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Abstract. In this paper we present analytical and numerical investigations of the dynamics interactions between 
cantilever beam, modeled with nonlinear damping and stiffness (Rayleigh´s and Duffing equation) and an electric 
motor with eccentricity and of limited power supply. We analyze the non-ideal system as two coupled nonlinear 
differential equations through of a perturbation method and tools as time history, phase portrait, Lyapunov exponents 
to determine some interesting nonlinear phenomena as Sommerfeld effect and nonlinear resonance including periodic, 
quasi-periodic and chaotic regime in non-stationary and steady process. 
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1. INTRODUCTION 
 

The excitation of the vibration systems analyzed here is always limited; on the one hand by the characteristics of a 
particular energy source and by other hand it is limited by the dependence of the motion of the oscillating system on the 
motion of the energy source. Note that this connection is expressed by coupling between the differential equations of 
motion of the vibrating system and the source. 

When the excitation is not influenced by the response of a vibrating system, it is said to be an ideal system 
(traditional ones), or an ideal energy sources. Formally, the excitation may be expressed as a pure function of time. For 
an example, we consider a system of  mass,  damping,  stiffness and driven by a harmonic excitation m c k

cos( )F A tω=  having frequency ω  and amplitude A  (in this case they are constants). Then, the dynamics of the 
ideal system may be described by the following classical (linear) differential equation for the displacement ( )x t . 

 
cos( )mx cx kx A tω+ + =                                                                                                                                               (1) 

 
For non-ideal dynamical systems, one must add an equation that describes how the energy source supplies the 

energy to the equations that governs the corresponding ideal dynamical system. We add the nonlinear damping and 
stiffness terms in the equation of the oscillating system. In this case the non-ideal nonlinear system can be described by 
the following coupled differential equations for the displacement ( )x t  and angular displacement ( )tϕ :  

 
1 2( , ) ( ) ( , , , )
( ) ( ) ( , , , )

mx f x x f x F q
I H L R x q

ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ
+ + =
+ = +

                                                                                                                            (2) 

 
where  is structure mass, m ( , , , )F qϕ ϕ ϕ

q
 express the action of the source of energy on the oscillating system (angular 

velocity of motor is not constant),  is unbalanced coefficient (electric motor with eccentricity), I  is the moment of 
inertia of mass, the function ( , , ,R x )qϕ ϕ  express the action of the oscillating system on the source of energy, the 
function )(ϕH  is the resistive torque applied to the motor, the function )(ϕL  is the driving torque of the source of 

energy (motor), the function  is called Rayleigh’s function and it describes a nonlinear damping of the 

system and the function  is called Duffing function and it describes a nonlinear stiffness. 

x)2xccf ( 211 +=
3

21 xkxk +=2f
Note that, usually, the inductance is much smaller than the mechanical time constant of the system and in stationary 

regime we can take ( )L ϕ  as (linear) ( )L a bϕ ϕ= − , where are  related to voltage applied across the armature of the 
DC motor, that is, a possible control parameter of the problem and is a constant for each model of DC motor 
considered. 

a
b

For non-ideal systems if we consider the region before resonance on a typical frequency- response curve, we note 
that as the power supplied to the source increases, the RPM of the motor increases accordingly. However, this behavior 
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does not continue indefinitely. That is, closer the motor speed moves toward the resonant frequency the more power 
require increasing the motor speed. More formally, a large change in the power supplied to the motor results in a small 
change in the frequency, but a large increase in the amplitude of the resulting vibrations. Thus, near resonance it 
appears that additional power supplied to the motor only increases the amplitude of the response while having little 
effect on the RPM of the motor. 

We remarked that Jump phenomena and the increase in power required by a source operating near resonance are 
manifestations of a non-ideal energy source and are often referred as Sommerfeld effect (Sommerfeld, 1904) (of getting 
stuck in resonance: the motor may not have enough power to reach higher regimes with low energy consumption as 
most of its energy is applied to move the structure and not to accelerate the shaft.), that is, the structural response 
provide a certain energy sink (one of the problems often faced by designers is how to drive a vibrating system through 
resonance and avoid the energy sink described by Sommerfeld.). 

