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Abstract. A computer code was developed from scratch to simulate the flow over the NACA 0012 airfoil at different 
Reynolds and Mach numbers. The domain was discretized in a structured-grid context. The equations were numerically 
solved by a finite-volume technique, and the use of a Runge-Kutta time-marching technique that respects the direction 
of the flow. First, the Euler flow was initially modeled as well as a Reynolds-averaged Navier Stokes formulation was 
calculated. The inviscid NACA 0012 simulation was compared with other numerical results available in the literature. 
Finally, two compressible, turbulent viscous flows over the NACA 0012 airfoil were numerically solved using the 
Baldwin & Lomax turbulence model. The pressure coefficient distribution along the airfoil chord and the normal force 
coefficient were compared with experimental data.  
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Nomenclature 
 
M∞

                                     Freestream Mach number 

p∞
                                       Static pressure 

t∆                                        Time step for each cell 
U
ur

                                        Velocity vector 
Q                                         Vector of conserved variables 
E, F                                      Flux vectors in the x and y directions respectivelly 

,i jT                                        Total flux across the control volume 

,i jP                                        Super vector containing the inviscid and viscous fluxes 
 

,i jV                                       Cell volume 
  
1. INTRODUCTION. 
 

The present report deals with both Euler and Navier-Stokes simulations. Its first phase, constituted of inviscid 
simulation, was performed over a NACA 0012 airfoil at an angle of attack of 1.25, a very challenging simulation 
because of the presence of shock waves. The pressure coefficient result was compared with those from other authors. 
The next step was to introduce the viscous terms and thus provide physical diffusivity to the flow model. Full viscous 
turbulent simulations over the NACA 0012 airfoil were performed. The nature of the flow is almost fully turbulent due 
to the flow high Reynolds numbers. Thus, the Baldwin and Lomax (1978) turbulence model was used. Two cases were 
simulated. In the first one the free stream Mach number, ∞M , was equal to 0.5 and the Reynolds number based upon the 
airfoil chord, Re, was set to 3x106. Next, the Reynolds number was increased to 9x106 and the incoming flow Mach 
number was set to 74.0=∞M . The structured grid was carefully generated to properly capture the turbulent boundary 
layer. For every viscous case, the pressure coefficient distribution and normal force coefficient were compared to the 
experimental values of Harris (1981). 

 
2. NUMERICAL FORMULATION. 
 

The rate of change of a general flow variable φ  within a finite control volume can be expressed as a balance 
among the net convective and diffusive fluxes and the net creation of φ  within the control volume (Versteeg and 
Malalasekera, 1995). Therefore,  
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Integrating the flow equations for each surface of the cell control volume we have 
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where ,i jV  is the cell volume, ,i jS  is the surface of the control volume, and P
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where E and F are the flux vectors in the x and y directions, respectively, while xi  and yi  are Cartesian unit vectors. 
The fluxes across the grid-cell surface are calculated by averaging the flow properties on both sides, giving rise to a 

central-discretization scheme. To advance the solution in time Jameson suggested a five-stage Runge-Kutta integration 
scheme. The dissipative fluxes are calculated in all the Runge-Kutta stages to improve the stability. Thus, adding the 
numerical dissipation operator to Eq. (2), one gets: 
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where ( ),i jT Q  is the discrete approximation of all the fluxes crossing the surface of the control volume and ( ),i jDa Q  

denotes the artificial viscosity. Let the superscript n  denote the time level. Thus, 1n +  represents the next time level 
after a time increment equal to t∆ . To advance the calculation towards the steady state solution, one writes: 
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where the subscripts i,j in the Q vector where neglected for simplicity. The standard values for the α  coefficients, used 

in the present work, are
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2.1 Non-linear artificial viscosity 

The artificial dissipative terms used here is a non-linear formulation proposed by Jameson et al (1981). The 
construction of the non-dissipative linear terms for each variable, in this case for the density is:  

 
ρρρ yx DDD += . 

 
where: ρxD  and ρyD are corresponding contributions for the two coordinates directions. Written in conservation 
form: 

/ , / ,x i 1 2 j i 1 2 jD d dρ + −= −                and         2/1,2/1, −+ −= jijiy ddD ρ . 
 

