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Abstract. The present work performs comparisons between the Steger and Warming and the Van Leer algorithms 
applied to the solution of aeronautical and of aerospace problems, in two-dimensions. The Euler equations in 
conservative form, employing a finite volume formulation and an unstructured spatial discretization, are solved. The 
Steger and Warming and the Van Leer schemes are flux vector splitting ones and good robustness properties are 
expected. The time integration is performed by a Runge-Kutta method of five stages. Both schemes are first order 
accurate in space and second order accurate in time. The steady state physical problems of the transonic flow along a 
convergent-divergent nozzle and of the supersonic flows along a ramp and around a blunt body are studied. In all 
problems, the value of the entrance or attack angle is considered equal to zero. A spatially variable time step 
procedure is implemented aiming to accelerate the convergence of the schemes to the steady state condition. The 
results have demonstrated that the Van Leer scheme presents more severe pressure fields in the ramp and in the blunt 
body problems, as well more accurate values in the determination of the shock angle, ramp problem, and of the 
stagnation pressure, blunt body problem, than the Steger and Warming scheme, recommending the former to project 
calculations. 
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1. INTRODUCTION 
 
 Conventional non-upwind algorithms have been used extensively to solve a wide variety of problems (Kutler, 1975, 
and Steger, 1978). Conventional algorithms are somewhat unreliable in the sense that for every different problem (and 
sometimes, every different case in the same class of problems) artificial dissipation terms must be specially tuned and 
judicially chosen for convergence. Also, complex problems with shocks and steep compression and expansion gradients 
may defy solution altogether. 
 Upwind schemes are in general more robust but are also more involved in their derivation and application. Some 
upwind schemes that have been applied to the Euler equations are: Steger and Warming (1981) and Van Leer (1982). 
Some comments about these methods are reported below: 
 Steger and Warming (1981) developed a method that used the remarkable property that the nonlinear flux vectors of 
the inviscid gasdynamic equations in conservation law form were homogeneous functions of degree one of the vector of 
conserved variables. This property readily permitted the splitting of the flux vectors into subvectors by similarity 
transformations so that each subvector had associated with it a specified eigenvalue spectrum. As a consequence of flux 
vector splitting, new explicit and implicit dissipative finite-difference schemes were developed for first-order 
hyperbolic systems of equations. 
 Van Leer (1982) suggested an upwind scheme based on the flux vector splitting concept. This scheme considered 
the fact that the convective flux vector components could be written as flow Mach number polynomial functions, as 
main characteristic. Such polynomials presented the particularity of having the minor possible degree and the scheme 
had to satisfy seven basic properties to form such polynomials. This scheme was presented to the Euler equations in 
Cartesian coordinates and three-dimensions. 
 On an unstructured algorithm context, Maciel (2005a) and Maciel (2005b) have presented works involving the 
numerical implementation of two typical algorithms of the Computational Fluid Dynamics community. The Jameson 
and Mavriplis (1986) and the Frink, Parikh and Pirzadeh (1991) algorithms were implemented on an unstructured 
spatial discretization context. The Jameson and Mavriplis (1986) scheme was symmetrical and the Mavriplis (1990) 
artificial dissipation operator was implemented aiming to guarantee the scheme stability. The Frink, Parikh and 
Pirzadeh (1991) scheme was upwind and of flux difference splitting type based on Roe (1981) method. The Jameson 
and Mavriplis (1986) scheme was second order accurate in space and time, while the Frink, Parikh and Pirzadeh (1991) 
scheme was first order accurate in space and second order accurate in time. The Euler equations in conservative form 
were solved. The physical problems of the transonic flow around a NACA 0012 airfoil and the supersonic flow around 
a simplified version of the VLS (Brazilian Satellite Launcher Vehicle) were studied and good results were obtained, 
highlighting better solution quality and convergence acceleration features to the Jameson and Mavriplis (1986) scheme. 



