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Abstract. A three-field finite element scheme designed for solving systems of partial differential equations govern-
ing stationary incompressible flows is studied. It is based on the simulation of a time-dependent behavior. Once
a classical time-discretization is performed, the resulting three-field system of equations allows for a stable ap-
proximation of velocity, pressure and extra stress tensor, by means of continuous piecewise linear finite elements,
in both two- and three-dimension space. This is proved to hold for the linearized form of the system. The main
advantage of the new formulation is the fact that it implicitly provides an algorithm for the iterative resolution of
system non-linearities. Existence and uniqueness of solution to the discretized version of the stationary three-field
system is demonstrated, together with convergence in an appropriate sense applying to the three flow fields.
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1. INTRODUCTION

The numerical solution of viscous flow problems for classical newtonian or quasi-newtonian fluids is nowadays
a well-established technique. This is mainly due to the first contributions in this field carried out from the seven-
ties on. Most of those works were developed for the classical velocity-pressure Galerkin formulation of the flow
equations. About two decades ago a new approach, allowing for the use of equal order interpolations of both fields
was introduced and exploited by many authors such as Franca, Hughes, Loula and Miranda (1988). The main
characteristics of this technique, sometimes called stabilized, is the use of suitable Petrov-Galerkin or Galerkin
least-squares formulations. In the framework of the flow of viscoelastic liquids, a parallel evolution took place,
initiated by celebrated work by Marchal and Crochet (1987), followed by those of Fortin and collaborators (cf.
Fortin Guénette and Pierre (1997)), among other contributions including our own (cf. Ruas, Carneiro de Araujo
and Silva Ramos (1993)). Indeed, in this case the incorporation to the numerical model of an additional field,
namely, the (extra) stress tensor, is mandatory. Both Galerkin and Galerkin least-squares approaches, including
variants incorporating the deformation rate as a fourth unknown field, have been used by specialists in viscoelastic
flow simulations since the early nineties. The purpose of this work is to present a new variational formulation
of the stationary incompressible flow equations in terms of extra stress tensor, velocity and pressure, discretized
by piecewise linear finite elements, depending on a fictitious time step. Several techniques employed in previous
work for this class of problems inspired the authors, such as those proposed in Franca, Hughes, Loula and Miranda
(1988) and Codina and Zienkiewicz (2002). Moreover the kind of pressure Poisson equation proposed in Goldberg
and Ruas (1999) is a key feature of the present approach. While this formulation was first applied to solve vis-
coelastic flow problems by means of an explicit scheme (cf. Brasil Jr, Carneiro de Araujo and Ruas (To appear)),
we show that it can be employed with advantages, to the case of Newtonian or quasi-newtonian fluids. Mathemat-
ical results certifying the adequacy of this approach are given. Corresponding numerical examples illustrating its
good behavior are presented.

2. MAXWELL FLOW EQUATIONS

In order to motivate our methodology let us first consider its application to the numerical solution of systems
governing stationary flow of viscoelastic fluids. Although the technique to be developed hereafter extend in a
straightforward manner to the case of a wide spectrum of viscoelastic constitutive laws, for the sake of simplicity
we consider as a model the case of Maxwell fluids.

Let then Ω be a bounded domain of <N , N = 2 or 3, with boundary ∂Ω. Under the action of volumetric forces
f , we consider the evolution in time t, of the flow in Ω of a viscoelastic liquid obeying a constitutive law of the
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differential type. Throughout this work we assume that the velocity of the liquid is prescribed on ∂Ω, say u = g.
Moreover without any loss of essential aspects, just to simplify the presentation, we consider a constitutive law of
the upper convected type, which relates the extra stress tensor to the velocity in the following manner:

σ + λ

[

∂ σ

∂ t
+ (u · ∇) σ − (∇u)σ − σ(∇u)T

]

= 2ηD(u). (1)

In (1) λ is the stress relaxation time of the liquid and η is its reference viscosity, both assumed to be constant;
∇ represents the gradient of a scalar or a vector valued function and D(u) denotes the strain rate tensor, i.e.,
D(u) := 1

2

[

∇u + (∇u)T
]

