne a complementarity
problem which is solved using the FIPA-NCP. The second method uses the Boundary Element Method (BEM)
to discretize the continuous problem. The discretized equations de�ne a mixed complementarity problem that is
solved using a variant of the FIPA-NCP for mixed complementarity problems (FIPA-MNCP). Some examples
of contact problems in elasticity are solved showing the applicability of the presented strategies.
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1. INTRODUCTION

Contact Problems in Solid Mechanics appear when contact forces are transmitted between two di�erent
bodies through their boundaries. Many �elds like forming operations, crashworthiness and biomechanical ap-
plications deal with contact problems. The analysis of these problems has been considered for several authors,
we can mention the works by Panagiotopoulos (1975), Simo et al. (1985), Klarbring (1986), Kikuchi and Oden
(1988), Raous et al. (1988), Bjorkman et al. (1995) and Wriggers and Fisher (2003).

In reason of the nonlinear nature of the contact problems, analytic solutions cannot in general be obtained
and we need numerical algorithms to �nd an approximated solution. Here, we present two methods for the
contact problem in linear elasticity (Signorini's problem). Both methods formulate the contact problem in
linear elasticity as a complementarity problem. Complementarity Problems arise in many �elds of Engineering
and Economics (Ferris and Pang, 1997). Several works dealing with such kind of problems have been presented,
we can mention the works by Cottle et al. (1980), Chen and Mangasarian (1996) and Mazorche and Herskovits
(2005). The main advantage of formulating the contact problem as a complementarity one is to take advantage
of the new, fast and robust algoritms that have been recently created for such kind of problems. In this work
we investigate the e�ectiveness of the recently proposed algorithms FIPA-NCP and FIPA-MNCP, for simple
and mixed complementarity problems, respectively.

The �rst proposed method is based on the variational formulation of Signorini's problem and uses the FEM
to discretize the continuous problem. The discrete form is a �nite dimensional optimization problem with linear
constraints where the Karush-Kunh-Tucher optimality conditions can be formulated as a complementarity
problem. For solving this problem we use the feasible interior point algorithm FIPA-NCP (Mazorche and
Herskovits, 2005). The second method is based on a boundary integral formulation of Signorini's problem and
employs the Boundary Element Method to discretize the boundary equations. The boundary conditions when
applied to the BEM equations lead to a �nite dimensional mixed complementarity problem. This problem is
solved using a variant of the FIPA-NCP algorithm for mixed complementarity problems called FIPA-MNCP.

Section 4 describes the nonlinear complementarity problem and presents the iterative algorithm FIPA-NCP
for such problems. Section 5 describes the mixed nonlinear complementarity problem and presents the iterative
algorithm FIPA-MNCP. Section 6 introduces the contact problem in linear elasticity and shows how to formulate
it as a �nite dimensional complementarity problem using the FEM or the BEM. Some examples are presented
in Section 7. Finally, the conclusions are presented in Section 8.
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2. THE NONLINEAR COMPLEMENTARITY PROBLEM (NCP)

Let S : D ⊆ IRn → IRn be a nonlinear vector function. The nonlinear complementarity problem consists in
�nding x ∈ IRn such that:

x ≥ 0, S(x) ≥ 0 and x ◦ S(x) = 0 (1)

where x ≥ 0 means that each component of vector x is nonnegative, and �◦� denote the entrywise Hadamard
product for vectors, given by (x ◦ y)i = xi yi.

De�ning the feasible set Υ = {x ∈ IRn | x ≥ 0, S(x) ≥ 0}, it is easy to see that x is solution of problem (1)
if and only if x is in the feasible set and x ◦ S(x) = 0.

FIPA-NCP is an iterative algorithm to �nd the solution of problem (1). It starts from an initial point in Υ
and generates a sequence of points in Υ that converge to the required solution. It �rst de�nes a search direction
and performs a line search along that direction to �nd a point with lower value for the potential function
Φ(x) =

∑n
i=1 xi Si(x). That point is de�ned to be the next point of the sequence and the algorithm returns to

the �rst step till a convergence criterion be satis�ed. The search direction is based on the Newton's direction for
the nonlinear system of equations x ◦ S(x) = 0. To obtain convergence to the solution, the Newton's direction
is modi�ed by a restoration direction like in (Herskovits, 1998). The present approach is supported by strong
theoretical studies (see Mazorche and Herskovits, 2005).