 In the present work, the Steger and Warming (1981) and the Van Leer (1982) schemes are implemented, on a finite 
volume context and using an upwind and unstructured spatial discretization, to solve the Euler equations in the two-
dimensional space applied to the steady state physical problems of the transonic flow along a convergent-divergent 
nozzle and of the supersonic flows along a ramp and around a blunt body. The Steger and Warming (1981) and the Van 
Leer (1982) schemes are flux vector splitting ones and good robustness properties are expected. The implemented 
schemes are first order accurate in space. The time integration uses a Runge-Kutta method of five stages and is second 
order accurate. Both algorithms are accelerated to the steady state solution using a spatially variable time step. This 
technique has proved excellent gains in terms of convergence ratio as reported in Maciel (2005c). The results have 
demonstrated that the Van Leer (1982) scheme presents more severe pressure fields in the ramp and in the blunt body 
problems, as well more accurate values in the determination of the shock angle, ramp problem, and of the stagnation 
pressure, blunt body problem, than the Steger and Warming (1981) scheme, recommending the former to project 
calculations. 
 An unstructured discretization of the calculation domain is usually recommended to complex configurations, due to 
the easily and efficiency that such domains can be discretized (Mavriplis, 1990, and Pirzadeh, 1991). However, the 
unstructured mesh generation question will not be studied in this work. 
 
2. EULER EQUATIONS 
 
 The fluid movement is described by the Euler equations, which express the conservation of mass, of linear 
momentum and of energy to an inviscid mean, heat non-conductor and compressible, in the absence of external forces. 
In integral and conservative forms, these equations can be represented by: 
 
 ( ) ( )[ ] 0dSnFnEQdVt

S yexeV
=++∂∂ ∫∫ ,                                                                                                                   (1) 

 
with Q written to a Cartesian system, V is the cell volume, nx and ny are the components of the normal versor to the flux 
face, S is the flux area, and Ee and Fe are the convective flux vector components. The Q, Ee and Fe vectors are 
represented by: 
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being ρ the fluid density; u and v the Cartesian components of the velocity vector in the x and y directions, respectively; 
e the total energy per fluid volume unity; and p the static pressure of the fluid mean. 

In the nozzle problem, the Euler equations were nondimensionalized in relation to the stagnation density and in 
relation to the critical speed of sound. In the others problems, the nondimensionalization is performed considering 
freestream density and freestream speed of sound. The matrix system of the Euler equations is closed with the state 
equation [ ])(.)( 22 vu50e1p +ρ−−γ= , assuming the ideal gas hypothesis. The total enthalpy is determined by 

( ) ρ+= peH . 
 
3. STEGER AND WARMING (1981) ALGORITHM 
 
3.1. Theory for the one-dimensional case 
 

If the homogeneous Euler equations are put in characteristic form 
 
 0xWtW =∂∂Λ+∂∂ ,                                                                                                                                                 (3) 
 
where W is the vector of characteristic variables (defined in Hirsch, 1990) and Λ is the diagonal matrix of eigenvalues, 
the upwind scheme: 
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where u is a scalar property, ( )aa50a ˆˆ.ˆ +=+  and ( )aa50a ˆˆ.ˆ −=− , can be applied to each of the three characteristic 
variables separately, with the definitions 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

 ( )mmm 50 λ+λ=λ+ .    and   ( )mmm 50 λ−λ=λ− . ,                                                                                                         (5) 
 
“m” assuming values from 1 to 4 (two-dimensional space), for each of the eigenvalues of Λ 
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This defines two diagonal matrices Λ±: 
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where Λ+ has only positive eigenvalues, Λ- only negative eigenvalues, and such that 
 
 −+ Λ+Λ=Λ    and   −+ Λ−Λ=Λ    or   −+ λ+λ=λ mmm    and   −+ λ−λ=λ mmm .                                                        (8) 
 
 The quasi-linear coupled equations are obtained from the characteristic form by the transformation matrix P (defined 
in Hirsch, 1990), with the Jacobian A satisfying 
 
 1PPA −Λ= , resulting in 0xQAtQ =∂∂+∂∂ .                                                                                                          (9) 
 