.
Then from a given state at time t = 0, that is, given a solenoidal velocity u0 and an extra stress σ0, for t > 0,

in addition to the law (1), the flow is governed by the following system:

∂ u

∂ t
+ (u · ∇)u−∇ · σ + ∇p = f

∇ · u = 0

}

in Ω × (0,∞) (2)

where the density of the liquid is assumed to be equal to one.
In this work we will be concerned about the search of steady state solutions. Therefore we shall further assume

in all the sequel, that both f and g are independent of t.
Now we consider the following semi-implicit discretization in time of system (1)-(2). Let ∆t > 0 be a given

time step, and un, pn and σn denote approximations of u(n∆t), p(n∆t) and σ(n∆t), respectively, for a strictly
positive integer n. Starting from u0 and σ0, and prescribing un = g on ∂Ω for every n, un, pn and σn, for
n = 1, 2, . . ., are determined as the solution of the following system in Ω:



















un − un−1

∆t
+ (un−1 · ∇)un−1 −∇ · σn + ∇pn = f

∇ · un = 0

σn + λ

[

σn − σn−1

∆t
+ (un−1 · ∇)σn−1 − (∇un−1)σn−1 − σn−1(∇un−1)T

]

= 2ηD(un)

(3)

As one can readily infer, (3) is a linear problem for every n. Actually assuming moderate velocities and velocity
gradients, the non linear terms may be neglected. In this case we can legitimately linearize (1)-(2) into the system
governing the very slow flow of a viscoelastic fluid of the Maxwell type. Actually for the sake of conciseness we
introduce our methodology in the context of the followinggeneralized Stokes system, derived from the linearization
of the equations that govern the flow of a Maxwell viscolelastic liquid (cf. Marchal and Crochet (1987)), namely:

From a given state at time t = 0 defined by a given solenoidal velocity u0 and an extra stress tensor σ0, for
t > 0 find p,u, σ that solve the following system, with u = g on ∂Ω × (0,∞):

∂u

∂t
−∇ · σ + ∇p = f

∇ · u = 0

σ + λ
∂σ

∂t
= 2ηD(u)



















in Ω × (0,∞). (4)

3. TIME DISCRETIZATION AND SPLITTING ALGORITHM

In this section we present an algorithm for solving both newtonian and non newtonian flow equations, in the
u, p, σ formulation. Although this algorithm and the underlying variational formulation are described here only in
the context of problem (4), its adaption to more general cases is straightforward, including for instance the Navier-
Stokes equations, or yet turbulent flow with turbulent stress models. Indeed in the latter cases it suffices to take
λ = 0, before incorporating non linear expressions or terms. It seems however that in the context of viscolastic
flow the new approach appears to be the most promising, since in this case the use of a three-field formulation is
mandatory.

We have mainly dealt with an explicit splitting algorithm for the time integration or the iterative solution of
system (4). However before presenting it we consider the underlying implicit discretization in time of (4).

Let ∆t > 0 be a given time step. Then starting from u0 and σ0, for n = 1, 2, . . ., and prescribing un = g

on ∂Ω for every n, we determine approximations of p(n∆t), u(n∆t) and σ(n∆t), denoted by pn, un and σn
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respectively, as the solution of the following problem:

un − un−1

∆t
−∇ · σn + ∇pn = f

∇ · un = 0

σn + λ

(

σn − σn−1

∆t

)

= 2ηD(un)



















in Ω. (5)

For the sake of simplicity we assume that Ω is connected and has suitable regularity properties. We further as-
sume the following mininum data regularity f ∈ L2(Ω)N , g ∈ H3/2(∂Ω)N , u0 ∈ H1(Ω)N and σ0 ∈ H1(Ω)N×N

(cf. Adams (1975)). Let also < ·, · >1/2, ∂Ω denote the duality product between H1/2(∂Ω)N and H−1/2(∂Ω)N ,
( ·, · ) and ‖ · ‖ denote the standard L2-inner product and associated norm, respectively. In the sequel ~ν represents
the unit outer normal vector on ∂Ω.

