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Abstract. In this work analytical elastoplastic tangent operatorg @erived for the class of density-dependent plasticity
models, as the elliptical and cap models. The density deperadof some parameters of the model, implies in a correction
in the so called consistent tangent operators in finite elalsisticity in order to achieve better convergences when th
Newton-Raphson method is used. The consistent tangerdtopgerre derived inside of the framework of isotropic
multiplicative elastoplasticity. A Total Lagrangian foatation is considered and the density-dependent conisgtutodel

is written in terms of the rotated Kirchhoff stress and oflitgarithmic strain conjugate measure. In order to simulate
compaction processes a contact formulation is used baséuedBignorini condition and on the assumption of fricticasle
condition as well. In order to attest the performance of treppsed tangent modulus derivation, some numerical result
are presented in the context of the finite element methodrysdne strain assumption.

Keywords. Tangent operator, Powder compaction, Geomechanical rizdgée Density-dependent materials.
1. INTRODUCTION

The nonlinear problem study in this work is relating to thedmling of the behavior of compressible porous materials
in the context of finite deformation, elastoplasticity ahd finite element method (FEM). The proposal of this work is to
investigate the impact of the relative density on the camece process in density-dependent finite plasticity nsodel

In general, the solution of nonlinear problems requireditrearization of the set of nonlinear equations and then the
use of an iterative process which shall leads to a convergetence to the solution point. TRewton-Raphsomethod
is the most popular method used to solve nonlinear problarogritinuum mechanics. The correct linearization of the set
of nonlinear equations plays an very important role in theaitive solution search. Approximate linearizations neadl
to a dramatic increase of the number of iterations or evemianaconvergence sequence.

During the linearization of such kind of nonlinear probleitie so called tangent operators arises due to the nonlinear
stress-strain relationship. These tangent operatorseaieed here letting the relative density vary slightly ardiuthe
solution and then leading to corrections on the standagktatroperators.

To model the kinematics of deformation of the body we assumeelotal Lagrangiandescription and to impose
the contact with walls we make use of tBegnorini condition together with the frictionless assumption. Muver, the
constitutive formulation is given in terms of the logaritttrdeformation measure and the rotatécchhoff stress tensor.

In addition, the exponential mapping is employed which @ress the return mapping procedure in the same manner as
done in infinitesimal strain formulation.

2. FINITE STRAIN DESCRIPTION
2.1 Kinematics of defor mation

This paper considers a multiplicative decomposition ofdaformation gradient tensd@t, F = Vx ¢ (X, ¢), into an
elastic deformation gradient tensél;, and a plastic deformation gradient tendot, Thus,

F = F°F? (1)
The elastic deformation gradient admits the polar decoitiposi.e.,

F¢ = R°U" 2
whereR¢ is the elastic rotation tensor and

U°=vC¢ . C°=(F)F° 3)
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where C¢ is the elastic right Cauchy-Green tensor. Here, one asstimedeformation measure to be given by the
logarithmic orHenckystrain tensor, given by

E° = In (U°). 4)
2.2 Conjugate stress measure

In the formulation of constitutive theories, the stregsistpairs must be such that the rate of the work density nesnai
preserved. Considering the material to be isotropic, ot@ilmbas the conjugate stress, associated withigrekystrain,
the rotatecKirchhoff stressr, given by

7= (R 7R® (5)

wherer is theKirchhoff stress,- = det (F) o, with ¢ denoting theCauchystress tensor. Thus, based on Eq.(5) and
Eq.(4), the rotatedirchhoff stress will be related with the logarithmic Henckystrain tensor by means of

7 = DE°. (6)
whereD is the standard fourth order elasticity tensor.
3. FINITE DEFORMATION FORMULATION WITH UNILATERAL FRICTIONLESS CONTACT
3.1 Strong form