Hence an upwind formulation can be obtained with the Jacobians 
 
 1PPA −++ Λ=    and   1PPA −−− Λ= , with: −+ += AAA  and −+ −= AAA .                                                         (10) 
 
 The fluxes associated with these split Jacobians are obtained from the remarkable property of homogeneity of the 
flux vector f(Q). f(Q) is a homogeneous function of degree one of Q. Hence, f = AQ and the following flux splitting can 
be defined: 
 
 QAf ++ =    and   QAf −− = , with: −+ += fff .                                                                                                  (11) 
 
This flux vector splitting, based on Eq. (5), has been introduced by Steger and Warming (1981). The split fluxes f+ and 

−f  are also homogeneous functions of degree one in Q. 
 
3.2. Arbitrary meshes 
 
 In practical computations one deal mostly with arbitrary meshes, considering either in a finite volume approach or in 
a curvilinear coordinate system. 
 In both cases, the upwind characterization is based on the signs of the eigenvalues of the matrix 
 
 yx
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 The fluxes will be decomposed by their components 
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and separated into positive and negative parts according to the sign of the eigenvalues of K(n) as described above, 
considering the normal direction as a local coordinate direction. 
 For a general eigenvalue splitting, as Eq. (5), the normal flux projection, Eq. (13), is decomposed by a Steger and 
Warming (1981) flux splitting as 
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where the eigenvalues of the matrix K are defined as 
 
 n1 vnv ≡•=λ

rr
, anv2 +•=λ

rr
   and   anv3 −•=λ
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,                                                                                               (15) 

 
with v

r
 is the flow velocity vector, and ± sign indicates the positive or negative parts respectively. The parameter α is 

defined as 
 
 ( ) ±±± λ+λ+λ−γ=α 32112 .                                                                                                                                            (16) 
 
3.3. Numerical scheme 
 
 The numerical scheme of Steger and Warming (1981) implemented in this work is based on an unstructured finite 
volume formulation, where the convective numerical fluxes at interface are calculated as 
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where “R” and “L” represent right and left states, respectively, S is the cell face area and “l” indicates the flux interface. 
The subscript “L” is associated to properties of a given “i” cell and the subscript “R” is associated to properties of the 
“ne” neighbor cell of “i”. The cell volume and the respective cell face area components are defined in Maciel (2007a), 
as well an illustration of a typical unstructured cell. 

The time integration is performed by an explicit method, second order accurate, Runge-Kutta type of five stages 
and can be represented of generalized form by: 
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with k = 1,...,5; α1 = 1/4, α2 = 1/6, α3 = 3/8, α4 = 1/2 and α5 = 1. The contribution of the convective numerical flux 
vectors is determined by the Ci vector: 
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This version of the flux vector splitting algorithm of Steger and Warming (1981) is first order accurate in space. 
 
4. VAN LEER (1982) ALGORITHM 
 
 The approximation of the integral equation (1) to a triangular finite volume yields a system of ordinary differential 
equations with respect to time: 
 
 iii CdtdQV −= ,                                                                              (20) 
 
with Ci representing the net flux (residue) of conservation of mass, of linear momentum and of energy in the Vi volume. 
The residue is calculated as: 
 
 321i FFFC ++= ,                         (21) 
 
with c

11 FF = , where “c” is related to the flow convective contribution at l = 1 interface. 
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 As shown in Liou and Steffen (1993), the discrete convective flux calculated by the AUSM scheme (“Advection 
Upstream Splitting Method”) can be interpreted as a sum involving the arithmetical average between the right (R) and 
the left (L) states of the “l” cell face, related to cell i and its neighbor, respectively, multiplied by the interface Mach 
number, and a scalar dissipative term. Hence, to the “l” interface: 
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where [ ]T

lyxl SSS =  defines the normal area vector to the “l” surface. The “a” quantity represents the speed of sound, 

defined as ργ= pa . Ml defines the advection Mach number at the “l” face of the “i” cell, which is calculated 
according to Liou and Steffen (1993) as: 
 
