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Abstract: The aim of this work is to study of the stiffness of the teeth of a pair of gears, concerning the dynamical 
response of mechanical system. This contact is named Hertz contact and occurs at contact of two solids one of witch 
has curved surfaces. The surfaces are cylindrical in case of contact of two teeth of gears. The curvature radius of the 
curve is not permanent. It changes at every point of the profile. It is described by an evolvent function. The Finite 
Elements software “FEMAP 8.3” was used to derive the torque-θ function. These results were applied in the solution 
of the dynamical problem of two flexible axes with a pair of gears. Details of the finite element model of the gear teeth 
are presented. Information from this model were used to estimate the teeth’s stiffness, and, at last, included in the 
matrix equation of motion of the system. 
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1. INTRODUCTION  

 
The transmission by gear mechanisms is very used in several fields of industry. The greater number of the machines 

has gear transmission. Therefore, its optimization is necessary to improve a quality and durability of mechanisms. The 
study of the teeth contact and dynamics of transmission is very important to make these properties better.  

The evaluation of gear teeth contact is complicated by its nonlinear nature. The contact of this type is named Hertz 
contact and occurs at contact of two solids one of witch has curved surfaces. The first proceeding discussing this theme 
was done and published in 1950 (Poritsky, 1950).The author presented in his work the equations of the stress’ behavior 
due to applied forces. Several types of Hertz contact such as rolling and sliding contact were analyzed, and their 
applications were presented. For example, the rolling contact under normal load occurs in rail wheels, and, under 
normal and tangential load in locomotive driving wheels, and in braked rail wheels. In contact of gear teeth, rolling 
contact occurs at the pitch point, elsewhere contact is of the sliding variety. 

Later, with development of industry, the mathematical models for dynamic analysis of gears became necessary. 
During decades, many models for mathematical resolution were developed. Özgüven and Houzer (1988) revised several  
publications and analyzed the existent models. They divided the models into five principal classes and showed witch 
type of models are involved into each class, and for witch case each model was used more adequately. The authors 
explained the basic principles of each class of models, their advantages and disadvantages. 

A six-degree-of-freedom nonlinear semi-definite model with time varying mesh stiffness has been developed for 
dynamic analysis of spur gears by Özgüven (1990). The model includes a spur gear pair, two inertias representing load 
and prime mover, and bearing. The software employs digital simulation technique for the solution, and is capable of 
calculating dynamic tooth and mesh forces, dynamic factors for pinion and gear, dynamic transmission error, dynamic 
bearing forces and torsions of shafts. 

 With the development of more efficient machines, more powerful computers stimulated the solution of more 
complex and sophistic problems. Andersson and Vedmar (2002) presented a method to determine the dynamic load 
between two rotation elastic helical gears. The stiffness of gear teeth was calculated by the finite element method and 
includes the contribution from the elliptic distributed tooth load. A numerical example was presented with results that 
show the behavior of the dynamic transmission error, as well as, the variation of  the contact due to the dynamic load 
for different rotation speeds. Tao Sun and HaiYan Hu (2003) presented the study of more complex problems. The non-
linear dynamic of a planetary gear system with multiple clearances was analyzed. The solution was determined by using 
harmonic balance method. The theoretical result has been verified by using the numerical integration.  

The finite element analysis is most popular in last decade due to its most exact results in comparison to other 
methods. Several problems such as static, dynamic, structural and vibration problems can be solved using this method. 
The finite element model of the teeth contact, application of the boundary conditions, description of finite element 
analysis using the software “FEMAP 8.3” and figures of the result are presented in this paper.  
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2. THE FINITE ELEMENT ANALYSIS USING SOFTWARE “FEMAP 8.3” 
 
2.1. The formulation of the problem 

 
The derivation of the stiffness function for application in the dynamical analysis of the gear transmission is 

discussed. A simple example of the dynamical system, where the stiffness function of the gear has been applied, is 
shown in Fig.1. The stiffness function of the gear is presented as stiffness of the spring (k(Δθ)). 

