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Abstract.
The optimization process of engineering design usually involves problems in which the target has different objectives.
Specifically in the airfoil design, the performance parameters used as targets, influence each other, competing among
them. The optimization problems which deals with some objectives simultaneously are called multi-objective optimization
problems. These techniques relates the domination of the objective targets, finding the called Pareto’s front. In airfoils
optimization problems, where there are competition among the target objectives, the multi-objective technique is extremely
appropriate to find a family of good candidates to global solutions. In this work a multi-objective technique is applied to a
set of airfoil solutions. These solutions were obtained by numerical simulations of the Euler equations. The Pareto’s front
was defined, generating excellent candidates for the problem approached. The target objectives aimed the maximization
of the aerodynamic efficiency, the minimization of the pitching moment intensity and the restriction of the lift coefficient.
The obtained optimized airfoil set has presented good characteristics, confirming that the multi-objective technique is a
good tool in airfoil design.

Keywords: Optimization, Euler equations, Finite volume method, multi-objective function.

1. INTRODUCTION

For the development of modern aviation, researches are required to improve the aircraft performance. The most
important motivation for this is related with the fuel consumption reduction. According to Mair W. A. and Birdsall D. L.
(1998), in transonic airplanes, the specific range of an airplane is defined by Eq. 1:

ra =
V

cW
·

L

D
(1)

where ra is the specific range, W is the airplane weight and c is the specific consumption. Considering the air temperature
constant, V is proportional to Ma, where Ma is the Mach number. So to improve ra in a fixed Ma, is necessary to
maximize L

D
. Thinking at a constant weight and speed, the lift coefficient (Cl) of an airplane is defined at cruise speed.

So to make the L
D

better is necessary the reduction of drag coefficient (Cd).
To perform the stabilization of the the airplane, its is necessary to use a horizontal tail. This device of aircraft generate

a down force that reduce the total lift and generate a trim drag. To obtain the reduction of this drag and of the down force,
it is necessary to reduce the intensity of the pitching moment (Cm).

The main aerodynamic structure of an aircraft, and the one which determine its performance, is the wing. The wing
is responsible to generate the lift and for a great part of the drag. The most important geometric feature, which defines
the aerodynamic, is the wing profile. Many works have been done in the development of new methods to optimize airfoil
shapes and wing planforms with the objective of maximization of the aerodynamic efficiency (Azevedo J. L. F. Antunes
A. P. and Santos L. C. C., 2003; Azevedo J. L. F. Antunes A. P. and Santos L. C. C., 2004; Holst T. L.,2004; Obayashi S.,
1995; Oyama A. et al., 2000; Oyama A. et al., 2000; Oyama A., Obayashi S., and Nakamura T., 2001; Ray T. and Tsai H.
M., 2004; Song W. et al., 2003;

In the commercial aviation, the high-speed aircraft with supercritical wings are predominant and the challenge is to
minimize shock wave effects which increase the drag during cruiser flight. Studies have been addressed to determine
good methods to optimize airfoils during design. Two different approaches are often employed in the aerodynamic design
(Song W. and Keane A. J., 2004): the inverse design and the direct numerical optimization (DNO).

The first method, named inverse design, tries to find out a geometry which produces a prescribed pressure distribution.
The second, named the direct numerical optimization (DNO) method, considers a set of geometries and an aerodynamic
analysis code, in an iterative process, to obtain an optimum design (Yamamoto K. and Inoue., 1995).

Other works consider the unconstrained single-objective airfoil design and constrained design (Azevedo J. L. F. An-
tunes A. P. and Santos L. C. C., 2003; Souza L. F., Cuenca R. G. and Mello R. F., 2006). Some of them, analyze
optimization problems using evolutionary algorithms (EA), genetic algorithms (GA) with real number encoding, and
hybrids comprised of GA and gradient-based methods. Constrained single-objective airfoil design problems have also
considered solutions based on GA such as non dominated sorting genetic algorithm (NSGA), multi-objective GA, and
NSGA coupled with artificial neural networks (Ray T. and Tsai H. M., 2004; Azevedo J. L. F. Antunes A. P. and Santos
L. C. C., 2004). Marler R. T. and Arora J. S. (2004) presents a good survey about multi-objective optimization methods.
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A relevant question in the aircraft design is how to consider the multi-objective optimization to improve performance
measures such as the lift, drag and others. Many researchers adopted GA’s and EA’s to commit these needs. These
algorithms have been also successfully applied to aerodynamic shape optimization problems such as airfoil shape design
(Quagliarella D. and Cioppa A. D., 1994; Yamamoto K. and Inoue., 1995), Multi-element airfoil shape design (Cao H.
V. and Blom G. A., 1996), subsonic wing shape design (Obayashi S. and Oyama A., 1996) and supersonic wing shape
design (Oyama A. et al., 1999). Besides, these algorithms also aims at solving non-linear problems.