 −+ += RLl MMM ,                                                                 (23) 
 
where the separated Mach numbers M+/- are defined by Van Leer (1982): 
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ML and MR represent the Mach number associated with the left and right states, respectively. The advection Mach 
number is defined by: 
 
 ( ) ( )aSvSuSM yx += .                                      (25) 
 
 The pressure at the “l” face of the “i” cell is calculated by a similar way: 
 
 −+ += RLl ppp ,                                                                                           (26) 
 
with p+/- denoting the pressure separation defined according to Van Leer (1982): 
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 The definition of the dissipative term φ determines the particular formulation of the convective fluxes. According to 
Radespiel and Kroll (1995), the choice below corresponds to the Van Leer (1982) scheme: 
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 The equations above clearly show that to a supersonic Mach number at the cell face, the Van Leer (1982) scheme 
represents a purely upwind discretization, using either the left state or the right state to the convective and pressure 
terms, depending of the Mach number signal. The time integration follows the method described in the Steger and 
Warming (1981) scheme (Eq. 18). The Van Leer (1982) scheme presented in this work is first order accurate in space. 
 
5. SPATIALLY VARIABLE TIME STEP 
 



 The basic idea of this procedure consists in keeping constant the CFL number in all calculation domain, allowing, 
hence, the use of appropriated time steps to each specific mesh region during the convergence process. Details of the 
present implementation are found in Maciel (2007a). 
 
6. INITIAL AND BOUNDARY CONDITIONS 
 
 Stagnation values are used as initial condition to the nozzle problem (Maciel, 2002). Only at the exit boundary is 
imposed a reduction of 1/3 to the density and to the pressure to start the flow along the nozzle. To the others problems, 
values of freestream flow are adopted for all properties as initial condition, in the whole calculation domain (Jameson 
and Mavriplis, 1986, Maciel, 2005a, Maciel, 2005b, and Maciel, 2002). To a detailed description of these initial 
conditions, see Maciel (2007b). 
 The boundary conditions are basically of three types: solid wall, entrance and exit. These conditions are 
implemented in special cells named ghost cells. Details of the present implementation are described in Maciel (2007b). 
 
7. RESULTS 
 
 Tests were performed in a CELERON - 1.2 GHz and 640 Mbytes of RAM memory microcomputer. Converged 
results occurred to four (4) orders of reduction in the value of the maximum residue. The value used for γ was 1.4. To 
all problems, the entrance or attack angle adopted a value 0.0°. 
 The meshes used in the simulations were structured generated, using rectangular cells, and posteriorly were 
transformed in meshes of triangles through specific subroutines implemented in the calculation algorithms, where the 
connectivity, neighboring, node coordinate and ghost cell tables were generated to the simulations. On this context, only 
the advantages of unstructured meshes were not appreciated; however, the unstructured algorithms could be tested on a 
context of unstructured spatial discretization. Information about the meshes is found in Maciel (2007a). 
  
7.1. Nozzle physical problem 

  
                     Figure 1. Pressure contours (SW).                                            Figure 2. Pressure contours (VL). 

  
                 Figure 3. Mach number contours (SW).                                  Figure 4. Mach number contours (VL). 
 
 The geometry of the convergent-divergent nozzle studied in this work is described in Maciel (2007a). Figures 1 and 
2 show the pressure contours  obtained  by  the  Steger  and  Warming  (1981)  and  by  the  Van  Leer  (1982)  schemes, 
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respectively. Loss of symmetry is observed in both solutions at the throat region. The Van Leer (1982) solution presents  

 
 

Figure 5. Wall pressure distributions. 

better symmetry characteristics at the throat region than 
the Steger and Warming (1981) solution. The pressure 
field generated by the Steger and Warming (1981) 
scheme is more severe than that generated by the Van 
Leer (1982) scheme. Figures 3 and 4 exhibit the Mach 
number contours obtained by the Steger and Warming 
(1981) and by the Van Leer (1982) schemes, 
respectively. Loss of symmetry is again observed in both 
solutions, with the Van Leer (1982) scheme presenting 
better behavior. The Mach number field generated by the 
Van Leer (1982) scheme is more intense than that 
generated by the Steger and Warming (1981) scheme. 
 Figure 5 exhibits the nozzle lower wall pressure 
distributions obtained by both schemes. These pressure 
distributions are compared with the experimental results 
of Mason, Putnam and Re (1980). The Steger and 
Warming (1981) solution is closer to the experimental 
results than the Van Leer (1982) scheme, although the 
later is better at the nozzle end. 

