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Abstract. The present work deals with two simplified formulations for the Reynolds Equation, to study hydrodynamic 
lubrication of journal bearings. The first formulation considers long bearing (D/L → 0) with any eccentricity value. The 
second formulation is not restricted to the long bearing limitation, but considers only small eccentricity values. Thus, two 
semi-analytical solutions have been obtained for the problem. In the second case, the solution is carried out by 
Generalized Integral Transform Technique approach; the approach is applied to solve the partial differential equations. 
A comparative analysis of the results is realized to determine the domain of validity of each formulation. 
 
Keywords: Reynolds Equation, hydrodynamic lubrication, journal bearings, GITT, tribology. 

 
1. INTRODUCTION 
 
 The analysis of journal bearings is probably the most important part of the classical hydrodynamic theory of 
lubrication. It is also most difficult and complex due to integration of the journal bearing equation (Reynolds equation). 
The journal bearings are mainly used for decrease the friction existing between solids parts of rotating machines and 
weaken the loads variations supported for these ones. The journal bearing must support the load carried with the energy 
lost minimal and low wear. 
 Various techniques for performance analysis of journal bearings are presented in the literature. Among these 
ones, interesting approximations consider infinitely long bearing, simplifying the solution of the Reynolds equation. 
However, Warner (1963) used a side flow leakage factor to improve the solution accuracy of long bearing approximation. 
In similar way Ritchie (1975), to improve the accuracy of short bearing approximation at high eccentricity, introduced the 
short bearing solution by Galerkin’s method. A simple and precise solution for the infinitely long and infinitely narrow 
bearings is presented by Reason and Narang (1982). This technique shows good results and it is compared to the finites 
elements method (FEM). An analytic model of second order is presented by Capone (1994); this model reduces infinitely 
long and infinitely narrow bearings theory in limit cases characterized for a parameters pair (L/D, ε). 
 Williams et al. (1987) describe a procedure to solve Navier-Stokes equation for steady flow, in three dimensions 
of a non-Newtonian lubricant contained by finite journal bearing. The method uses an approximation by finites 
differences with a new technique of computational fluid dynamic knew as SIMPLES. 
 In this paper three simplifications are considered: (a) infinitely long bearing and small eccentricity, (b) infinitely 
long bearing and any eccentricity (except small) and (c) simplified formulation Reynolds equation (i.e. ε → 0 where 

3h 1≈% ). In case “c” the Integral Transform Technique approach (Mikhailov and Özisik, 1984) is used to transform the 
PDE in an infinity system of ODE that can be solved for analytically. 
 
2. MATHEMATICS FORMULATIONS AND PROBLEMS SOLUTIONS 
 
2.1 Reynolds Equation 
 
 The physical configuration of a journal bearing flow geometry is shown in Fig. 1. It consists of a cylindrical 
journal housed inside a cylindrical bearing. The journal is rotating at a given angular velocity relative to the bearing, while 
being supported by the lubricating action of the oil in the narrow clearance. The journal of radius R approaches the 
bearing surface at any circumferential section θ with velocity U. The film thickness h is a function of θ, i.e. h = c [1 + e 
Cos (θ)], where “c” is the radial clearance and “e” is the eccentricity of the journal center.  



  

 

  
Figure 1. Journal bearing geometry, coordinates system and physical configuration. 

 
 In this theoretical study, the lubricant in the system is considered as a Newtonian fluid. In the meanwhile, the 
fluid film is assumed to be thin, and the body force and body couple are not taken into account. Then, the Reynolds 
equation for Newtonian fluid in Cartesian coordinates (Cameron, 1966 and 1987; Chadan, 1982) is given by: 
 

p p d h3 3h h 6µU  
x x z z d x

   ∂ ∂ ∂ ∂
+ =   ∂ ∂ ∂ ∂   

 (1.a) 

 
where h is a defined as, 
 

h = c [1 + e Cos (θ)] (1.b) 
 
 To obtain Reynolds equation in the dimensionless form the following groups are introduced: 
 

2

L

x z θ h e D pc y u wθ ;    η ;   Φ ;   h ;    ε ;   λ ;    P= ;    ξ ;    u ;    w
R L θ c c L µUR c U U

= = = = = = = = =% % %   (2.a-j) 

 
where θL is the angular position at which cavitation starts (rad). Then, the Reynolds equation can be written in a no 
dimensional form as 
 

L
L

2θ λ P P3 3h (Φ) h (Φ) 6θ h (Φ)
2 η η Φ Φ

 ∂ ∂ ∂ ∂    ′+ =    ∂ ∂ ∂ ∂    
% % %  (3.a) 

 
where 
 

L L Lh( ) 1 Cos( );      h ( ) Sin( )′Φ = + ε θ Φ Φ = −εθ θ Φ% %  (3.b, c) 
 
The boundary conditions for the lubricant in the film region are the Reynolds conditions: 
 

P 0   at   η 0  and   η 1= = =  (3.d, e) 
 