In Eq. (7), the terms on the right all have a similar form: 
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where ,i jV  is the cell volume, and the coefficients ( )2ε  and ( )4ε  are dependent on the user-defined constants  ( )2k  and 
( )4k , and on a pressure sensor defined as:  
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Then 
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The standard values of the constants ( )2k  and ( )4k  are 
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The dissipative terms for the remaining equations are obtained by substituting uρ , vρ  and e  for ρ  in these 

formulas. 
 

2.2 Grid details 
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Figure 1: Grid details for viscous simulations. 
 

The computational mesh appearing in Fig. 1 was very carefully constructed. This grid was used for the Navier-Stokes 
simulations. The minimum non-dimensional distance from the wall to the closest point at the leading and trailing edges, 
DS, is highlighted. The mesh had 189 by 43 grid points along i-direction- and j-direction respectively. For the Euler 
cases a similar grid, but with less point close to the airfoil surface, was used. 
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3. RESULTS 
 
3.1. Inviscid simulation over the NACA 0012 
 

The pressure coefficient, shown in Fig. 2 looks similar as that provided by Pulliam (1986), using a finite difference 
method. The minimum pressure coefficient value at the upper surface was found to be approximated -1.1 for both 
solutions. The present result is compatible to that of other authors. However, the shock wave was shifted towards the 
leading edge, as reported by Wenneker (2002) on his doctoral thesis. This happens because of the entropy generation at 
the leading edge, which creates a ‘numerical boundary layer’, causing losses (close to the airfoil) that are visible in the 
constant Mach lines, see Fig. 3.  

 

 
 

Figure 2:  Comparison for the pC  along the airfoil chord for M∞ =0.8, α =1.25. 
 

The weak shock wave, at the lower part of the airfoil, is particularly hard to capture. There was a difference in the 
lower shock, for the code it looks thicker, starting at x/c equal to 0.33, just four percent ahead of the Pulliam result. This 
difference may be related to two possible reasons: one is the AV coefficients combined with the type of grid used by 
Pulliam, and the other is the use by Pulliam of upwind differencing in supersonic regions, as suggested by Steger 
(1978), producing better shock capturing capabilities. In this work a central-discretization scheme was used. 
 

 
 



Figure 3: Mach contours for M∞ =0.8, α =1.25. 
 

3.2. Turbulent Viscous Flow over the NACA 0012 
 
3.2.1. Mach number: 0.5, angle of attack: 5.86. 
 

The next simulation of the flow over the NACA 0012 airfoil was for a free-stream Mach number, M∞, equal to 0.5. 
The Reynolds number, based on the airfoil chord, was equal to 3x106. For all viscous simulations the starting point was 
an intermediate Euler solution obtained after 10,000 iterations. Then the viscous terms were switched on. This was done 
in order to reduce computational processing time. The CFL numbers of the Euler and NS simulations were 0.3 and 0.2 
respectively. The artificial viscosity coefficients were set to K2 = 1.0 and K4 = 0.05 for both phases of the computations. 
The y+ value at j=2 was under 3, along the whole airfoil. 

For this particular simulation, the difference between the inviscid and viscous solution was evident. This result is 
presented without wall interference corrections reported by Harris (1981). The numerical result was in a very good 
agreement with the experiment along most of the airfoil chord. There was, indeed, a small deviation close to the leading 
edge; this can be clearly seen in Fig. 4. 

 

 
 

          Figure 4: Pressure distribution for M∞ =0.5 and α =5.86. 
 