 
7.2. Ramp physical problem 

 
 The ramp configuration is described in detail in Maciel (2007a). The initial condition adopted for this problem was a 
freestream Mach number of 2.0, characterizing a supersonic flow. 

  
                      Figure 6. Pressure contours (SW).                                          Figure 7. Pressure contours (VL). 

  
                 Figure 8. Mach number contours (SW).                                  Figure 9. Mach number contours (VL). 
 
 Figures 6 and 7 show the pressure contours obtained by the Steger and Warming (1981) and by the Van Leer (1982) 
schemes, respectively. The pressure field generated by the Van Leer (1982) scheme is more severe  than  that  generated 



 
Figure 10. Wall pressure distributions. 

by the Steger and Warming (1981) scheme. In both 
solutions the shock is well captured. Figures 8 and 9 
exhibit the Mach number contours obtained by the Steger 
and Warming (1981) and by the Van Leer (1982) 
schemes, respectively. The Steger and Warming (1981) 
generates a more intense Mach number field. 
 Figure 10 shows the ramp pressure distributions 
obtained by the schemes of Steger and Warming (1981) 
and of Van Leer (1982). They are compared with the 
oblique shock wave and the Prandtl-Meyer expansion 
theories. As can be observed, both schemes slightly 
overpredict the pressure plateau generated by the shock 
at the ramp in comparison with the theory results. The 
same behavior is noted in the prediction of the pressure 
after the expansion fan. Both schemes slightly 
overpredict this pressure. Even so, the results are of good 
quality and the Steger and Warming (1981) and  the  Van 

Leer (1982) schemes capture appropriately the shock and the expansion fan. 
 One way to quantitatively verify if the solutions generated by each scheme are satisfactory consists in determining 
the shock angle of the oblique shock wave, β, measured in relation to the initial direction of the flow field. Anderson Jr. 
(1984) presents a diagram with values of the shock angle, β, to oblique shock waves. The value of this angle is 
determined as function of the freestream Mach number and of the deflection angle of the flow after the shock wave, φ. 
To φ = 20º (ramp inclination angle) and to a freestream Mach number equals to 2.0, it is possible to obtain from this 
diagram a value to β equals to 53.0º. Using a transfer in Figures 6 and 7, it is possible to obtain the values of β to each 
scheme, as well the respective errors, shown in Tab. 1. The Van Leer (1982) scheme yields the best result. 
 

Table 1. Shock angle and percentage errors to the ramp problem. 
 

Algorithm: β (°): Error (%): 
Steger and Warming (1981) 55.0 3.8 

Van Leer (1982) 54.3 2.5 
 
7.3. Blunt body physical problem 
 
 The blunt body configuration is described in detail in Maciel (2007a). The freestream flow Mach number adopted 
for this simulation was 3.0, characterizing a supersonic flow regime. 
 Figures 11 and 12 exhibit the pressure contours obtained by the Steger and Warming (1981) and by the Van Leer 
(1982) schemes, respectively. Good symmetry properties are observed in both solutions in opposite behavior as 
observed in the nozzle problem. The Van Leer (1982) scheme presents a more severe pressure than that obtained with 
the Steger and Warming (1981) scheme. Figures 13 and 14 show the Mach number contours obtained by the Steger and 
Warming (1981) and by the Van Leer (1982) schemes, respectively. Both solutions present good symmetry properties 
and capture the shock appropriately. Figure 15 exhibits the –Cp distributions around the blunt body wall obtained by the 
Steger and Warming (1981) and by the Van Leer (1982) schemes. Both schemes present similar –Cp distributions. The 
small divergence involving the solutions occurs at x = 1.0m, but the Cp peak at the shock is equal to  both  schemes  and 

  
                     Figure 11. Pressure contours (SW).                                         Figure 12. Pressure contours (VL). 
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                Figure 13. Mach number contours (SW).                                Figure 14. Mach number contours (VL). 
 