Let 2, be the initial configuration of a body with bounda?,,, subjected to: a prescribed body foiselefined in
Q,; a prescribed surface tractiedefined onl™; a prescribed displacemeatdefined onl'%; and a contact with friction
condition onl'¢, with 9Q, =Tt UT* UTS andl NTY =T NT¢ =T“ N TS = (). The strong form of the quasi-static
contact problem may be stated as: Findor eacht, such that

divP + p,b = 0 in Q, )
Pm = t onT? (8)
u = u only 9)

whereP is the firstPiola-Kirchhoff stress tensor. For the treatment of frictionless contaist sufficient impose the
non-penetration condition, which can be stated in the falg form, see Wriggers (2002),

@, 20, gy(u) <0, Qg (u)=0 (10)

which is also known as thidertz-Signorini-Moreawcondition. HereQ¢ = Pm is the surface traction ofi¢ andg is the
gap vector function. Moreove®© andg are decomposed as:

Q°=Qr + Qv 11)
and

g=8r + gV (12)
where

Q, = Qv . g=gv (13)

Q7 = I-verv)Q® .. gr=I1-vev)g (14)

in which v is the outer normal to the rigid obstacle at the contact pdWith the assumption of frictionless contact only
the terms related with the normal conta@t;, e g,,, are enough to impose the contact. In the case of frictioaobthe
terms related with the tangential quantities must be alsentanto account.

3.2 Weak form

In order to solve the Total Lagrangian description of thdaiaral contact frictionless problem, in its incremental
form, one applies the Augmented Lagrangian method. As dtréla solution to the contact with friction problem is
determined by solving the following sequence of problemisee, > 0 and)\?\,wf1 >0, findu, 1

: k
Uy = lim uy 4, (15)
k—o0
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whereu,, 1 is the solution of: Determlna’tr1 € Wl (Q,) so that
G(up,,,0) =0 VaeW (Q). (16)

Heree, and), are penalties parameters and the Lagrange multiplier esedavith the imposition of the and the impen-
etrability condition. The terng (u®_ ,, @) can be decomposed as follows

G (15 Q) = Gine (415 8) + Gear (U1, 0) + Geone (w1 1,0) (17)
where

G (w108) = [ P(uh) Vxia, (182)

Gewr (0f,1,0) = —/Q pOB-ﬁon—/ﬁEnH-ﬁdPg (18b)
and 0

Geont (U1, 1) = —/C Q° (uﬁﬂ,ey,x’;nﬂ) - dre. (19)

In this iterative process, the Lagrange multipliers areated as, see Simo and Laursen (1992),
XL = (X e (W), (20)

where(-) is the Macauley bracket, defined @3 = 1 (z + |z|).

Notice that, Eq.(18a), Eq.(18b) and Eq.(19) may be seerectisply as the virtual work done by the internal forces,
external forces and by the surface tracti@fswhich are associated with the contact condition.

In order to determina’ , in Eq.(17), one applieNlewton-Raphsonmethod, reducing Eq.(17) to the solution of a
sequence of linear problems, defined as: Given the |n|t|ai;gun(f{ = u,, u, denoting the converged solutionat,
findu®, ,,

k
wiey = lim w7, (21)
whereun(ﬁ is computed, from the previous iteration, by
k(j 1
ungﬁ n-&J-l )+A n-‘rl : (22)

The displacement mcremeﬂtumrl is determined by solving the linear problem:

pg (wi Y a) [auif V] = —g (wifVa)  vaew) () (23)
in which,
g (uffr V. a) [auf] = % G (wh§ " +eaut Y, a) L:O. (24)

The linearization of the weak form presented in Eq.(24) $etdthe linearization of the term associated with the
internal virtual work, i.e.,

gznt ( ngl 1)7ﬁ) == / P (uﬁ(jfl)) N VXﬁ on- (25)
Q
which can be expressed, after a straightforward manimulass
DGt (uifi V0 [Auif V] = / A (W) ox (0 - Oxaag, (26)
Q
whereA is the called tangent modulus given by

[A (u:'gzl_l)>]ijkl B 252 — o Fyp! — TinF F_ : (27)