We shall also use the following notations (cf. Girault and Raviart (1986))

Q := H1(Ω) ∩ L2
0(Ω);

Vg := {v ∈ V, v = g on ∂Ω} with V := H1(Ω)N ;
V0 := H1

0(Ω)N ;
Σ := {σ, σ ∈ H(div, Ω)N and σ = σT }.

Theorem 3..1 (cf. Brasil Jr, Carneiro de Araujo and Ruas (To appear)) For every λ > 0, for every ∆t and for
every n problem (5) has a unique solution. Moreover as n goes to ∞ the solution of (5) converges in norm of
L2(Ω)×L2(Ω)N ×L2(Ω)N×N to the solution (p̄, ū, σ̄) of the stationary counterpart of (4), with ū = Vg , namely







−∇ · σ̄ + ∇p̄ = f

∇ · ū = 0
σ̄ = 2ηD(ū).







in Ω. (6)

The solution of (5) is rather costly, since it is an implicit system at every iteration. That is why we employed
an splitting algorithm for solving the corresponding system explicitly. It is based on the computation of approxi-
mations pn,s ∈ Q, un,s ∈ Vg and σn,s ∈ Σ of pn, un and σn, by setting for every n ≥ 0 σn,0 = σn−1, and then
solving for s = 1, 2, . . . successively:

(∇pn,s, ∇q ) = ( f , ∇q ) +
(

∇ · σn,s−1, ∇q
)

∀q ∈ Q, (7)

(un,s, v ) = ∆t
(

f + ∇ · σn,s−1 −∇pn,s, v
)

+
(

un−1, v
)

∀v ∈ V 0, (8)
λ + ∆t

2η
( σn,s, τ ) =

λ

2η

(

σn,s−1, τ
)

− ∆t2
(

f + ∇ · σn,s−1 −∇pn,s, ∇ · τ
)

−

∆t
[(

un−1, ∇ · τ
)

− < g, τ~ν >1/2,∂Ω

]

∀τ ∈ Σ, (9)

The above iterative procedure is unlikely to generate converging sequence of approximations as s goes to
infinity However, here we applied it in the framework of discrete counterparts of (7), (8), (9) defined by replacing
Q, V0 (resp. Vg) and Σ by finite dimensional spaces (resp. manifold) Qh, V0

h (resp. V
g
h) and Σh specified in

the following section. In Ruas and Brasil Jr (To appear) the convergence of this procedure in the context of finite
element analogues of (6) is demonstrated.

To conclude this section we rewrite (6) for the later convenience in the following equivalent weak form (cf.
Brasil Jr, Carneiro de Araujo and Ruas (To appear)). First we define for every n, n = 0, 1, · · ·

wn = un − u0 ∈ V0

Then instead of (pn,un, σn) ∈ Q × Vg × Σ we search for (pn,wn, σn) ∈ Q ×Vo × Σ such that

a ((pn,wn, σn) , (q,v, τ )) = L ((q,v, τ )) ∀ (q,v, τ ) ∈ Q × V0 × Σ (10)

where a is the bilinear form on (Q ×V × Σ) × (Q × V × Σ) given by

a ((p,u, σ) , (q,v, τ )) := ∆t2 (∇p−∇ · σ, ∇q ) + (u, v ) +

∆t (∇p −∇ · σ, v ) +
λ + ∆t

2η
( σ, τ ) + ∆t2 (∇ · σ −∇p, ∇ · τ ) (11)

and L is the linear form defined on (Q ×V × Σ) by

L ((q,v, τ )) = ∆t2 ( f , ∇q −∇ · τ ) + ∆t < g, (τ − Iq)~ν >1/2, ∂Ω +∆t ( f , v ) +

(

un−1, v
)

+ ∆t
(

un−1, ∇q −∇ · τ
)

+
λ

2η

(

σn−1, τ
)

−
(

u0, v
)

. (12)
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Remark 3..1 By inspection one easily finds out that the terms of (11) and (12) containing ∇ · τ result from the
balance of momentum tested with this quantity. This adds positiveness to the system, which plays a stabilizing role
in the fully discretized counterpart of (10) studied in the following Section, similarly to previous works like Franca,
Hughes, Loula and Miranda (1988).

