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Abstract. The coupling between acoustical response in the cavity and structural excitation, whereas the structural 
response is also related to acoustical excitation source has been  found in many systems in day-life. Car interiors, cabs 
of trucks and aircraft fuselages are just a few pratical examples of this sort of system. Coupling implies that the 
acoustical and vibrational system behavior are not independent from each other, and therefore they must be 
considered as global system behavior. The aim of this paper is to study the vibro-acoustical problem and to understand 
the interference and contribution between acoustical and structural modal analysis. The model is an irregular 
polyvinylchloride (PVC) cavity with some resemblance to a car body. The cavity is closed by a flexible plate to obtain a 
vibro-acoustical coupling. The modeling of fluid-structure interaction is based on the finite element theory and 
compact matrix technique. The FRF(s) of the modal model are defined by the relationship between pressure response 
in the cavity per structural force and the velocity response on the boundary condiction per excitation force applied on 
the flexible plate. The comparison of the numerical and experimental models shows the correlation of the results. 
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1. INTRODUCTION  
 

In the vibro-acoustical system, the structural and acoustic behavior of the model are not independent. When the 
system is excited by a force or by a volume acceleration, acoustical and structural response are coupled. Acoustical 
peaks emerge because resonant frequencies in the structure, whereas the structural response is affected by acoustical 
modes. The examples of vibro-acoustical system can be found in cabin trucks, aircraft fuselage, building acoustic, etc. 

 The modeling of uncoupled acoustical case and uncoupled structural case is based on symetrical matrices and can 
be solved by standard method (Maia, 1997). The modeling of coupled system is more elaborate and the means is to 
calculate contribuitions of the subsystems to each other. Many researches have been worked in his subject and 
developed different methods to solve the vibro-acoustical system, Lyon (1963) analyzed the problem of sound 
transmission through a panel into a rectangular cavity, Pretlove (1965) investigate the free and force vibration of a 
rectangular panel backed by a regular cavity, Wyckaert et al. (1996) has consolidated the vibro-acoustical modal 
analysis and Luo at al. (2004) analyzed the problem using the green function to solve a non-regular cavity with one 
flexible wall. Almost all the previous researches were based on a regular model (normally rectangular enclosure with 
one flexible boundary). If the model is regular the system response is reasonably well-known and the analytical 
descriptions of natural frequencies and the related mode shapes exist. However, these solutions will face some 
difficulties if the model is irregular. The purpose of this paper is to solve the vibro-acoustical problem of a non-regular 
cavity by using the finite element method, FEM, and compact matrix technique to obtain frequency response function of 
the system. An experimental modal analysis is performed to validate the approach. 
 
2. VIBRO-ACOUSTICAL MODEL 

 
2.1 Finite element model approach 

 
The vibro-acoustical behavior of enclosure problems with a flexible wall (Fig. 01) can be discussed in terms of 

equilibrium and coupling equations. The finite element equation that describes the movement of a plate under external 
structural loading in an acoustical cavity is given by (zienkiewicz, 1981): 
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The script s refers to structural system and the script f refers to acoustical system. Equation (02) represents the 

coupling term on the flexible surface Sb of the cavity, due to acoustic pressure. The vector 
bSf  represents the external 

load applied to flexible boundary. The matrices sM , sC  and sK  are the well know mass, damping and stiffness 
structural matrices, respectively. 



 
 

Figure 1. A vibro-acoustic system with structural excitation and acoustical source 
 
The vibro-acoustical system can also be described in terms of the acoustical pressure variable (Göransson, 1994). In 

this case one can defined a pair of equations similar to Eq. (01) and (02). 
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Equation (04) represents the loading due to the normal vibration on the flexible boundary surface Sb of the cavity. 

The term volq&  represents the acoustical load applied into the cavity. The terms fM , fC  and fK  are, indirectly, the 
mass, damping and stiffness fluid matrices. These matrices (Göransson, 1994) can be calculating by the following 
equations: 
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Where 
c

r

0ρ
β =  is the boundary admittance on the wall, r is the impedance of the wall surface and c is the sound 

velocity in the fluid. 
 

By combining Eq. (01), (02), (03) and (04) one can write a set of equation for the coupled vibro-acoustic problem, 
Eq. (08). 
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Equation (08) is an unsymmetrical equation and its solution is not straightforward. Wyckaert et al. (1996) discusse 

this problem of unsymmetry and show that for low frequencies applications, the problem can be solved by a modal 
analysis approach, defining a scale factor to correct the difference between the left and right eigenvectors, in order to 
take into account the non-symmetry of the equation. By using FEM approach (Zienkiewicz, 1981), the solution of the 
unsymmetrical problem can be obtained numerically, but it has been shown very heavy time computationally. It can 
also be discussed by using a compact matrix formulation (Kim and Brennan, 1998). 