 
 

 
 

Figure 1. A example of a dynamical system. 
 

The geometrical properties of the analyzed involute spur gears are shown in the Tab.1. 
 

Table 1. Geometrical properties of the spur gear. 
 

DESCRIPTION GEAR 
Number of the teeth, z(mm) 25 

Module, m(mm) 2 
Pitch diameter, dp  50 
Diametral pitch, P 6,28 

Addendum diameter , de 54 
Dedendum diameter, di 45 

Pressure angle, α 20 
Base diameter, db 46,98 

Addendum, a 2 
Addendum (cordal), ac 2,049 

Dedendum,  b 2,334 
Tooth height, h 4,334 
Tooth angle, θ 3,6 

 
The tooth’s profile has been generated in accordance to a method introduced by Litvin (NASA) or Belokonev 

(1985), and is illustrated in Fig. 2. 
 

 
 

Figure 2. The profile of the tooth. 
 

The stiffness of the tooth varies in each point of the profile due the variation of the curvature radius. Therefore, the 
tooth’s profile is divided into five parts, according to Fig.2. It is considered that the radius of the tooth’s curvature is 
constant inside each part, and varies from one to each other part. Each of the tooth’s part has a suitable stiffness 
function. The teeth are symmetric and three cases of teeth’s contact correspond to five divisions of the tooth as 
presented in Fig.3. 
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              (a)     (b)             (c) 
 

 
Figure 3. Three cases of  teeth contact: a) initial contact; b) intermediary contact; c) base circle contact. 

 
The first case of contact (Fig.1 (a)) corresponds to parts 1 and 5 (Fig.1), the second case (Fig.2 (b)) corresponds to 

parts 2 and 4, and case 3 (Fig.2 (c)) corresponds to part 3. Finite element models have been created for each of these 
cases, in order to determine the stiffness function. The mechanical properties of the teeth’  material are presented in 
Tab.2. 

 
Table 2. Mechanical properties of the teeth’ material. 

 
Properties valor 

Density, ρ (kg/m3) 7800  

Youngs Modulus, E(kg/cm2) 2,1x106  

Compress Strength (kg/cm2) 2800  

Tension Strength (kg/cm2) 4600  

Shear Strength (kg/cm2) 3600  
Poisson’s Ratio 0,3 

 
 

2.2. Aplication of  boundary conditions 
 
Finite element models were created for each of the three cases. The 2D tooth’s geometry was created employing the 

software “AutoCAD 2006” and then imported to “FEMAP 8.3” for analysis. The technique to make the mesh of the 
finite element is similar; therefore, only one of the three cases is described.  

The tooth is subjected to lager stresses due to local contact, and, for that reason, has a more refined mesh than the 
cylindrical body of the gear. First, the profile of gear is divided into bi-dimensional finite elements, and, after that, the 
mesh is extruded along the x axis, according to Fig. 3. 

 

 
 

Figure 3. Finite element model of the gear. 
 

The element “slide line” is used to warrant the contact between two gears. This element has several options, witch 
should be adopted in accordance to each particular case of analysis. It is shown in Fig.4. 
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Figure 4. The element of the contact “slide line”. 
 

The distribution of stresses due to Hertz contact is non-linear. “FEMAP 8.3” has a particular mode for this type of 
problem. The analyzed model with application of boundary conditions is presented in Fig. 5. 

 

 
 

Figure 5. Finite element model of gear with application of boundary conditions. 
 

The “forced dislocation” is used in the nonlinear mode of analysis as force applied to model. These forces are 
dispersed uniformly along the axis of cylindrical part of the gear in point A as shows the Fig.5. The green triangles in 
projection of point A are restrictions, but in this case, its serves as connection of the “forced dislocations” with the body 
of gear. The direction of the force is tangential to the circumference; in witch the point A is situated. It is done to 
simplify the conversion of the “forced dislocations” to rotation displacement. The five degrees of freedom are restricted 
in point B, Fig.5, and, in its projections uniformly distributed along the cylindrical part axis of the gear, alike the forces 
in point A. Therefore, rotation around gear axis is free. Displacements along the  x axis  is restricted in point C. All 
degrees of freedom are restricted in point D, the central point of lower gear, according to Fig.5. All these operations 
with model were executed for the sake of simplify of interpretation of the analysis results and, also,  to allow the  
derivation of the  relation of the torque applied to gear as function of the gear rotation. 