Remark 3..2 (10) also incorporates the momentum equation tested with ∇q except for the term un. Actually this
implies that ∇ · un = 0 for every n (cf. Brasil Jr, Carneiro de Araujo and Ruas (To appear)).

4. SPACE DISCRETIZATION

Now we consider the following discrete analogue of (5). Henceforth we assume that Ω has regularity properties
compatible with the regularity of the unknown fields required in the theorems that follow.

Let then Th be a partition of Ω into N -simplices with maximum edge length equal to h. We assume that Th

satisfies the usual compatibility conditions for finite element meshes, and that it belongs to a quasi-uniform family
of partitions. For every K ∈ Th we further denote by P1(K) the space of polynomials of degree less than or equal
to one defined in K . In so doing we introduce the following spaces or manifolds associated with Th:

Sh :=
{

v | v ∈ C0(Ω̄) and v|K ∈ P1(K), ∀K ∈ Th

}

,

Vh := {v | ∀i vi ∈ Sh} , V0
h := Vh ∩ H1

0(Ω)N ,

V
g

h := {v ∈ Vh | v(P ) = g(P ) ∀ vertex P of Th on ∂Ω} ,

Qh := Sh ∩ L2
0(Ω),

Σh :=
{

τ | τ ∈ [Sh]N×N , τ = τT
}

.

We further define u0
h be the field of V

g
h satisfying u0

h(P ) = u0(P ), and σ0
h be the tensor of Σh satisfying

σ0
h(P ) = σ0(P ), for every vertex P of Th, and set for every n, n = 0, 1, 2, . . .

un
h = wn

h + u0
h

where un
h is the approximation of un in V

g
h .

Finally defining the discrete counterpart Lh on Qh × Vh × Σh of linear form L by:

Lh ((q,v, τ )) = ∆t2 ( f , ∇q −∇ · τ ) + ∆t < g, (τ − Iq)~ν >1/2, ∂Ω +∆t ( f , v ) +

(

un−1
h , v

)

+ ∆t
(

un−1
h , ∇q −∇ · τ

)

+
λ

2η

(

σn−1
h , τ

)

−
(

u0
h, v

)

.

we set the following prblem to approximate (5) for every n, n = 0, 1, 2, . . .
{

Find (pn
h,wn

h , σn
h ) ∈ Qh × V0

h × Σh such that
a ((pn

h ,wn
h , σn

h) , (q,v, τ )) = L ((q,v, τ )) ∀ (q,v, τ ) ∈ Qh ×V0
h × Σh

(13)

For problem (13) the following result holds.

Proposition 4..1 Problem (13) has a unique solution for every ∆t and every n (cf. Brasil Jr, Carneiro de Araujo
and Ruas (To appear)).

Now we give the following convergence result (cf. Ruas and Brasil Jr (To appear)).

Theorem 4..1 For every ∆t and λ the solution of (13) converges to the solution of (13) in the norm of L2(Ω) ×
L2(Ω)N × L2(Ω)N×N as h goes to 0, provided for every n the solution of (13) is such that p ∈ H1(Ω).

5. STATIONARY CASE

Now we consider the approximation of stationary system (6) by means of the stationary counterpart of the finite
element discretized problem (13), namely:

{

Find (p̄h, w̄h, σ̄h) ∈ Qh ×V0
h × Σh such that

ā ((p̄h, w̄h, σ̄h) , (q,v, τ )) = L̄h ((q,v, τ )) ∀ (q,v, τ ) ∈ Qh ×V0
h × Σh

(14)

where w̄h = ūh − u0
h, ūh being the approximation of ū in V

g
h , and for every (p,u, σ) ∈ Q × V × Σ and

(q,v, τ ) ∈ Q ×V × Σ we set

ā ((p,u, σ) , (q,v, τ )) := ∆t2 (∇p −∇ · σ, ∇q ) + ∆t (u, ∇ · τ −∇q ) +

∆t (∇p −∇ · σ, v ) +
∆t

2η
( σ, τ ) + ∆t2 (∇ · σ −∇p, ∇ · τ )

(15)
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and for given f , g, we set for every (q,v, τ ) ∈ Q × V × Σ

L̄ ((q,v, τ )) = ∆t2 ( f , ∇q −∇ · τ ) + ∆t < g, (τ − Iq)~ν >1/2, ∂Ω +∆t ( f , v ) .