The compact matrix formulation discusses the vibro-acoustical problem using a compact matrix, where the coupled 
response can be represented in terms of the uncoupled structural acoustical modes, as well as, the respective resonant 
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frequencies. The technique presents some advantages such as a low computational time and the possibility of use in 
active control of noise (Luo et all. 2004). This paper will be focus in this approach. 

 
2.2 A compact matrix formulation 

 
The compact matrix formulation approach is defined in terms of the uncoupled structural and uncoupled acoustic 

equations. From the Eq. (08), taking ( )0MK cc ==  one can see that both acoustical and vibrational uncoupled 
problems are described by symmetrical sets of second order equations. So, the solution of the uncoupled problems can 
be obtained by the traditional numerical modal analysis tools. Therefore, the solution of the uncoupled structural and 
acoustical problems permits to obtain the uncoupled structural modes vectors s'ϕ  and the uncoupled acoustical modes 
vectors s'ψ . 

Defined the modes vectors, the acoustic pressure can be described by a summation of the N uncoupled acoustic 
modes multiplied by a complex coefficient a (Dowell at al., 1977) expression (09). 
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In the same way, normal velocity can be expressed by: 
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Where N is the number of the acoustical modes and M is the number of the structural modes in the frequency band 

of interest. The coefficients a and b are complex amplitude of the acoustic pressure modes and normal vibration 
velocity modes respectively. According to Luo et al. (2004), they can be expressed by: 
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The terms q and f  represent the acoustical generalized modal source and the structural modal force respectively and 

they are given by the volumetric acceleration (acoustic source), structural external load and mode shapes, Eq. (13) and 
(14). 
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The term C is the coupling coefficient matrix. In the Eq. (11) it represent the loading effect of the structure in the 

cavity, however, in the Eq. (12) the transpose of C represents the effect of the cavity on the vibration of the flexible 
structure. The matrix is computed by the Eq. (15). 
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The coefficients An is a (N x N) diagonal matrix that represents the acoustical impedance of the acoustical boundary. 

It was defined (Kim and Brennan, 1998) by expression (16) and (17). 
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Where ∫= V

2
nn dV)z,y,x(V ψ  . The terms 0ρ  and 0c  are the mass density and sound velocity of the air, 

respectively. nω  and nξ  are the natural frequency and damping ratio of the nth acoustical mode, respectively. As show 
in Kim and Brennan (1998), the mobility of the boundary surface is represented by Bm-terms as a (M x M) diagonal 
matrix shows below: 
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Where ∫=

bS

2
mm dS)y,x(M ψ . The terms sρ , sh , mω and mξ are the mass density, thickness, natural frequency and 

damping ratio of the flexible structure, respectively 
 

 
3. NUMERICAL SIMULATION AND EXPERIMENTAL MODEL 

 
The analyzed system is an enclosure model defined by a non-regular rigid cavity with some resemblance to a car 

cavity of ¼ scale compared with a popular Brazilian auto. The numerical simulation of vibro-acoustic behavior of the 
model is discussed in terms of the finite element modeling of the uncoupled system and by using compact matrix 
technique. The finite element model was obtained by commercial finite element code and the compact matrix 
formulation by a proper matlab code. The experimental model was conducted, in order, to compare and validate the 
numerical simulation.  

 
3.1 Numerical simulation 

 
The studied physical system was separated in two uncoupled subsystem: a rigid walled cavity and a plate supported 

in two sides. The rigid walled enclosure cavity presents maximum dimensions of 560mm x 325mm x 250mm and the 
plate has dimensions L1 x L2, where L1 = 400mm and L2 = 325mm, and thickness is 3mm. Table 1 shows the 
materials properties used in the two subsystems. The modal analysis of the uncoupled models is performed by using 
commercial finite element software. The enclosure cavity was modeled by fluid element, which has pressure as DOF, 
totalizing 88 elements (Fig. 2.a). The plate was modelated by shell element with six degrees of freedom (DOF’s) per 
node in the Cartesian coordinate system (Fig. 2.b). It was discretized in 24 elements with 4 nodes per element, a 
boundary condition (supported) was applied at the two sides of higher length of the plate.  

 
 

 
(a) 

 
 

 
(b)  

 
Figure 2. Finite element modeling of the two subsystems: (a) rigid walled cavity and (b) steel plate  

 
Table 1. Material properties  

 
 
 

 
 
 
 
 

 
 

Material air steel 

Poisson’s Ratio  0.33 

Young’s modulus ( )2mN   2.1 x 1011 

Sound Speed ( )sm  340  

Density ( )3mkg  1.21 7860 
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In the analyzed frequency range (0 to 500 Hz) it was found a total of seven uncoupled structural modes and two 
uncoupled acoustic modes. The related natural frequencies are listed in Table 2.  