The study of non-ideal vibrating systems, that is, when the excitation is influenced by the response of the system, 
has been considered a major challenge in theoretical and practical engineering research.   

We mention that for more details on non-ideal systems theory, see (Kononenko, 1969), (Balthazar et al., 2003; 
Balthazar et al., 2004; Dantas and Balthazar 2006; Dantas and Balthazar, 2007), without undeserved others.  

We organize this paper as follows. In Section 2, we present the mathematical model used and the derivation of the 
governing equations. In section 3, we obtain an analytical solution to the analyzed problem, by using an average 
procedure to the non-ideal dynamics of the adopted oscillating problem. In section 4 we did some acknowledgements. 
Finally we list the main bibliographic used references.  
 
2. MODEL OF THE NON-IDEAL NONLINEAR SYSTEM 
 

We consider the non-ideal problem consisting of a nonlinear cantilever beam supporting an unbalanced motor with 
limited power at its free end as is shown in Fig. 1. The motor is composed of an unbalanced mass m , an eccentricity 

, of an angular displacement of the rotor 
0

e φ , a resistance , an inductor , an electric current i  and a voltage U . Its 
representative mathematical formulation is considered as a nonlinear differential equation of Rayleigh-Duffing type 
forced by a dynamic equation of electric motor. 

R L

 

 
 

Figure 1. Non-ideal cantilever beam. 
 

In this paper, we will extend the work of (Bolla et al., 2006) introducing the cubic nonlinear damping and the 
reduced model exhibits on (Warminski, et al., 2001) and (Warminski and Balthazar, 2003) with parametric coefficient 

0=µ . We obtain a nonlinear differential equation of Duffing-Rayleigh type driven by a non-ideal energy source in a 
dimensionless form:  

 
2 2 2

1

2

( ) (1 ) ( cos si

( ) cos

X X X X X q

q X

n )α β γ φ φ φ

φ φ φ

+ − + + + = −

= Γ +

φ
                                                                                            (3) 

 
where we assume that motor’s torque is a linear function of its angular velocity ( ) m mV Cφ φΓ = − mV,  is a control 
parameter and it can be changed according to the voltage of the DC motor, C  is a constant for each model of DC 
motor considered, 

m

α  is coefficient of linear damping, β  is nonlinear damping coefficient, γ  is nonlinear stiffness 
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coefficient,  and  unbalanced coefficients, the natural frequency is one unity, 1q 2q X  is the coordinate oscillatory 

motion of the  considered cantilever beam and φ  is the  angular velocity of DC motor.  

Xε α β−

2q X

+ =

{ (ε φ

αε ˆ ˆεβ= 2q

cos(φ

)sin(

εσ
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) −
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φ +

φ +
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−
8
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8
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3. AN APPROXIMATE ANALYTICAL SOLUTION 
 

In this section, we use the method of averaging (Nayfeh, 1979; Palacios, 2002) to determine an approximate solution 
of Eq. (3):  

 
3 3 2

1
ˆˆ ˆ ˆ{ ( cosX X X X qγ φ φ φ φ− + −   sin )}

                                                                                                                                                                                        
ˆ ˆ) cos }φ φ= Γ +  (4) 

 
where α = , β , ˆγ εγ= , 11 q̂q ε= , 2q̂ε= , ˆ( ) ( )m mV Cφ φ ε φΓ = − = Γ . Here ε , 0 1ε< , is an arbitrary 
small parameter. To this end, we apply the method of variation of parameters and let 

 
)ξ+= aX                                                                                                                                                           (5)  

ξφ +−= aX                                                                                                                                                         (6) 

Ω=φ                                                                                                                                                                            (7) 
 
In the regime near resonant the difference between the excitation frequency is close to the natural frequency:  
 

1Ω = +                                                                                                                                                                     (8) 
 
where σ  is a detuning parameter. 