Motivated by the solutions provided by genetic algorithm, this paper proposes the utilization of dominated multi-
objective rank to optimize the aerodynamic performance of transonic airfoils. A Computational Fluid Dynamics (CFD)
code was used to solve the governing equations. The multi-objective optimization is applied over airfoil generations until
it reaches a profile which satisfies the performance needs. In the present work, the Parsec parametric airfoils (Sobieczky
H., 1998) were adopted.

This paper is divided as follows: section 2.1 shows the aerodynamic formulation used to evaluate the airfoil per-
formance; section 2.2 that explain the multi-objective problem and the dominance of solution; section 3. explains the
numerical methods used of this work, the Jameson at 3.1and the Genetic Algorithm at 3.2; section 4.describes the geom-
etry family that defines the airfoil shape; section 5. shows the code validation and the results obtained for three different
fitness functions. The last section presents the main conclusions of the present work.

2. Formulation

2.1 Governing Equations

The Navier-Stokes (NS) equations represent the mathematical model for any kind of flow. For transonic flow simula-
tions over airfoils, one of the most important phenomena is related with the compressibility, ie. shock wave. When using
the supercritical airfoil, the interaction between boundary layer and shock wave is important to find the exact shock loca-
tion and to analyze moderns wings profiles. These profiles are called Natural Laminar Flow (NLF), were the reduction of
drag is caused by an increment of laminar flow percentage (≥ 30% of chord) on the foil surface (Selig W. S., Maughmer
M. D., and Somers D. M., 1995). However, the viscous effects were neglected in the current work, simplifying the NS
equations. This simplification leads do the called Euler equations. These equations in conservative form and in Cartesian
coordinates are:

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
= 0, (2)

where

Q = [ρ, ρu, ρv, e]
t
, (3)

E =
[

ρu, ρu2 + p, ρuv, (e + p)u
]t

, (4)

F =
[

ρu, ρuv, ρv2 + p, (e + p)v
]t

, (5)

e = ρ(ei +
1

2
(u2 + v2)), (6)

p = ρRT, (7)

ei =
p

(γ − 1)ρ
. (8)

These equations were simulated in a numerical code. The details of the numerical code is presented in the next section.

2.2 Multi-Objective Problem

The Multi-Objective Problem (MOP) is and problem that involves more than one objective function (f1(x)). The
MOP’s should be solved by Multi-Objective Optimization (MOO). According to Marler R. T. and Arora J. S. (2004),
there are many ways to solve a MOO. In the present work, two different MOO methods are compared: the Pareto rank
(PR) and the weighted product methods (WP).

The PR method uses the concept of dominance of multi-objective solutions. A solution is called not-dominated by
other one when these conditions, shown in Eq.9, are satisfied. These condition mean that when comparing the solution
with all group of solution, its need to be better or equivalent at all objectives and better at least in one. In these equations
fi is the i-th objective, and x1 and x2 are the design variables vectors. For a group of solutions F (xj), where F (xj) =
{f1(xj)..fN (xj)}, with N the number of objectives, the solution is called Pareto solution F (x∗) if it is non-dominated
for all solutions group.
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condition1 : fi(x1) ≤ fi(x2) for all i (9)

condition2 : fi(x1) < fi(x2) for any i

In PW one have to choose a product weight global fitness to represent the solution. It is illustrated by Eq.10. At the
equation, pi is the weight of objective i. An group of optimizations with different weight generate a Pareto front. This
method is often used as a single-objective optimization and is appropriate if it is known the adequate pi’s.

F (x) =
N
∏

i=1

f
pi

i (x) (10)

At this paper, the dominance of solutions evaluated by GA (described below) performed with PR and WP are com-
pared.