 
Table 2. Natural frequencies of the both subsystems  

 
Mode 1 2 3 4 5 6 7 

Flexible plate 71.25 105.5 207.27 290.26 329.38 388.8 444.49 
Cavity 0 398      

 
The response of the model was obtained by aplying a point force at position (L1/2, L2/3) of the plate. No acoustic 

source was considered in this case, 0qvol =& . Eq. (11) and (12) were combined to obtain the complex amplitude 
coeficients a and b leading to equation (19) and (20). 
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The coefficients in the above equations were calculated from the acoustical and structural modal parameters. The 

values of pressure were computed by using Eq. (09) and (11) and the values of normal velocity by Eq. (10) and (12).  
 

3.2 Experimental model 
 
The experimental modal analysis was performed. The test was conducted in a two-side simply supported plate 

condition. The enclosure cavity was made in PVC thickness of 10mm to obtain rigid condition on the wall. The bottom 
of the cavity is backed by a steel plate of 3mm to obtain the vibro-acoustical effect. The plate placed in the bottom of 
the enclosure cavity was excited by a shaker with random force in the frequency range of interest (0 to 500Hz). A force 
sensor placed on the excitation point and an accelerometer roving on the measuring point of the plate was used to obtain 
the FRF(s). An integrator was used to obtain velocity response. Table 3 shows the instrumentation and material used in 
the experiment.  

 
Table 3. Instruments and material used in the experiment 

 
Item Specifications 

Acquisitions System 

Data Physics Corporation 
Signal Calc Ace – 32Bits  

Maximum frequency range: 20 KHz 
2 inputs-2 outputs 

Axial accelerometer PCB Piezoeletronics 
Type 325C68 

Microphone Robotron 
 Type MK 201 

Pre-amplifier (Mic.) Robotron 
Type MV 201 

Sound pressure meter Robotron  
Type 00026 

Signal conditioner PCB Piezoeletronics 
Type 480E09 

Integrator PCB Piezoeletronics 
Type 480B10 

Shaker Operation frequency band: 15 Hz to 5 KHz 
Transition factor: 15 N/A 
Maximum peak: ± 3mm 

Force Sensor PCB Piezoeletronics 
Type  208C02 

Computer  Pentium/128 MB-RAM  
 
 
 



The measurements were realized by using the DATA PHYSICS System Acquisition. The accelerometer was 
calibrated in the laboratory by the handheld shaker calibrator, the sound pressure meter was calibrated by a pistonphone 
and the sensitivity of the force sensor was taken from the manufacturer specification sheet. The FRF(s) were measured 
in 21 point with the accelerometer and in 5 points with the microphone, the acquisition was made using 100 averages. 
Figure (3) shows the experimental setup of the modal test. 

 
 

 
(b) 

 
(a) 

 
(c) 

 
Figure 3. Experimental model. (a) general view (b) detailed of the connection plate – shaker  (c) probe microphone  
 
 
 
Two cases of measured FRF(s) (velocity and sound pressure) are present herein. In the first one, velocity was 

measured at drive point (L1/2, L2/3), in the second one, acoustic pressure was measured in an interior point of the 
cavity, both cases it used structural excitation force. Figure (4) shows the superimposed experimental and numerical 
calculate FRF(s) of the model for the drive point. For the simulation of the numerical FRF(s), it was considered a unity 
structural excitation force. The location of the excitation point is symmetric in one side that means some modes are do 
not excited. However, in the experiment text, some of these modes may be appears in the response since it difficult to 
exert the excitation in the exact defined exaction point. This does not occur in the numerical analysis, as can be seeing 
in the Fig. (04).  
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Figure 4. Numerical and experimental vibro-acoustic velocity response in the drive point.  
 
In the second case, due to the limitation of the laboratory and the lack of an anechoic chamber, the test was 

conducted in the early morning, when the external sound is more quite. In this case, the measured FRF present a higher 
noise level compare with the case before, but it is still possible to observe the representation of the numerical model 
compared with the experimental one. The superimposed experimental and numerical FRF(s) for the sound pressure 
level of the vibro-acoustical system is shown in Fig. (05).  

 

 
Figure 5. numerical and experimental vibro-acoustic sound pressure response in the interior of the cavity. The reference 

value for the pressure is Pa20µ . 



4. CONCLUSIONS 
 

This paper discussed the solution of the vibro-acoustical problem using a compact matrix formulation based in a 
combination of the uncoupled modal parameters of the model. The uncoupled acoustic and structural modal parameters 
are obtained by finite element method. In the numerical simulation it used a commercial finite element code and a 
proper matlab code. Solely structural force excitation was adopted in this analysis. An experimental modal analysis was 
performed to validate the approach. Velocity and sound pressure was measured and compared with the numerical 
predictions. The agreement between the FRF(s) shows the potential of the compact matrix formulation to solve vibro-
acoustical coupled systems.  
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