After application of  boundary conditions, the model is ready for analysis. 
 

2.3. Analysis results. 
 
 Nonlinear analysis has two options. It may be done with symmetrical and nonsymmetrical penetration. The 

analysis option “symmetrical penetration” requires less time, but the results are obtained for the “slave” part only (gear 
in the top). The analysis with nonsymmetrical penetration with forty iterations has been done in this case. The resulting 
stress distribution for three cases are showen in Figs.5,6,7. 
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Figure 5. Stress distribution for the first case. 
 
 

 
 

Figure 6. Stress distribution for the second case. 
 
 

 
 

Figure 7. Stress distribution for the third case .  
 

The data of the restriction force in point C and the displacements in point A, according to Fig.5, are obtained in 
FEMAP 8.3 and then imported to Excel. Torque Tx is obtained by multiplication of the restriction force by radius CD, 
and, the rotation θ  by multiplying the displacement x by radius BA. The new data (Tx  - θ) is interpolated by a second 
degree polynomial. The obtained data for the three cases is presented in Tabs.3, 4 and 5. The interpolation curves are 
presented in  Fig.8. 
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Table 3. Obtained data for the first case of contact. 
 

Force Fx(N) Displacement x(mm) Torque Tx(N*m) Forced displacement 
x(mm) 

Rotation 
θ(rad) 

0 0,068455 0 0 0 
272,983 0,091266 4,5588161 0,022811 0,001013822 
984,169 0,13689 16,4356223 0,068435 0,003041556 
1697,62 0,18253 28,350254 0,114075 0,00507 
2412,88 0,22819 40,295096 0,159735 0,007099333 
3128,39 0,27386 52,244113 0,205405 0,009129111 
3920,01 0,31956 65,464167 0,251105 0,011160222 
4658,42 0,36526 77,795614 0,296805 0,013191333 
5499,8 0,41097 91,84666 0,342515 0,015222889 

6340,66 0,45669 105,889022 0,388235 0,017254889 
7180,7 0,50243 119,91769 0,433975 0,019287778 

8020,13 0,54818 133,936171 0,479725 0,021321111 
8859,53 0,59395 147,954151 0,525495 0,023355333 
9698,54 0,63974 161,965618 0,571285 0,025390444 
10538 0,68554 175,9846 0,617085 0,027426 

 
Table 4. Obtained data for the second case of contact  

 
Force Fx(N) Displacement x(mm) Torque Tx(N*m) Forced displacement 

x(mm) 
Rotation 
 θ(rad) 

0 0,023717 0 0 0 
20,4525 0,047434 0,346833495 0,023717 0,001054089 
154,12 0,094868 2,61356696 0,071151 0,003162267 

340,476 0,1423 5,773792008 0,118583 0,005270356 
526,155 0,18974 8,92253649 0,166023 0,0073788 
710,744 0,23717 12,05279675 0,213453 0,0094868 
894,193 0,2846 15,16372489 0,260883 0,0115948 
1076,44 0,33204 18,25426952 0,308323 0,013703244 
1257,46 0,37947 21,32400668 0,355753 0,015811244 
1437,35 0,42691 24,3745813 0,403193 0,017919689 
1616,14 0,47434 27,40650212 0,450623 0,020027689 
1793,54 0,52178 30,41485132 0,498063 0,022136133 
1968,84 0,56921 33,38758872 0,545493 0,024244133 
2141,41 0,61664 36,31403078 0,592923 0,026352133 
2311,38 0,66408 39,19638204 0,640363 0,028460578 
2478,34 0,71151 42,02768972 0,687793 0,030568578 

 
Table 5. Obtained data for the third case of contact. 