3. Numerical Methods

To accomplish the present work, it was necessary the implementation of some numerical methods to simulate and
optimize the wing section leaving to computer the job to calculate and evaluate the performance of airfoil and decide
which are the best results. This section is divided in two parts, the first one describes the numerical method used to solve
the Euler equations and the second describes the Genetic Algorithm adopted.

3.1 Euler solver

To evaluate the performance of a wing in a inviscid compressible flow, it is necessary to simulate the flow around the
airfoil, using any method of solution for the Euler equations. There are a lot of these methods, that differ about the mesh,
the discretization of equation and the accuracy.

In the current work, it was adopted a finite volume (FV) method proposed by Jameson (Jameson A., Schimidt W., and
Turkel E., 1981; Jameson A.,1982 and Jameson A. and Mavriplis D., 1986) on a O structured mesh. This mesh allows
an easy definition of the geometry around the airfoil and a fast convergence and calculation. The mesh generation were
performed by an elliptic partial differential equation. To improve the convergence speed and the stability of method, it was
implemented the residual smooth leading the increase of CFL, and a free stream correction for reduce the computational
domain with less lost of precision. A detailed description of Jameson can be found in Hirsch C. (1981).

3.2 Genetic Algorithms

Genetic Algorithms (GA) are applied as search and optimization techniques in several domains. These algorithms are
based on nature select mechanisms focusing at survival of the most capable individuals. GA does not always give the best
possible solution, however provides good local solutions and is robust for non-linear problems.

The problem solution using genetic algorithms involves two different aspects: solution encoding into the form of
chromosomes, where each chromosome represents a possible solution, and a fitness function or rank applied to evaluate
the solution.

Different encoding techniques can be used for different kind of problems, such as binary strings, bitmaps, real numbers,
and so on. The fitness function is responsible for the evaluation of possible solutions. This function receives a chromosome
as parameter and returns a real number, informing the quality of the obtained solution, e.g., how adequate is the solution
for the currently studied problem.

The most adequate chromosomes are identified and stored during the evolution process. The weakest ones, on the
other side, are eliminated. Different techniques can be applied for the identification of the best chromosomes, such as
the proportional selection, ranking selection and tournament-based selection (Back T., Fogel D. B., and Michalewicz
Z.,1999a,Back T., Fogel D. B., and Michalewicz Z.,1999b).

In the proportional selection, individuals are transferred to the next generation according to their fitness or rank value
probability proportion. One of the possible implementations of this technique consists in the usage of a roulette, divided
into N parts, N being the number of individuals (chromosomes) in the current population. The size of each part is
proportional to the fitness (or rank) value of each individual. The roulette is rotated N times afterward, and at each turn
the appointed individual is selected and inserted into the new population.

Ranking-based selection can be subdivided into two steps. During the first one, the solutions are ordered according
to their fitness function values. Once the list is ordered, each individual receives a new fitness function value equivalent
to its position in the ranking. After that, a procedure that selects the individuals, according to their ranking position, is
applied. Thus, the individuals with better ranking position have more chances to be selected.
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In the multi-objective context, the individual rank is defined by the dominance among solutions (Van Veldhuizen D.
A., Coello C. A. and Lamont G. B., 2002). In a population of solution, the domination test is carried through and the
non-dominated solutions are identified, afterwards, they are removed from the group and the test is performed again in
order to find the solution group which presents one level of dominance. This process is repeated until there is no solution
in the population. The rank is defined as follow: the non-dominated solutions receive the greater rank r, the solutions
with one level of dominance receive rank r − 1, and so on up to solutions ranked at 1.

Once selected the individuals for reproduction, it is necessary to modify their genetic characteristics using techniques
known as genetic operators. The most common operators are crossover and mutation.

The crossover operator allows to exchange genetic material among two individuals, known as parents, combining their
information in a way that provides a significant chance of creating new improved individuals (Hinterding R., 2000).

The single-point crossover operator is the most used. In order to apply it, two individuals (parents) are selected and
two new individuals are created from them (children). A single random splitting point is selected in parent chromosomes,
and the new chromosomes are created from the combination of the parents, as shown in Tab. 1. In this table, label (a)
shows the parent individuals and the splitting point marked by | symbol. The new individuals created are shown in the
same table with label (b), illustrating the crossover operator.