The following notation will be employed to describe the algorithm FIPA-NCP: Sk = S(xk), Mk = ∇(x ◦
S(x)), Φk = Φ(xk), ∇Φk = ∇Φ(xk) and µk = Φk/n.

FIPA-NCP
Data: x0 ∈ int(Υ) , k = 0 , ε > 0 , E = [1, ..., 1]T , ν, ν1 ∈ (0, 1), α ∈ (0, 1/2).

Step 1: Computation of the search direction dk

Find dk solving the following linear system of equations:

Mk dk = −xk ◦ Sk + α µk E (2)

Step 2: Line search
Set t as the �rst number in the sequence {1, ν, ν2, ν3, ...} that satis�es:

xk + tdk ≥ 0

S(xk + tdk) ≥ 0

Φk + t ν1 (∇Φk ·dk) ≥ Φ(xk + tdk)

Step 3: Update
Set xk+1 = xk + tdk and k = k + 1.

Step 4: Stop criterion
If ‖xk ◦ Sk‖ ≤ ε stop, else go to step 1.

In reference (Mazorche and Herskovits, 2005) has been shown that the search direction dk is well de�ned in
Υ whether function S veri�es some usual regularity assumptions.

3. THE MIXED NONLINEAR COMPLEMENTARITY PROBLEM (MNCP)

Let S : IRm+p → IRm and Q : IRm+p → IRp be nonlinear vector functions. The mixed nonlinear complemen-
tarity problem consist in �nding (x,y) ∈ IRm+p such that:

x ≥ 0 , S(x,y) ≥ 0 and
{

x ◦ S(x,y) = 0
Q(x,y) = 0 (3)

It can be easily shown that this de�nition is equivalent to the classic de�nition given for example in (Ferris
and Pang, 1997). Let the feasible set be: ΥM = {(x,y) ∈ IRm+p / x ≥ 0 e S(x,y) ≥ 0}. Then, a point (x,y)
is a solution of the MNCP if it is in the feasible set and veri�es x ◦ S(x,y) = 0 and Q(x,y) = 0.

In this case, the potential function is de�ned as: Φ(x,y) =
∑n

i=1 xi Si(x,y) +
∑m

j=1 Qj(x,y)2.
The following notation will be employed to describe the algorithm FIPA-MNCP: Sk = S(xk,yk), Qk =
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Q(xk,yk), Mk = ∇[xk ◦ S(xk,yk),Q(xk,yk)], dk = [dk
x,dk

y]T , Φk = Φ(xk,yk), ∇Φk = ∇Φ(xk,yk) and

µk =
{

(Φk + ck
1)/n if n + ck

2 ≤ 0
(Φk + ck

1)/(n + ck
2) if n + ck

2 > 0 with ck
1 =

m∑

j=1

Qj(xk,yk)2 and ck
2 = 2

m∑

j=1

Qj(xk,yk)

FIPA-MNCP
Data (x0,y0) ∈ int(ΥM) , k = 0 , ε > 0 , E = [1, ..., 1]T , ν, ν1 ∈ (0, 1), α ∈ (0, 1/2).

Step 1: Computation of the search direction dk

Find dk solving the linear system of equations:

Mk dk = −[xk ◦ Sk,Qk]T + α µk E (4)

Step 2: Line search
Set t as the �rst number in the sequence {1, ν, ν2, ν3, ...} that satis�es:

xk + tdk
x ≥ 0

S(xk + tdk
x,yk + tdk

y) ≥ 0

Φk + t ν1 (∇Φk ·dk) ≥ Φ(xk + tdk
x,yk + tdk

y)

Step 3: Update
Set xk+1 = xk + tdk

x, yk+1 = yk + tdk
y and k = k + 1.