Proposition 5..1 Problem (14) has a unique solution.

Proof. First we note that problem (14) is equivalent to a linear system of algebric equations with an equal number
of unknowns and equations. Therefore it has a unique solution if and only if it admits only the trivial solution,
once its right hand side is set to zero.

Let us then assume that the triple (p̄h, w̄h, σ̄h) satisfies

ā ((p̄h, w̄h, σ̄h) , (q,v, τ )) = 0 ∀ (q,v, τ ) ∈ Qh ×V0
h × Σh

Taking (q,v, τ ) = (p̄h, w̄h, σ̄h) we readily obtain

∆t2 ‖ ∇ · σ̄h −∇p̄h ‖2 +
∆t

2η
‖ σ̄h ‖= 0,

which implies that σ̄h = 0 and p̄h = 0.
This trivially implies that

(D(w̄h), τ − qI) = 0 ∀ (q, τ ) ∈ Qh × Σh (16)

Next we endeavour to establish that relation (16) implies that w̄h = 0. For this purpose we will take system-
atically q = 0. Now for every node P of Th not belonging to ∂Ω we will choose N orthonormal frames Bi

P ,
1 ≤ i ≤ N , in such a way that one of the axes of Bi

P , say ei
P , is the edge of an element of Th having P as vertex.

Now assume that P is the vertex of an element TP such that w̄h vanishes at all the other N vertices of TP . This
is for instance the case of elements having an edge for N = 2 or a face for N = 3, contained in ∂Ω. The axes ei

P

of Bi
P will be chosen in such a way that they are oriented from P to the vertices of TP , say Si

P for 1 ≤ i ≤ N ,
respectively. Now we number the unit vectors of Bi

P in such a way that ei
P is the first one, and we take τ = τ i

P

where τ i
P is the tensor whose representation in terms of the frame Bi

P writes

τ i
P =





f i
P 0 0
0 0 0
0 0 0





where f i
P is the function of Sh whose value equals one at Si

P and zero at every other node of Th. Finally defin-
ing T i

P to be the subset of Th consisting of those elements having PSi
P as a common edge, by straightforward

calculations we derive

(

D(w̄h), τ i
P

)

= ΣT∈T i

P

area(T )

N + 1

(

−w̄h(P ) · ei
P

liP

)

where liP = PSi
P . Letting i vary from one to N we immediately conclude from (16) that w̄h(P ) = 0.

Now the question is: is it possible to find a path linking all the nodes of Th, starting from a node P having N
neighboring nodes on ∂Ω, in such a way that every new node of the path has N neighboring nodes at which it was
previously established that w̄h vanishes. The answer is yes according to the following argument.

Once we eliminate from the mesh the set Γ1
h of all the elements of Th having at least N vertices on ∂Ω, in which

w̄h vanishes identically according to the above argument, we come up with a new domain Ω1
h ⊂ Ω − Γ1

h namely
the set of elements of Th in which w̄h possibly does not vanish identically. If Ω1

h is empty the proof is complete.
Otherwise w̄h vanishes on the boundary of Ω1

h , and this domain necessarily contains at least one element having
exactly one vertex that does not belong to its boundary at which possibly w̄h 6= 0. More precisely such element
has a common face with an element of Ω − Ω1

h and a vertex in the interior of Ω1
h. Let Γ2

h be the union of all such
elements. Then we apply the same construction for the elements of Γ1

h, to those of Γ2
h, thereby establishing that

w̄h vanishes identically in Γ2
h too. Again we come up with a sub domain Ω2

h 6⊆ Ω1
h 6⊆ Ω, namely the union of all

elements of Ω1
h in which possibly w̄h does not vanish identically. If Ω2

h is empty the proof is complete. Otherwise
the procedure continues in the same way until we reach a domain Ωr

h 6⊆ Ωr−1

h · · · 6⊆ Ω1
h 6⊆ Ω for a certain integer

r, which contains no element having more than one vertex that does not belong to its boundary at which possibly
w̄h 6= 0. Finally treating all the elements of Ωr

h in the same manner as those of Γ1
h we establish that w̄h = 0

everywhere in Ω.
Next we have

Theorem 5..1 For every ∆t > 0 the solution (pn
h ,un

h, σn
h) of (13) converges to (p̄h, ūh, σ̄h) as n goes to infinity.
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Proof. First we set p̄n
h = pn

h − p̄h, ūn
h = un

h − ūh, σ̄n
h = σn

h − σ̄h and take q = p̄n
h , v = ūn

h and τ = σ̄n
h in both

(13) and (14), thereby obtaining, after combining the resulting relations:

β ‖ ūn
h ‖2 + ‖ σ̄n

h ‖2 −β∆t (∇ · σ̄n
h , ūn

h) + β∆t (∇p̄n
h, ūn

h) + β∆t2 ‖ ∇ · σ̄n
h −∇p̄n

h ‖2= β
(

ūn−1
h , ūn

h

)

+α
(

σ̄n−1
h , σ̄n

h

)

+ β∆t
(

ūn−1
h ,∇p̄n

h −∇ · σ̄n
h

)

where α = λ
λ+∆t and β = 2η

λ+∆t . Then,

(1 − α) ‖ σ̄n
h ‖2 +α ‖ σ̄n

h ‖2 +β
[

‖ ūn
h ‖2 +∆t (ūn

h,∇p̄n
h −∇ · σ̄n

h ] + ∆t2 ‖ ∇p̄n
h −∇ · σ̄n

h ‖2
]

≤
β

(

ūn−1
h , ūn

h + ∆t (∇p̄n
h −∇ · σ̄n

h )
)

+ α
(

σ̄n−1
h , σ̄n

h

)

from which after simple calculations we derive: for all n,

(1 − α) ‖ σ̄n
h ‖2 +

α

2
‖ σ̄n

h ‖2 +
β

2

[

‖ ūn
h ‖2 +∆t2 ‖ ∇p̄n

h −∇ · σ̄n
h ‖2

]

≤
β

2
‖ ūn−1

h ‖2 +
α

2
‖ σ̄n−1

h ‖2

This implies that [β ‖ ūn
h ‖2 +α ‖ σ̄n

h ‖2]/2 is a decreasing sequence of positive numbers and hence a
converging one. Therefore since 0 < α < 1 and β > 0 we have ‖ σ̄n

h ‖→ 0 and ‖ ∇p̄n
h − ∇ · σ̄n

h ‖→ 0 which
implies that ‖ p̄n

h ‖→ 0, since p̄n
h ∈ L2

0(Ω) for every n.
As for the convergence of ūn

h to zero, we employ an argument similar to the one of Proposition 5..1; indeed from
the convergence to zero of σ̄n

h and p̄n
h , we readily infer from (14) and (13) that

(ūn
h ,∇ · τ −∇q) → 0 ∀(q, τ ) ∈ (Qh, Σh).

Then choosing q = 0 and τ = τ i
P (cf. Proposition 5..1), and sweeping the mesh in the way indicated in the proof of

that result, we derive ūn
h(P ) → 0 for every vertex P of the mesh, and the result follows.

As a consequence we establish the following convergence result:

Theorem 5..2 Assume that the solution of (5) is such that pn ∈ H1(Ω) for every n. Then as h goes to zero the
solution (p̄h, ūh, σ̄h) of (14) converges to the solution (p̄, ū, σ̄) of (6) in L2(Ω) × L2(Ω)N × L2(Ω)N×N .

Proof. Let W = (p̄, ū, σ̄) and Wh = (p̄h, ūh, σ̄h). We further set W n = (pn,un, σn) and W n
h = (pn

h ,un
h, σn

h).
Still denoting by ‖ · ‖ the norm of L2(Ω) × L2(Ω)N × L2(Ω)N×N , we have:

‖ W − Wh ‖≤‖ W − W n ‖ + ‖ W n − W n
h ‖ + ‖ W n

h − Wh ‖

Now for a given ε > 0 we choose n in such a way that ‖ W −W n ‖< ε/3 and ‖ W n
h −Wh ‖< ε/3, which is

possible according to theorems 3..1 and 5..1. Next for such n we choose h in such a way that ‖ W n − W n
h ‖< ε/3,

which is possible according to our regularity assumptions and to Theorem 4..1. This means that for every ε > 0 we
may choose h in such a way that ‖ W − Wh ‖< ε, and the result follows.