=D (‘)Fkl Jp
ntl
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3.3 Noteson the determination of the tangent modulus A

The determination of the tangent modulusequires the computation of the derivative of iechhoff stress tensor
with relation to the deformation gradient tensor, as seeiqi27). In addition, it is possible to relakérchhoff stress
tensor with the rotatelirchhoff stress tensor by Eq.(5) and therefore writas a function of thé. In other words, the
computation ofg—; requires the computation c% The derivative of the rotateldirchhoff stress tensor with relation to
the deformation gradient tensor can be evaluated realthiig

Tl = Tntl (Eﬂi;la (')n> . (28)

Now, by applying the chain rule we have

& Ofwir _ R OELY OCHTY 09
OF,41 OEST 0Ce " OF i1
Denoting now
5 — et'r”ial 806“”“”
BTl g T g = Tonn (30)
O} 1 oCH 1 OF 11
it is possible rewrite the Eq.(29) as
D = DGH. 31)

Lets now describe some important points about the detetimimaf each one of these three tensors. Knowing that

trial

. T )
Cffﬂl = (Fg+1 ) Fetﬂl and after a straightforward manipulation, ffigerm can be expressed as

n

—1 trial trial —1
o = [P ], Fi + Fe [P (32)
The fourth order tensdk is computed by the following expression
a etru:,l 1 a etria,l
n+1 n+1

Note that in theG determination we need to compute a derivative that invoﬁlgg(—), that is a derivative of the isotropic
functionln (X). This class of functions and their derivatives are invedéd in details in the works presented by Souza
Netoet al. (1998) and Ortizt al. (2001). In the Eq.(31) the fourth order tendbis the term that involves the material
constitutive relationship. The other two are related wiglomgetric portion of the tangent modulus. In fact, the deiova

of D will depend on the type of material being modeled, i.e., inthse of a material that exhibits elastic and inelastic
behavior, if the yield functiorf < 0 thenD is taken as the elastic modullls,see Eq.(6), otherwise jf > 0 thenD will

be the elastoplastic tangent operdise.

4. DENSITY-DEPENDENT FINITE PLASTICITY MODELS

In the development of plasticity models for compressibleops materials it is necessary to establish a yield criterio
and a flow rule from which the stress-strain relations candseveéd. However, the yielding of porous materials is much
more complex than the yielding of fully dense materials,ntyailue to the fact that the yielding is not only influenced by
the deviatoric part of the stress, but also by its hydrastzit, see reference [1].

Examples of compressible materiais are soils, powders @mtig. Each one of these materials has its particularity,
which influences its modeling. In the specialized literatutris possible find many models and dozens of their vanatio
In general soils are modeled throu@lap models, powders can be modeled ®sp models, for lower relative density
values, and by the called elliptical models, a variatiorhefton Miseghat incorporates the hydrostatic part of the stress,
and foams are in general modeled through the usage of a speoifiel.

Despite of the functional form of the mathematical modelduisethe modeling of density-dependent finite plasticity
models they, in most cases, have some parameters that @medaep on the evolution of the mass dengity

P
P~ det (F)’ (34)

wherep, is the initial mass density, or in terms of relative densityvhich is defined by

_ P _ "o
"= T e () (39)
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wherep,, is the mass density of fully dense material apd= pp—;. Therefore, in the modeling of density-dependent finite
plasticity models, using the approach earlier presentedyield function will be written as

f=f@-m). (36)
4.1 Return mapping

The return mapping class of algorithms are the most employ#te solution of the equations that arise from the en-
forcement of the inelastic behavior of the material. Comiypidrased on a given load history, this enforcement comsgrise
the elastic relation, the plastic flow rule, the evolutiortto# internal variables and the satisfaction of the yield:fiom.