The first derivative of Eq. (5) 
 

)sin()() ξφξξ ++Ω+= aX                                                                                                                         (9) 
 
it follows from Eq. (6) and Eq. (9) that 

 
)sin()1()cos( ξξφφ −Ω=+− aaa                                                                                                      (10) 

 
Differentiating Eq. (6) gives 
 

)cos()( ξφξξφ ++Ω+−= aaX                                                                                                                    (11) 
 
Substituting Eqs. (8), (9) and (11) into Eq. (4) yields 
 

1)cos()1()cos()sin( faaa εξξφ ++−Ω=+−−                                                                                           (12) 
 

where . φξφξφβξ sin)(cos)(sinˆ)sin( 2
1

333
1 Ω++−++= qaf

Resolving the Eqs. (10) and (12) as a system of equations with  and  and using the trigonometric identities: a ξ

θ 2cos
2
1sin 2 = , )32cos44(cossin 4 +−= θθθ , )32cos44(cos

8
1

++= θθθ , 

)4sinsin2(cossin3 θθθ − , )4sin2sin2(
8
1sincos3 θθθ +  and considering the second equation  of Eq. (4), 

gives the following variational equations: 
 

3 2
1 1

1 3 1ˆˆ ˆsin( ) [ cos ( , , , )]
2 8 2

a a q A aε φ ξ ε α ξ ξ φ= − = − Ω + Ω                                                   (13a) 

3 2
1 1

3 1ˆ ˆcos( ) [ sin ( , , , )]
8 2

a a f a a q A aξ ε σ ε φ ξ ε σ γ ξ ξ φ= − − + = − + − Ω + Ω2                                                           (13b) 
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)],,,(cos)cos(ˆ)(ˆ[ 32 Ω++Ω−ΩΓ=Ω φξξξφε aAaq                                                                                             (13c)                       

 
where ),,,(1 ΩφξaA , ),,,(1 ΩφξaA and ),,,(1 ΩφξaA  are small periodic functions defined by 

    
3

1
1 1 ˆˆ( , , , ) cos(2 2 ) [cos(4 4 ) 4cos(2 2 )]
2 8

A a a aξ φ α φ ξ β φ ξ φΩ = + + + − + ξ  

                                3 2
1
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8 2

a qγ φ ξ φ ξ φ ξ− + + + − Ω +   

 
3

2
1 1 ˆˆ( , , , ) sin(2 2 ) [2sin(2 2 ) sin(4 4 )]
2 8

A a a aξ φ α φ ξ β φ ξ φΩ = − + + + − + ξ  

                           3 2
1

1 1ˆ ˆ[cos(4 4 ) 4cos(2 2 )] sin(2 )
8 2

a qγ φ ξ φ ξ φ ξ− + + + + Ω +  

 

3 2
1 ˆ( , , , ) cos(2 )
2

A a q aξ φ φΩ = − Ω +ξ  

 
We determine a first approximation from the average equations of Eq. (13) (considering a , ξ  and Ω  to be 

constants over one cycle and integrate (average) the equations over one cycle), the result is 
 

3 2
1

2
2

1

2

1 3 1 cos
2 8 2

3 1( 1) sin
8 2

1( ) cos
2

a a a q

a q
a

aq

α β ξ
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ξ
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Ω
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ξ                                                                                                                      (14) 

 
Here the first equation describes the variation of the amplitude of the oscillation (the behavior of the envelope of the 

oscillatory motion of the coordinate X ), the second equation describes the variation of the initial phase of the motion 
ξ ), the third equation describes the variation of the frequency Ω  (the average value of the angular velocity of the 
motor). 

We first determine the amplitude, phase and average angular velocity of the response of Eq. (14) when 021 == qq  
(there is not interaction between structure support and motor). 