Step 4: Stop criterion
If ‖[xk ◦ Sk,Qk]‖ ≤ ε stop, else go to step 1.

4. SIGNORINI'S PROBLEM

The classical form of the Signorini's problem in linear elasticity reads as follow:
a) −∇·σ = f̄ on Ω
b) u = ū in ΓD

c) p = p̄ in ΓN

d) u·n̄ + s̄ ≥ 0
e) p·n̄ ≥ 0 in ΓC

f) (u·n̄ + s̄)·(p·n̄) = 0

(5)

where Ω is the open domain occupied by the solid and Γ = ΓD ∪ ΓN ∪ ΓC its boundary, u is the displacement
function, the Cauchy stress tensor σ = lCε, ε = ∇Su with lC the elasticity tensor and ∇Su = 1/2(∇u +∇T u).
Function p = σn with n the outward unit normal vector of Γ. Functions f̄ , ū, p̄, n̄ and s̄ are given (see Fig. 1).

Figure 1. Contact problem in linear elasticity

4.1 Modeling the contact problem with the FEM

The variational formulation of the Signorini's problem (5) is:

Minimize Π(u)
Subject to: u ∈ Σ (6)
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with

Π(u) =
1
2

∫

Ω

( lCε)·ε dΩ−
∫

Ω

f ·u dΩ−
∫

ΓN

p̄·udΓ

and
Σ =

{
u ∈ U | u = ū in ΓD and u·n̄ + s̄ ≥ 0 in ΓC

}

Using the �nite element discretization we obtain the discrete problem:
Minimize Πh(u)
Subject to: u ∈ Σh

(7)

where Πh(u) = 1
2u

T Ku−FT u, with K the global sti�ness matrix and F the vector of nodal forces. Σh can be
represented as: Σh = {u ∈ Uh | Au + s̄ ≥ 0} where A is the matrix describing the constraints.

The Karush-Kuhn-Tucker conditions for problem (7) are:
Ku− F−AT λ = 0

(Au + s̄) ◦ λ = 0
Au + s̄ ≥ 0

λ ≥ 0

(8)

An equivalent complementarity problem for the variable λ can be obtained if we use the �rst equation to
de�ne u depending on λ. Replacing the obtained expression for u in the next equations, we obtain:

S(λ) ◦ λ = 0
S(λ) ≥ 0

λ ≥ 0
(9)

where the product of the �rst line in Eq. (9) is a Hadamard product and function S is de�ned as: S(λ) =
(AK−1

h AT
h )λ−AK−1

h F + s̄.

4.2 Modeling the contact problem with the BEM

The boundary integral equation for linear elasticity with f̄ = 0 in Eq. (5) is (Brebbia et al., 1984; Beer and
Watson, 1992; París and Cañas, 1998):

c(ξ)u(ξ) =
∫

Γ

u∗(ξ,x)p(x) dΓ−
∫

Γ

p∗(ξ,x)u(x) dΓ (10)

where function u∗ is the fundamental solution for the linear elasticity problem and p∗ is its correspondent
fundamental surface traction. Matrix c(ξ) depends on the local geometry of boundary Γ at point ξ and the
second integral on the right is de�ned in the Cauchy principal value sense (Brebbia et al., 1984; Beer and
Watson, 1992; París and Cañas, 1998).

Applying the BEM method, the discrete form of the boundary integral equation result:
Hu−Gp = 0 (11)

where now, the vectors u and p de�ne the displacements and traction forces on the boundary Γ and H and G
are the BEM matrices.

Applying the boundary conditions Eqs. (5.b) and (5.c) to Eq. (11), and denoting x the vector of unknowns
related to the normal tractions in ΓC and y the vector of remaining unknowns, we obtain:

Ax−By = q (12)
The boundary conditions in ΓC , Eqs. (5.d) to (5.f), can be written as:

S(y) ≥ 0
x ≥ 0

S(y) ◦ x = 0

Finally, de�ning Q(x,y) = Ax + By − q, we have the following mixed complementarity problem:
S(y) ≥ 0

x ≥ 0
S(y) ◦ x = 0
Q(x,y) = 0

(13)
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5. NUMERICAL EXAMPLES

This section presents some examples showing the e�cacy of the proposed methods. For the FEM analysis
the commercial package ABAQUS was employed (ABAQUS, 2003).