By assuming and associative flovules these

f (7_—7 T 777) =0 (37a)
or - 1% N (37b)
orT
) ) :
& A% = ANy (37¢)
F = D(nE° (37d)

In equation Eq.(37b) and Eq.(37&)s the plastic multiplier, which is determined by the satisfon of theKarush-Kuhn-
Tuckerconditions

f<0  A>0 Af=0, (38)

andD? is the modified plastic evolutiomy plays the role of the internal variables evolution vectbdenotes the vector
of internal variables that conjugatesdoN» andIN g plays the role of the "normals" with respect to the yield fiimc f.

4.2 Aproximation viathe operator split technique

The use of the aproximation via tlperator splittechnique leads to an algorithm based on two main stepshvainé
1. Elastic prediction: the problem is assumed to be purelstiel between,, e, 1;

2. Plastic correction: by the enforcement of the elastiati@h, plastic flow rule, the evolution of hardening var&bl
(internal variables) and the satisfaction of & ush-Kuhn-Tuckeconditions.

4.3 Elastic prediction

In the elastic prediction it is assumed that

FP = 0 (39)
& = 0. (40)
As the solution is former assumed as elastic then
trial
n+1 = Ffl (41)
a;rizzll = a,. (42)

The calledtrial elastic stateis obtained through

trial 1

Fr =Fup (F7) (43)
This implies that the logaritmic strain measure is compuigd
etrial 1 et7‘ial
En+1 = iln( n+1 ) (44)

) ) T )
. eM‘zal o etrzal etrtal
with Cn+1 - Fn+1 Fn+1 :

tria

Since thatElell is determined, then it is possible determine the trial sat&lirchhoff stress tensor by the use of the
elastic relation,i.e,

—trial trial

e 2 Ptriul
T =2 (1) Ep g + (’f (Nnt1) — 3k (77n+1)> tr (Eﬁ+1 ) I (45)

INon associative functions could also be used.
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where we assume the standard fourth order elasticity tdresng also dependent on the relative density, that means

2
D=2+ (k) - 3u(n) 1oL (45)
4.4 Plastic correction

The plastic correction must be performedfi{7.7/¢!, alri% n,41) > 0. The procedure adopted to perform the
plastic correction belongs to the return mapping algorghextensively explored in literature. In this work, as megd

by Eterovic and Bathe (1990) and Weber and Anand (1990),xperential mapping is used. The combination of the
logarithmic strain measure and the exponential mappirgration scheme leads to the same return mappings algsrithm

found in the small-strain theory, see Simo (1992) and Péic@wen (1998) for more details.
4.4.1 Exponential return mapping

At this point the evolution laws are approximated. The ftastolution

F? = DPF?, (47)
with D? = AN, is approximated based on the backward exponential appatiin resulting in
FP | =exp (AANz,,,) FE. (48)
In addition, the evolution of the internal variables arerappnated based on the backward Euler, i.e.,
Oy = O, + A/\Nﬁkwrl . (49)
Moreover, after a straightforward manipulation, Eq.(48)uces to
e etrial
En+1 = En+1 - A/\Nﬂwr (50)
Also, it can be shown thaRy ,, = f;:fl. As a result, the return mapping algorithm comprises thatsol of the
following non-linear system of equations
Ef},—f—l - EfeLt-iT-iial + A/\Nﬂwrl 0
A, — Ok, — A/\I\Iﬁkn#_1 = 0 (51)
f (?n+1» 6kn+1 ) 77n—i—1) 0

for AX, ay,, ., andEy;, .

Remark: Notice that based on a fixed incremental displacement anstantt, ., that isu,, .1, the deformation
gradientF',, ; is computed and so the relative density, ;. Therefore, the relative density is fixed, not a variablehim
context of the return mapping algorithm, see Pérez-Fogiait (2001).

4.5 Derivation of consistent elastoplastic tangent operator

The relative density model dependence impose a correctitinei tangent operator. In fact, the linearization of the
return mapping equations must consider the elastic trialrstlso as a variable. This implies thﬁ‘,if:{” — dnp41-
This means that a coupled relation amafgf|, andds,, ., must be derived.

. trial . . . . g .