Table 1. Crossover operator

X1X2|X3X4X5X6 X1X2|Y3Y4Y5Y6

Y1Y2|Y3Y4Y5Y6 Y1Y2|X3X4X5X6

(a) Before the crossover (b) After the crossover

The mutation operator is used for changing a single gene value for a new random one. When an individual is repre-
sented by a bitmap, this operation consists of a random choice of a chromosome gene and the swapping of its value from
1 to 0 (or from 0 to 1, correspondingly). The goal of the mutation operator is to maintain the population diversity, always
allowing a chromosome to cover a significantly large result space (Hinterding R., 2000). It is usually applied at a low rate,
as at high ones the results tend to be random.

4. Parametric airfoil shape

Aiming the generation of a big number of airfoils shapes for the use with GA, the parametric airfoils families (Parsec)
were adopted. These families are very appropriated because allow the generation of different shapes using a limited
number of parameters. These parameters are used for the GA as the chromosomes of the individuals. According to Song
W. and Keane A. J. (2004) and Ray T. and Tsai H. M. (2004) there are many functions proposed to evaluate the shape,
like: analytical functions (PARSEC, NACA, etc); splines, B-splines and Bezier curves via interpolation methods; and
others.

The Parsec family of wing sections defined by 11 geometric parameters was adopted. According to Sobieczky H.
(1998), a blend of two or more airfoils schemes can be used to improve the number of shapes representations and conse-
quently the possibilities of geometries. To make a simple analysis, only the Parsec shapes were analyzed. This family is
detailed bellow.

4.1 The Parsec Family

The PARSEC representation is particularly attractive as it uses a small number of design variables, all of which are
related to some properties of the shape (Ray T. and Tsai H. M., 2004). It parameterizes the upper and the lower airfoil
surfaces using polynomials in coordinates X and Z as:

Z =

6
∑

n=1

anXn− 1

2 (11)

where an are real coefficients. The parameters of a PARSEC representation include the leading-edge radius rle, upper
and lower crest heights ZUP , ZLO and location XUP , XLO, curvatures at the upper and lower crests ZXXUP , ZXXLO,
trailing-edge thickness ∆ZTE and ordinate ZTE , and direction and wedge angle αTE , βTE . The parameters are schemat-
ically shown in Fig.1.

For this paper, the design variables’ limits used are presented at Tab.2, according to Ray T. and Tsai H. M. (2004),
except by the lower rle limit which the original is 0.0085.

The angle of attack of airfoil is fixed at zero. The reason is to reduce the number of variables projects and because the
objective of this studie is to compare methods of MOO.
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Figure 1. Variables in the Parsec representation scheme

Table 2. Design variables limits adopted

Param. rle Xup Zup Zxxup Xlo Zlo Zxxlo αte βte Zte dZte

Lower 0.0055 0.3 0.05 -0.5 0.3 -0.05 0.55 8o 10o 0 0
top 0.01 0.5 0.12 0.1 0.45 0.1 1.35 17o 11.5o 0.05 0

5. Results:

In this work, the MOO was performed by the Pareto rank method and the weighted product method. Tree weighted
product were used and compared with the Pareto rank method. The multi-objective problem was defined by:

Minimize: f1 = |cl − 0.2|
f2 = cd

f3 = |cm|

Subject to:
camber ≤ 30%
thickness ≤ 20%

The cases analyzed was named: MOGA; SOGA 1; SOGA 2; SOGA 3. The MOGA is the Pareto rank GA. The others
are the weighted product GA with tree different functions. The descriptions of any case follows below.

5.1 VALIDATION

The Euler solver was implemented using Fortran 77. The validation of the code was made comparing the coefficient of
pressure over the foil RAE2822. The result is presented at Fig.2. As expected, the shock obtained numerically is stronger
than the experimental result because the numerical code is based in Euler equations, and hence there is no boundary layer
shock wave interaction. The experimental data Slater J. W. (2005) is at α = 2.31 and Mach = 0.725.

5.2 MOGA

The MOO performed by MOGA has the configurations parameters: 100 individuals at population; Crossover proba-
bility of 0.6; and Mutation Probability of 0.3. No elitism was used at this work.

5.3 SOGA’s

The configuration values and functions used for each SOGA is at Tab.3.

Table 3. Genetic optimization configuration for weighted product method.