 
Figure 15. Wall -Cp distributions. 

the constant pressure plateau after x = 1.0m, the 
rectilinear wall blunt body region, is well captured after 
1.5m. 
 Another possibility to quantitative comparison of all 
schemes is the determination of the stagnation pressure 
ahead of the configuration. Anderson Jr. (1984) presents 
a table of normal shock wave properties in its B 
Appendix. This table permits the determination of some 
shock wave properties as function of the freestream 
Mach number. In front of the blunt body configuration, 
the shock wave presents a normal shock behavior, which 
permits the determination of the stagnation pressure, 
behind the shock wave, from the tables encountered in 
Anderson Jr. (1984). It is possible to determine the ratio 

∞prpr0  from Anderson Jr. (1984), where pr0 is the 
stagnation pressure in front of the configuration and pr∞ 
is the freestream pressure (equals to 1/γ with  the  present 

nondimensionalization). 
 Hence, to this problem, M∞ = 3.0 corresponds to ∞prpr0 = 12.06 and remembering that pr∞  = 0.714, it is possible 
to conclude that pr0 = 8.61. Values of the stagnation pressure, with respective percentage errors, to each scheme are 
shown in Tab. 2. The Van Leer (1982) scheme presents the best result. 
 

Table 2. Values of the stagnation pressure and percentage errors. 
 

Algorithm: pr0: Error (%): 
Steger and Warming (1981) 7.29 15.3 

Van Leer (1982) 7.38 14.3 
 
7.4. Numerical data of the simulations 
 

Table 3. CFL numbers, iterations to convergence and computational costs of the schemes. 
 

Nozzle Ramp Blunt body 
Scheme CFL Iterations CFL Iterations CFL Iterations Cost(1) 

Steger and Warming (1981) 0.4 6,946 0.8 1,264 0.4 2,289 0.0000346 
Van Leer (1982) 0.4 7,447 0.8 1,275 0.4 2,454 0.0000369 

(1): measured in seconds/per cell/per iteration 
 
 Table 3 shows the numerical data of the simulations performed with the Steger and Warming (1981) and the Van 
Leer (1982) schemes. The later is approximately 6.6% more expensive than the former. 
 

8. CONCLUSIONS 
 

The present work performs comparisons between the Steger and Warming (1981) and the Van Leer (1982)  schemes 



applied to the solution of aeronautical and of aerospace problems, in two-dimensions. The Euler equations in 
conservative form, employing a finite volume formulation and an unstructured spatial discretization, are solved. The 
Steger and Warming (1981) and the Van Leer (1982) schemes are flux vector splitting ones and good robustness 
properties are expected. The time integration is performed by a Runge-Kutta method of five stages. Both schemes are 
first order accurate in space and second order accurate in time. The steady state physical problems of the transonic flow 
along a convergent-divergent nozzle and of the supersonic flows along a ramp and around a blunt body are studied. In 
all problems, the value of the entrance or attack angle is considered equal to zero. A spatially variable time step 
procedure is employed aiming to accelerate the convergence of the numerical schemes to the steady state solution. This 
technique has proved excellent gains in terms of convergence ratio as reported in Maciel (2005c). 

The results have demonstrated that the Van Leer (1982) scheme yielded more severe pressure fields in the ramp and 
in the blunt body problems. Moreover, the Van Leer (1982) scheme presented better estimations of the shock angle, in 
the ramp problem, and of the stagnation pressure, in the blunt body problem, than the Steger and Warming (1981) 
scheme, resulting in more accurate results. The Steger and Warming (1981) scheme is only 6.6% cheaper than the Van 
Leer (1982) scheme, does not damaging the later as a more efficient algorithm. 
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