 The Euler numerical result showed a steeper suction peak, while for the Navier-Stokes simulations the suction 
peak was a little underestimated. However, despite this minor departure from the experimental Cp data, the normal force 
coefficient was found to be Cn = 0.620. Comparing with experimental data, Cn = 0.626, the error is less than one 
percent. There may be numerical issues associated with the small differences on the Cp results. Many different grids and 
artificial viscosity coefficients were tried prior to the combination that yielded the solution presented here. For example, 
numerical tests were performed with less artificial viscosity. It was found that, On one hand, the pressure coefficient 
distribution seemed to be even closer to the data due to Harris(1981). But, on the other hand, the normal force 
coefficient error increased to values as high as 9 %. Pressure and Mach contours, with K2 = 1.0  and K4 =0.035, are 
presented in fig. (5) and (6), respectively. The isolines contours were free of distortion. 

 



 
 

Figure 5: Pressure contours for M∞ =0.5 and α =5.86. 
 

 
 

Figure 6: Mach contours for M∞ =0.5 and α =5.86. 
 

The residue for the density variation showed a plateau for the inviscid calculation. For Navier-Stokes, despite some 
discrete peaks, the overall trend was always towards convergence, see Fig. 7. At 40,000 iterations the normal force 
variation is very small, but the density convergence is only obtained after 48,964 iterations. 

 



 
 

Figure 7: Density variation history for M∞ =0.5 and α =5.86. 
 

3.2.2. Mach number: 0.74, angle of attack: -0.14. 
 

The next simulation was for a free-stream Mach number, M∞, equal to 0.74. The Reynolds number, based on the 
airfoil chord, was equal to  9x106. The angle of attack, α, was -0.14. The CFL number for the Euler simulation was the 
same as for the previous case. The CFL number for the Navier-Stokes simulation was lowered to 0.18. The non-linear 
AV coefficients were K2 = 1.0 and K4 = 0.02. 

 

 
 

Figure 8: Pressure Coefficient for M∞ =0.74 and α = -0.14. 
 

The experimental Cp value was found to be -0.69, while for the Navier-Stokes numerical simulation result the 
suction peak was -0.66 as shown in Fig. 8. Although much smaller, there was also a difference, between the numerical 
and the experimental data, at the airfoil lower surface. The numerical Cp result was slightly greater than the 
experimental value from the leading edge to about x/c= 0.1. This may be related to the fact that the boundary layer is 



very thin, at this zone, and therefore grid is too coarse to capture it correctly. In spite of this differences, the value of the 
normal force coefficient was exactly the same reported by the experimental information, that is, Cn= 0.020. 

Pressure and Mach contours are present in Fig. 9 and 10. The maximum Mach number at the upper surface of the 
airfoil was 0.99, located at x/c= 0.194. The lower surface achieve the sonic speed at x/c= 0.196. However, no shock 
wave was formed. 

 

 
 

Figure 9: Pressure Contours for M∞ =0.74 and α =-0.14. 
 

 
 

Figure 10: Mach contours for M∞ =0.74 and α = -0.14. 
 

The density convergence rate is shown for both, partial Euler and Navier-Stokes simulations in Fig. 11. The 
convergence criterion was attained with 58,547 iterations, but after 30,000 there was no a significance change on the 
flow properties. 

 



 
 

Figure 11: Density variation history for M∞ =0.7 and α =1.86. 
 

4. CONCLUSIONS 
 

The code implemented in the present work, proved to be very robust for both Euler and turbulent Navier-Stokes 
simulations. It is important to do an even more careful study of the influence of the artificial viscosity influence on the 
final result of the simulation. It was observed that the AV coefficients modified not only the convergence rate, but also 
the converged result. Thus, it is imperative to study deeper the numerical-viscosity schemes and its influence on the 
result. 

Moreover, Jameson’s scheme allows for greater CFL numbers, which could, at least in part, compensate the larger 
number of iterations it needs to converge, as well as, the more computer intense calculations between time steps 
comparing with other techniques. For the Navier-Stokes simulations, the use of a Runge-Kutta time-marching technique 
that respects the direction of the flow could increase the maximum allowable CFL number. For example, in the NACA 
0012 simulations, the Runge-Kutta cycles were divided in two, one for the upper surface and another for the lower 
surface of the airfoil, respecting the preferable direction of the convective terms.  
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