6. NUMERICAL RESULTS

Figure 1.The evolution with λ of the L2-errors of velocity, pressure and extra stress.

We present below numerical results for a test-problem with known analytic solution, in order to certify the
adequacy of our numerical approach. In the test the initial values of both velocity and extra stress tensor are zero.
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Owing to the dimension of the flow domain and the prescribed values of velocity, the characteristic parameter
λ coincides with the Weissenberg number for viscolastic flows (cf. Marchal and Crochet (1987)). We consider
a constitutive law of the upper convected Maxwell type. The non linear terms including the acceleration were
computed explicitely at every iteration.

More specifically we solved a three-dimensional problem whose analytical solution is given by:

u1 = u2 = 0 ; u3 = x1x2(1 − x2) ; p = η(0.5− 2x2x3); σ11 = σ12 = σ22 = 0;
σ33 = 2λη[(x2 − x2

2)
2 + (x1 − 2x1x2)

2]; σ13 = η(x2 − x2
2); σ23 = η(x1 − 2x1x2).

(17)

The computations were performed with a mesh constructed upon a 10×10×10 uniform partition of a unit cube,
thereby generating 6000 tetrahedrons. The body force term is given by −∇ · σ + ∇p. The pressure is prescribed
at the node x1 = x2 = x3 = 0.5. In this example the value of ∆t is 0.0002, and the values of λ range from 0. up
to 3.0, with increments of 0.5.

In Figure 1 we display the evolution with λ of the L2-errors of velocity, pressure and extra stress. The errors
correspond to the values of the computed approximations of the unknown flow fields, once convergence is attained
for a tolerance of 10−5 in the maximum norm.

7. ACKNOWLEDGEMENTS

The author J. H. Carneiro de Araujo gratefully acknowledges the financial support provided by the agency
CNPq through grants 311105/2006-8.

R. A. Adams. Sobolev Spaces. Academic Press, New York, 1975.
A.P. Brasil Jr., J. H. Carneiro de Araujo and V. Ruas. A New Algorithm for Simulating Viscoelastic Flows Accom-

modating Piecewise Linear Finite Elements. To appear in Journal of Computationaland Applied Mathematics.
R. Codina and O.C. Zienkiewicz. CBS versus GLS stabilization of the incompressible Navier(Stokes equations and

the role of the time step as a stabilization parameter Communications in Numerical Methods in Engineering,
18: 99-112, 2002.

M. Fortin, R. Guénette and R. Pierre. Numerical Analysis of the Modified EVSS Method. Computer Methods in
Applied Mechanics and Engineering, 143(1-2):79–95, 1997.

L. Franca, T.J.R. Hughes, A.F.D.Loula and I.Miranda A new family of stable element for nearly incompressible
elasticity based on a mixed Petrov-Galerkin finite element formulation. Numerische Mathematik, 53: 123-141,
1988.

V. Girault and P. A. Raviart. Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, 1986.
D. Goldberg and V. Ruas. A Numerical Study of Projection Algorithms in the Finite Element Simulation of

Three-dimensional Viscous Incompressible Flow. International Journal for Numerical Methods in Fluids, 30:
233–256, 1999.

J. M. Marchal and M. Crochet. A New Mixed Finite Element for Calculating Viscoelastic Flow. Journal of Non
Newtonian Fluid Mechanics, 26:77–117, 1987.

V. Ruas and A.P. Brasil Jr.. Explicit solution of the incompressible Navier-Stokes equations with linear finite
elements. To appear in Applied Mathematics Letters.

V. Ruas, J. H. Carneiro de Araujo and M. A. M. Silva Ramos. Approximation of the Three-field Stokes System via
Optimized Quadrilateral Finite Elements. Mathematical Modelling and Numerical Analysis, 27(1):107–127,
1993.

8. Responsibility notice

The author(s) is (are) the only responsible for the printed material included in this paper