Population size Cross over Prob. Mutation Prob. Function

SOGA 1 150 0.7 0.05 L
D

· 1
(|cl−0.2|+1.0)·(|cm|+1.0)

SOGA 2 100 0.7 0.05 L
D

SOGA 3 100 0.7 0.05 1
cd·(|cl−0.2|+1.0)·(|cm|+1.0)
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Figure 2. The Cp distribution over Airfoil RAE2822.

5.4 Paretos front

The Pareto front obtained for each case are presented at Fig.s from 3 to 5.
The results show that the SOGA optimizations were more apropriated to find solution at Pareto than MOGA. Com-

paring the dominance among the different results of optimizations, the SOGA 1 found the greater number of solutions at
non-dominance. The MOGA gived the worse result. This can be infered by analising the figures, but other fact that is
visible is that the search at domain of solution is performed differently by each method. Its show that the characteristic of
all methods are needed, therefore a method that search through all domain. According to Obayashi S. (1998) the MOGA
with fitness sharing method and best-N elitism have these characteristics defining the fitness though a union of dominance
and objectives.

Table 4. Number of Solution at Pareto (a) and the number of solution at Pareto that dominate the Pareto from of others
cases (b).

Number of solution at Pareto (a) Number of Pareto solution dominant
MOGA 18 3
SOGA 1 53 44
SOGA 2 34 12
SOGA 3 39 10

6. CONCLUSION

To solve optimization problems at aerodynamic design, many methods are proposed, and the performance of the
method differ for each problem. The genetic algorithm are one of the most used methods and it can lead to the multi-
objective optimization by many ways. Two of these method, weight product of objectives and the Pareto Rank, were
compared to evaluate which one is best for the case studied. The genetic algorithm was used with Euler equations solver
to perform the objectives functions. The results obtained here show that the weight product method performed better
the search of Pareto front. The results show too that different method perform the search though the solution domain by
different ways. According to Obayashi S. (1998) the use of MOGA with fitness sharing and best−N elitism make better
way to perform the optimization for aerodynamic airfoil.

7. REFERENCES

Azevedo J. L. F. Antunes A. P. and Santos L. C. C., " Airfoil shape optimization using genetic algorithms.", COBEM,
November 2003.



Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

|cl − 0.2|

cd
MOGA objetivos 1 e 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

|cl − 0.2|

cd

SOGA 1 objetivos 1 e 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

|cl − 0.2|

cd

SOGA 2 objetivos 1 e 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

|cl − 0.2|

cd

SOGA 3 objetivos 1 e 2

Figure 3. All Solutions (black cross) and Pareto front (green circle) projection for objectives f1 and f2

Azevedo J. L. F. Antunes A. P. and Santos L. C. C., " Transonic airfoil shape optimization using multi-objective genetic
algorithm.", COBEM, December 2004.

Back T., Fogel D. B., and Michalewicz Z., editors. "Basic Algorithms and Operators." IOP Publishing Ltd., Bristol, UK,
UK, 1999a.

Back T., Fogel D. B., and Michalewicz Z., editors. "Advanced Algorithms and Operators." IOP Publishing Ltd., Bristol,
UK, UK, 1999b.

Cao H. V. and Blom G. A., "Navier-stokes/genetic optimization of multi-element airfoils.", AIAA, (96-2487), 1996.
Hinterding R., "Representation, mutation and crossover issues in evolutionary computation." In, Proc. of the 2000

Congress on Evolutionary Computation, pages 916–923, Piscataway, NJ, 2000. IEEE Service Center.
Hirsch C., "Numerical Computation of Internal and External Flows volume 2: Computational Methods for Inviscid and

Viscous Flows." John Wiley & Sons, Chichester, 1991.
Holst T. L., "Genetic algorithms applied to multi-objective aerospace shape optimisation.", AIAA, (2004-6512), 2004.
Jameson A., Schimidt W., and Turkel E., "Numerical simulation of the euler equations by finite volume methods using

runge-kutta time stepping schemes.", AIAA Paper, (81-1259), 1981.
Jameson A., "Numerical Methods in aeronautical fluid dynamics, chapter Transonic airfoil calculations using the Euler

equations." Academic Press, New York, USA, 1982.
Jameson A. and Mavriplis D., "Finite volume solution of the two-dimensional euler equations on a regular triangular

mesh.", AIAA Journal, 24(41):611–618, 1986.
Mair W. A. and Birdsall D. L., "Aircraft Performance." Cambridge University Press, Cambridge, 1998.
Marler R. T. and Arora J. S., " Survey of multi-objective optimization methods for engineering.", Structural and Multidis-

ciplinary Optimization, Volume 26, Number 6:369–395, April 2004.
Obayashi S., "Multidisciplinary design optimization of aircraft wing planform based on evolutionary algorithms.", IEEE,