In this case Eq. (14) can be written as 
 

)(
8
3)1(

8
3

2
1

2

3

ΩΓ=Ω

+−Ω−=

−=

a

aaa

γξ
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                                                                                                                                               (15) 

 
Solving the third equation of Eq. (15), yields 
 

1
mC tm

m

V c e
C

−Ω = + , 1 0
m

m

Vc
C

= Ω −                                                                                                                                 (16) 

 
Solving the first equation of Eq. (15), yields 
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where  and  are the initial conditions. 0a 0Ω

Solving numerically the Eq. (15) with initial conditions 01.0=a , 0=ξ , 0=Ω  and 1.0=α , 05.0=β , 1.0=γ , 
 and C . The results are shown in the Fig. 2 that verifies the Eqs. (16) and (17). 1=mV 5.1=m

  
 

                a) Average angular velocity Ω                                                            b) Amplitude   a
Figure 2. Response of the Eq. (15). 

 
Considering  and ( =0.2 and =0.3, case of interaction between cantilever beam and electric 

motor). In this case is response of Eq. (14).  
01 ≠q 02 ≠q 1q 2q

The variation of the amplitude a  and excitation frequency Ω  (average angular velocity) with time in the non-
stationary regime is shown in Fig. 3 during the passage through resonance. In the time [200, 350] and [600, 1500] exist 
a synchronization of motion and oscillations between  and a Ω  in this case the response of X  is quasi-periodic 
motion. In the time <350, 600> the amplitude and angular velocity are constant then the response of )cos( ξ+Ω= taX  
is periodic motion. In resonance region we observe the phenomenon of Sommerfeld in the time [400, 650]. 
 

  
 

a) Average angular velocity Ω                                         b) Amplitude  a
                          

Figure 3. Response of the Eq. (14). 
 

Following, when the parameter V   [0.5, 1.4] the response of m ∈ X  is of quasi-periodic motion, for example, for 
= 1.0 is justified by a close curve shown on phase portrait (Fig. 4a). For V  mV m ∈  [1.4, 2.4] the response of X  is of 
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periodic motion in this case chosen V =1.8 that justify by one point shown on phase portrait (Fig. 4b). For V  m m ∈  
[2.24, 6.0] the response de X has quasi-periodic motion in this case we chosen V = 3.0 that justify by a close curve 
shown on phase portrait (Fig. 4c). 

m

ξ

 

 

 
 

Figure 4. Phase portrait of amplitude versus angular velocity: a) V =1.0, b) V =1.8, c) V =3.0 m m m

 
The values of , , a Ω  for the stationary conditions of motion are determined as the roots of the system of 

equations 
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The criterion of the stationary solutions of according (Nayfeh, 1979): to determine the steady-state motion of an 

ideal system have that integrated numerically the Eq. (14) for long time then , a Ω , and ξ  tend to constant values or 

we use the fact that , , and a Ω ξ  are constant, set 0a = , 0Ω =  and 0ξ =  from Eq. (18). But in this case, for a non-
ideal system is different, for example, 

For V =1.8 the values of a , Ω  are constant for long time (see Fig. 5) m

 

 
 

Figure 5.  Response of the Eq. (14) for V =1.8 m

 
For V =3.0 the values of a , Ω  are oscillating for long time (see Fig. 6) m

 
 

Figure 6. Result of the Eq. (14) for V = 3.0 m

 
Figure 7, shows the results in steady-state motion with increasing control parameter during passage through 

resonance for the values of V  ∈  [0.6, 1.31]  [2.24, 7] the response of the amplitude (Fig. 7a) and angular velocity 
(Fig. 7b) are oscillating then the non-ideal system is quasi-periodic motion. For  V  

m ∪
m ∈  [1.32, 2.23] the response of the 

amplitude and angular velocity are constant then the non-ideal system is periodic motion. 
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a) Amplitude of vibrating oscillator                             b) Angular velocity of the motor 

 
Figure 7. Response in steady-state process of amplitude and angular velocity versus control parameter 

 
The following results show the influence of parameter of the nonlinear stiffness γ  and the parameters other are fixed. 
 