5.1 Cylinder

This example consist of a cylinder in contact with a rigid plane as shown by Fig. 2. We use a two-dimensional
BEM model.
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3

P

Figure 2. Cylinder in contact with a rigid plane.

This example has an analytic solution for the contact pressure given by the formula: p(x) = pm

√
1− (x/b)2,

where pm is the maximum value of the contact force and b is the width of the contact region. They are given
by: pm = (2P )/(πb) and b =

√
(2PD)(1− ν2

m)/(πEm), where P is the applied force per unit length, D is the
diameter of the cross section and Em and νm are, respectively, the Young's modulus and Poisson's ratio of the
elastic material.
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Figure 3. Analytic and obtained contact pressure.

5.2 Curved beam

This example consist of a curved beam in contact with a rigid plane as shown by Fig. 4. This three-
dimensional problem was solved using the BEM.
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Figure 4. Curved beam.

Figure 5 shows the obtained contact region. The points with positive contact force are enhanced in red color
showing the characteristic elliptic shape of the contact region.
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Figure 5. Pressures in the contact region of the curved beam.

5.3 Micro-gripper

In this case we present an elastic three-dimensional self-contact problem. The micro gripper mechanism is
loaded by opposite pressures acting on its lateral surfaces as shown by Fig. 6. The non-penetrability condition
was taken into account employing conforming meshes. One linear constraint was considered for each pair of
opposite nodes. A three-dimensional FEM model was employed.
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Figure 6. Micro-gripper model with boundary conditions.
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(Avg: 75%)
S, Mises

+4.290e−05
+3.156e−03
+6.269e−03
+9.382e−03
+1.250e−02
+1.561e−02
+1.872e−02
+2.183e−02
+2.495e−02
+2.806e−02
+3.117e−02
+3.429e−02
+3.740e−02

Figure 7. Von Mises stresses in the micro-gripper.

5.4 Rack and pinion

This two-dimensional example presents a contact problem between a rack and a pinion. Like previous
example we have used conforming meshes. The structural analysis was carried out using FEM.

1

2 3

F

Figure 8. Rack and pinion mechanism with boundary conditions.

(Avg: 75%)
S, Mises

+3.524e−07
+1.290e−01
+2.579e−01
+3.869e−01
+5.158e−01
+6.448e−01
+7.737e−01
+9.027e−01
+1.032e+00
+1.161e+00
+1.290e+00
+1.418e+00
+1.547e+00

Figure 9. Von Mises stresses in the rack and pinion mechanism.
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5.5 Summary of results

Table 1 shows the obtained maximal values for the contact pressures. The reference value is given by the
analytic formula, in the case of the cylinder, or by the ABAQUS, for the other examples.

Table 1. Maximal contact pressures in the presented examples

Example Obtained value Reference result Error (%)
Cylinder 7.98 7.98 ∗ 0
Curved beam 22.58 22.55 ∗∗ 0.13
Micro-gripper 40.63× 10−3 41.86× 10−3 ∗∗ -2.87
Rack and pinion 1.57 1.65 ∗∗ -4.85

(∗) Analytic, (∗∗) ABAQUS.

6. CONCLUSIONS

We have presented two strategies for solving frictionless contact problems in linear elasticity. The �rst
method makes use of the FEM to de�ne a complementarity problem that is solved employing the FIPA-NCP
algorithm. The second one uses the BEM to de�ne a mixed complementarity problem that is solved by the
FIPA-MNCP algorithm.

The main advantage of the presented methods is the integration of fast and robust algorithms for comple-
mentarity problems with standard tools for �nite and boundary elements analysis. This characteristic makes
the proposed methods suitable for large-scale applications in contact mechanics.

Both methods have been shown e�ective in the solution of the presented academic examples and some large-
scale real applications. These results are encouraging and motivate further investigation about the e�ciency of
the proposed methods for large-scale applications.
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