4, September 1998.
Obayashi S., "Genetic algorithm for aerodynamic inverse optimization.", Genetic Algorithm in Engeneering Systems:

Innovations and Applications, (414), 1995.
Obayashi S. and Oyama A., "Three-dimensional aerodynamic optimization with genetic algorithms.", Proceedings of the

Third ECCOMAS Computational Fluid Dynamics Conference, pages 420–424, 1996.
Oyama A., Obayashi S., Nakahashi K. and Nakamura T., "Euler/navier-stokes optimization of supersonic wing design

based on evolutionary algorithm.", AIAA Journal, 37(10):1327–1329, 1999.
Oyama A., Obayashi S., Nakahashi K. and Nakamura T., "Aerodynamic optimization of transonic wing design based on



Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

|cl − 0.2|

|c
m

|
MOGA objetivos 1 e 3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

|cl − 0.2|

|c
m

|

SOGA 1 objetivos 1 e 3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

|cl − 0.2|

|c
m

|

SOGA 2 objetivos 1 e 3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

|cl − 0.2|

|c
m

|

SOGA 3 objetivos 1 e 3

Figure 4. All Solutions (black cross) and Pareto front (green circle) projection for objectives f1 and f3

evolutionary algorithm.", ICNPAA, 2000.
Oyama A., Obayashi S., Nakahashi K. and Hirose N., "Aerodynamic wing optimisation via evolutionary algorithms based

on structured coding.", CFD Journal, 2000.
Oyama A., Obayashi S., and Nakamura T., "Real-coded adaptive range genetic algorithm applied to transonic wing

optimization.", Applied Soft Computing Journal, 3(1):179–187, 2001.
Quagliarella D. and Cioppa A. D., "Genetic algorithms applied to the aerodynamic design of transonic airfoils.", AIAA,

(94-1896-CP), 1994.
Ray T. and Tsai H. M., "Swarm algorithm for single- and multiobjective airfoil design optimization.", AIAA Journal,

42(2):366–373, 2004.
Ray T. and Tsai H. M., "Genetic algorithm for aerodynamic inverse optimization.", AIAA Journal, 42(2), 2004.
Selig W. S., Maughmer M. D., and Somers D. M., "Natural-laminar-flow airfoil for general-aviation applications.", Journal

of Aircr., 32(4):710–715, 1995.
Slater J. W., "Cfd verification and validation.", www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf.html, 2005.
Sobieczky H., "Parametric airfoils and wings." 1998.
Song W., Keane A., Eres H., Pound G. and Cox S., "Two dimensional airfoil optimisation using cfd in a grid computing

environment.", Euro-Par, 2003.
Song W. and Keane A. J. " A study of shape parametrisation methods for airfoil optimisation.", AIAA Paper, (2004-4482),

2004.
Souza L. F., Cuenca R. G. and Mello R. F., "The use of genetic algorithm for high-performance aerodynamic airfoil in

compressible flow.", Encit, December 2006.
Van Veldhuizen D. A., Coello C. A. and Lamont G. B., "Evolutionary Algorithms for Solving Multi-Objective Problem."

Kluwer Academis Publishers, 2002.
Yamamoto K. and Inoue., "Application of genetic algorithm to aerodynamic shape optimization.", AIAA Paper, (95-1650-

CP):43–51, 1995.

8. Responsibility notice

The author(s) is (are) the only responsible for the printed material included in this paper NSGA



Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

cd

|c
m

|

MOGA objetivos 2 e 3

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

cd

|c
m

|

SOGA 1 objetivos 2 e 3

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

cd

|c
m

|

SOGA 2 objetivos 2 e 3

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

cd

|c
m

|

SOGA 3 objetivos 2 e 3

Figure 5. All Solutions (black cross) and Pareto front (green circle) projection for objectives f2 and f3