 
 

a ) Angular velocity                                         b) Amplitude of Ω X  
 

Figure 8. Response in non-stationary process of the amplitude and angular velocity of Eq. (14) with γ =0.8. 
 

Figure 8, shows the elimination of Sommerfeld effect and the synchronization outside of resonance region when 
nonlinear stiffness γ =0.8. 

 In order to complete, the dynamic analysis, we evaluate the Lyapunov exponents, using the classical method 
described in (Wolf, 1985), next. The main fórmula is 

 

∑
=









=

N

i i

i

d
td

tN 1 )0(
)(

ln1λ                                                                                                                                                 (19) 

 
where λ  denotes the Lyapunov exponents, the index , consecutive initial positions,  represents the total step 
number of evolution and  is the separation between two close trajectories, chosen. We obtain the Jacobian matrix of 
system of differential equations (14) in the following form: 

i N
d

2 2
1 1

2 21 1 1
2

2 2 2

9 1 sin( ) cos( )
2 8 2

6 sin( ) cos( ) 1 sin( )
8 28

cos( ) sin( ) cos( )
2 2 2

a q q

q q qJ a
a aa

q q a qb a

α β ξ ξ

γ ξ ξ ξ

ξ ξ ξ

 − − Ω Ω 
 
 = + Ω − Ω − − Ω 
 Ω − Ω − −
  

                                                                   (20) 

 
8



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

We remarked that the Eqs. (14) and (20) are suitable adapted, in order to use the MATDS program (Govorukhin, 
2003), based with the routine of Matlab of Matworks , in order to evaluating Lyapunov’s exponents, those are 
shown in Table 1. Note that if we taken into account V  = 1.0 and  V  = 3.0 we obtain the confirmation that the 
considered non-ideal system vibrates in quasi-periodically motion and in the case where we taken  V  = 1.8, one 
confirms that the non-ideal system vibrates periodically. 

m m

m

 
Table 1. Lyapunov’s Exponents.  

 

mV  Attractor’s type 
1λ  2λ  3λ  

1.0 Quasi-periodic 0.0 -0.079135 -1.459637 
1.8 Periodic -0.2192 -0.227961 -1401873 
3.0 Quasi-periodic 0.0 -0.089585 -1.544268 

 
In next case, to obtain chaotic regime, we need to assume that the natural frequency is negative of value -1. It means 

that the linear part of the spring stiffness is negative (Warminski, 2003). Here, we consider the parameter γ  = 3.0.  
Solving, Numerically Eq. (3) we obtain Fig. 9, It shows that the phase portrait and Fourier Spectrum. From Fig. 9a and 
9c, we can see that the non-ideal system is in periodic regime with V  = 3.0 and V  = 6.0. From Fig. 9b we can see that 
the non-ideal system is in chaotic regime with V  = 4.0. 

m m

m

 

 

 
 

Figure 9.  Periodic regime when a) V  = 3.0 and c) V  = 6.0; b) Chaotic regime when V  = 4.0 m m m
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4. CONCLUSIONS  
 

In this paper, we have demonstrated conclusively that nonlinear stiffness and damping in cantilever beam oscillator, 
subject to a non-ideal excitation (unbalanced motor with power limited supply) may play an important role. This fact 
makes this problem more realistic, according to the experimental results. The method of averaging presented here, may 
allow a systematic study of non-ideal nonlinear system which may help revealing the underlying physical mechanisms. 
The Sommerfeld phenomenon, jump phenomenon, nonlinear stiffness and damping effect, unbalanced parameter 
effects, were obtained and analyzed during the passage through resonance region to the non-stationary and steady state 
process. In the resonance region of the considered oscillating it has periodic motion and outside the resonance region it 
has quasi-periodic motion. We also analyze, according to engineering point of view, the elimination of the jump 
phenomenon and control of the chaotic motion.  
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