The relation amongEy,,, anddn, should be consistent with the algorithm used. In the elggtdiction phase

we state that

trial

F,i1 =Fo.,  Fb. (52)
Based on the trial elastic state assumption and on the B (d4reminded that
th:lal = CeXp (QEZ’:{”) (53)
it is possible show, after a straightforward manipulatibiat
det (Ff::lal) = exp (Ef):;”) . (54)
Thus, substituting Eq.(54) and Eq.(52) into Eq.(35) yields
s = exp (~E6) (55)

etr'ial _ etwﬂal A Mo
whereE =tr (En+1 ) and’f] = deu(FD)"

Un+1
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4.6 Elastoplastic consistent tangent operator determination

Now, for the correct determination of the elastoplastigtart operator

d7_-n+ 1

etrial )
dES |

D =

(56)

one must impose Eq.(55) together with the system of equaibown in Eq.(51). To perform this important task one can
call for the linearization of Eq.(55) and Eq.(51). Such &reation leads to following set of equations

trial

dEfL+1 - dE181+1 +d (A)‘) N‘T'n,+1 + AAN‘T'n+1 0
day,,, —d(AN) N |, . — AN dNg, |, ., 0 &
df (7_—n+17 ﬁkn+1 ) 77n+1) ) ) B 0
s +exp (—E5, ) agg ™ 0
where
ON= 0 ON
dNz = Tt g7, T do, Tt g 58a
i 011 a1 1 Ol M1 It (58a)
AN _ Mo g Ny Mo (58D)
&%+1 N afn,+1 i aOfn-‘,—l fa 877n+1 I+t
_ _ 0 0
df (Tn+1>ﬁkn+1’77n+1) = Nz ,,d7h41 + aifdan-a-l + 87fdnn+1_ (58¢)
an+1 Un+1

and by assuming that some elastic parameter could depeine oelative density; = D (n) E€, we also impose that

oD~ (n,
%Tnﬂd%ﬂ- (59)
Tn+1

5. MODEL CASE - ELLIPTICAL OR POROUSMATERIAL MODELS

dES 1 =D (1) dingr+

Since the work presented by Doraivelu (1984) many contidbsthave been made regarding this class of model.
Some authors state that the use of the elliptical should bé asly when the relative densities are superiod,tp, but
others authors advocates that its use can be extended tovales of relative densities. Despite the discussion abou
the proper use of such kind of model, this model will be usem e illustrate the derivation of consistent elastoptasti
tangent operator. Elliptical or porous material modelsdamgcribed by the following yield function functional form

F=AJ,+BI{ =02 (60)

In this equatiord and 3 are scalars that are, in many cases, dependent on theeelatigity and,, is the apparent yield
stress.J; andI; are, respectively, the second invariant of the stress témsioe deviatoric space and the first invariant of
the stress tensor. In general

2 2
o, =70, (61)

whereo, is the initial yield stress of the fully dense material.

Doraiveluet al. (1984) showed that the values dfand B are not arbitrary. However, there are a great variety of
proposals ford and B in the literature. See table 1.

Zhdanovich (1971) proposes that a Poisson dependence ogldliee density, such that

1
v= 57]". (62)

The exponent, ~ 2 has been used to describe such dependencey Tindtiplier is known as the geometric hardening
and can be also dependent on the relative density, as shaablénl. Wheny = 1 the material must behaves as a fully
dense material and for some value betw8esmd 1 the material should presents no mechanical strength. Hhigey
represented byc or npe in the table 1, can vary for each author but is about the cédipdiensity

5.1 Proposal model

Let us propose now that the porous material model could éxpaz an isotropic hardenirigin its dense matrix. So,
the proposal material model can be represented by an yietdifun as

F=AJy+BI} =~ (k+0,)°. (63)
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Table 1. Some values for A, B and