 
Force Fx(N) Displacement x(mm) Torque Tx(N*m) Forced displacement 

 x(mm) 
Rotation 
 θ (rad) 

0 0,045 0 0 0 
20,672 0,05 0,2418624 0,005 0,000222222 
114,7 0,065 1,34199 0,02 0,000888889 

209,521 0,08 2,4513957 0,035 0,001555556 
305,031 0,095 3,5688627 0,05 0,002222222 
387,048 0,105 4,5284616 0,06 0,002666667 
511,076 0,12 5,9795892 0,075 0,003333333 
635,065 0,135 7,4302605 0,09 0,004 
759,005 0,15 8,8803585 0,105 0,004666667 
882,867 0,165 10,3295439 0,12 0,005333333 
1047,9 0,185 12,26043 0,14 0,006222222 

1171,53 0,2 13,706901 0,155 0,006888889 
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Figure 8. Torque function Tx versus rotation θ 
 

The stiffness function can be obtained by deriving the force function with respect to x. 
 

x
Fk
∂
∂

=             (1) 

 
It is necessary to know the tooth stiffness as a function of  rotation for the purpose of  dynamical analysis of the 

system presented in Fig.1. Therefore, Eq.1 must be modified. 
 

r
TF )(θ

=             (2) 

 
Rx ⋅= θ             (3) 

 
Replacing  Eqs. 2 and 3 in Eq.1, one obtains 
 

θθ ∂
∂

⋅
=

⋅∂

∂
=

T
RrR

r
T

k 1
)(

)(
          (4) 

 
where - T  is torque function due θ obtained by FEM using “FEMAP8.3”; 
            θ  is rotation; 
            F  is restriction force in the point A; 
            x  is the forced displacement in the point A; 
            R is the radius of the cylindrical part of the gear equal AB; 
            r is the distance  from rotation axis to the position of application of force F, equal to CD; 
 
The dynamical equation of motion of the system presented in the Fig.1 is: 
 
 Tkm =⋅+⋅ θθθ )(&&           (5) 
 
where – m is mass of the system; 
               θ&&  is angular acceleration; 
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               θ  is rotation; 
                T is torque; 
                k(θ)  is stiffness of the tooth; 
 
The function k(θ) in Eq. 5 is be calculated as an average function. In this case: 
 

 ( )17,30088,604711)(1 321 +⋅
⋅

=
∂

++∂
⋅

= θ
θ Rr

TTT
Rr

k       (6) 

 
where 854,06,599932214)( 2

1 −+= θθθT , 

          0761,17,139056,992)( 2
2 −+= θθθT , 

                          1386,02,163457501)( 2
3 −+= θθθT  

 
The more exact analysis might be done using three stiffness functions for each fragment of the teeth contact. The 

involute profile has crescent radius of curvature, thus, each segment of the contact has one determined dominion of the 
radius. The stiffness k1(θ) must be applied for radiuses less than r1, k2(θ) serves for radiuses higher than r1 and less than 
r2, and, k3(θ) for radiuses  values between  r2 and  r3 as presents in the Fig. 9. 

 

 
 

Figure 9. The tooth divided in segment with correspondent radiuses 
 

The process for calculation of radius in the contact point has been proposed  by Pimsarn and Kazerounian (2002). 
 
 

2.4. Conclusions 
 
This work presents the application of a finite element analysis used to determine the stiffness function of the gear 

teeth contact using the FEMAP 8.3. The obtained stiffness functions were used in dynamical analysis of the gear 
transmission system involving two flexible axes coupled with pair of spur gear, as shown in the Fig.1. The code for 
dynamical solution of this mechanical system was done using software Mathematica 5. This problem was solved using 
the finite element method. The equations of motion were obtained by Lagrange equations. The Newmark method was 
applied to solve the differential equations. All this factors must be included to the code. Therefore, a combination of 
solutions method (determination of stiffness function is done by software FEMAP and dynamical analyses of 
mechanical system evaluate by code in Mathematica) is adequate to improve efficiency and correctness of  this type of 
analysis.    
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