Authors A B Y
Kuhn & Downey (1971)| 2 + 1> 1*3"2 1
Shima & Oyane (1976)| 3 e U
1— 47
Gurson (1977) an Sf% gﬁ%
Doraivelu (1984) 2+ n? o TE
C
. — 2 — 2
Lee & Kim (1992) 2+ 12 L =3
Park (1999) 2+ 7? = (’Z_Z,’Zg)
T2
12 )m 0.027, n <1
Pérez-Foguet (2003) 2 % { (2+"2 <l % (13.32170)”2
0 n>1 (71770:98772) n > Mo
Taking the square root in both sides of the Eq.(63) this fonatan be rewritten as
f=8eq—7% (k+0y) (64)

where

Seq = \/ AJy + BI? (65)

plays the role of equivalent stress. Let us assume thabjgiothardening: of the dense material matrix can be represented
by

k(a)=Ha+ (00 —0y) (1 - e (66)
whereH, o, andd are material parameters not dependent on the relativetgensi
5.2 Tangent operator

Since the model had been described in the previously sedtimnpossible now to identify the elastoplastic tangent
operator for the proposal model. This identification conresfthe linearization presented in Eq.(56). After a straigh
forward algebra manipulation it is possible to show that

ep d?n—&- 1

D = ]D) — = [Tep]—l T” (67)
dEfLHl
where
ON= 1
Te? = DL (nn+1) + A\ _TV,L+1 . (N‘F" . N?n ) (68)
OTn41 #fﬂm 4 .
e : " 8N;n 1
™ = 1T-— TNn+1 [D 1%En+1 + fcl\I,,—.n_'_1 _ A)\W;} o1 (69)
of
m AA y(Mn+1)
. + " (70)
c ﬁm QY1 Ot
6. RESULTS

In order to attest the effect of the correctidfyf’ into the standard elastoplastic tangent operBfdy it is proposed in
this example the simulation of a simple compression of ataanbody under plane strain assumption. The discretizatio
of the body as well as its boundary conditions are displagdijure 1. In this example we consider a material model as
described by Eq.(64) and Eq.(66) with B and~ given by the Doraiveliet al. (1984) model, table 1. The simulation
consist in the compression of the body by a vertical disptess# ofu, = —0.3mm. The vertical displacement is imposed
by 20 equal steps. The initial relative density is assumedzbtg, = 0.7. The parameter is assumed torfpe = 0.4, and
the other material parameters for this hyphotetical maltewie £ = 10000M Pa, v = 0.1, H = 130M Pa, 6 = 17,

0o = 7T15M Pa ando, = 100M Pa.
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Figure 1. Model problem - Isostatic compaction
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Figure 2. Convergence analysis - a) without correction - itf) orrection
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The figure 2 shows the convergence results achieved wheg aisiy the standard elastoplastic tangent oper&fgy,

figure 2(a), and when using tfig? = []D)jfd]*l DgP ., figure 2(b). The convergence results presented in thisefigre
based in the residue norjir,, 1| ., X niter, Wheren., is the total number of iterations to achieve the admissibiere

adm

rns1]|25™ < 107C. In both cases it is employed\ewton-Raphsomethod with line search.

By observing the figure 2 one can note two facts regarding tivwergence. The first one is that the convergence
deteriorates, in a dramatically manner when no correcgomsied and in a slightly manner when it is employed. The
second, is that the convergence starts with certain raig rdte decrease, in a first stage, when the relative density
increases but, in a second stage, when the relative deasig to be) ~ 1.0 (fully dense material), the convergence rate
tends to increase.

7. CONCLUSION

This paper deals with the derivation of the consistent tahgperators for density-dependent finite plasticity msdel
in the framework of théfotal Lagrangianformulation, multiplicative finite strain plasticity, l@githmic strains and the
exponential return mapping algorithms. It is clearly shdiat the density dependence of the material model implies in
corrections on the standard elastoplastic tangent opsradttmreover, based on the results shown it is possible hateft
no density correction is performed on standard elastapl@sigent operators then the convergence is affectedasirg
dramatically the number the iterations to reach the spéc#tmissible error, or even leading to non convergence. state
On the other hand, if the correction is taken into account the convergence is slightly affected during the simutatio
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