PP 0   at   Φ 0  and   P 0   at   Φ 1
Φ

∂
= = = = =

∂
 (3.f-h) 

 
 
2.2. Case A: Formulation for Infinitely Long Bearing and Small Eccentricity 
 
 An approximation considered in hydrodynamic lubrication is to assumer that journal bearing infinitely long (D/L 
→ 0) and its eccentricity is small (ε → 0). Thus, the term P

η
∂
∂

 is neglected and the flow in the direction η is zero, 

consequently the problem develop into one-dimensional with Reynolds equation equal to, 
 

Bearing 
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L

2d P 6θ h'(Φ)2dΦ
P 0   at   Φ 0

PP 0   at   Φ 1
Φ


 =

 = =
 ∂ = = =

∂

%

 (4.a-d) 

 
 Integrating Eq. (4) and making use boundary conditions (4.b) and (4.d) we obtain 
 

[ ]L L LP(Φ) 6ε Sin(θ Φ) θ Cos(θ Φ)= −  (5.a) 
 
to calculate the θL (angle that characterize the oil film length) we will use the boundary condition (4.c) and the result is 
given by: 
 

L L LSin(θ Φ) θ Cos(θ Φ)=  (5.b) 
 
2.3. Case B: Formulation for Infinitely Long Bearing and any Eccentricity (except small) 
 
 In this case is considered an infinitely long bearing (D/L → 0) and any value eccentricity (except small). Thus, 
Reynolds equation reduces to 
 

L
d dP3h (Φ) 6θ h (Φ)

dΦ dΦ
  ′= 
 
% %  (6) 

 
after some manipulations we have the following solution, 
 

[ ]L L L L
L

L L L

εθ Cos(2θ ) - 2 θ Cos(θ )6εP(Φ) Sin(Φθ ) Φ3 1 εCos(2θ ) 3εθ Sin(θ )h (Φ)

 −
= + + + %

 (7.a) 

 
and  
 

L L LSin(θ Φ) θ Cos(θ Φ)=  (7.b) 
 
 Can be observed of the Eq. (5.b) or (7.b) that θL is independent of eccentricity (ε). 
 
2.4. Case C: Simplified Formulation Reynolds Equation 
 
 Now, is presented a simplified formulation for Reynolds equation, where is assumed that for small value of ε (i.e. 
ε → 0) the term 3h% , in Reynolds equation, is one (i.e. 3h 1≅% ). Thus, the simplified Reynolds equation is given by: 
 

L
2 2

2 2

2θ λ P P f (Φ)
2 η Φ

P 0   at   Φ 0
PP 0   at   Φ 1
Φ

 ∂ ∂  + = 
  ∂ ∂



 = =


∂ = = =
 ∂

 (8.a-d) 

 
where 
 

L L
2f (Φ) 6θ εSin(θ Φ)= −  (8.e) 

 



  

 The homogeneous formulation defined above by Eq. (8) can also be solved by the Classical Integral Transform 
Approach (Mikhailov and Özisik, 1984). Then, following the basic steps this technique, the appropriate eigenvalue 
problem needed for its solution is given by: 
 

2
2i
i i2

i i

d ψ (η) µ ψ (η) 0
dη

ψ (0) 0;       ψ (1) 1


+ =


 = =

 (9.a-c) 

 
where ψi(η) and µi are, respectively, the eigenfunctions and eigenvalues. This eigenvalue problem is solved to give: 
 

1 2
i i i i i0

ψ (η) Sin(µ η);        µ iπ;        N ψ (η)dη 1/ 2     to    i=1, 2, 3...= = = =∫  (10) 

 
 The eigenvalue problem allows for the development of the following integral transform pair: 
 

1

0
i 1

Transform
Inverse

Ρ (Φ) ψ (η)Ρ(Φ,η)dη                   Ρ(Φ,η) ψ (η)Ρ (Φ)i i i i
∞

=

= = ∑∫% %% %
14444244443 14444244443

 (11.a, b) 

 
where ψ (η)i%  is the normalized eigenfunction, defined by 

 
ψ (η)iψ (η)i 1/ 2Ni

=%  (12) 

 
 Now, following the basic steps of the methodology, the PDE (8.a) is multiplied by ψ (η)i%  and integrated in the 

finite region [0, 1] in η, which after to use the orthogonality property and the inversion formula (11.b), results the 
following decoupled system of ordinary differential equations for the transformed potentials, P (Φ)i

% : 

 

2
i

2d Ρi m Ρ C f (Φ)i i2dΦ
dΡ (1)iΡ (0) 0;          0i dΦ


 − =



 = =


%
%

%
%

 (13.a-c) 

 
where 
 

1L i
i i0

θ λµm  ;            C ψ (η)dηi2
= = ∫ %  (13.d, e) 

 
 The solution for the transformed potential given by Eq. (13) is readily obtained in the form: 
 

( )
L L L

i L i2 ii i L

26θ C θ Cos(θ )iP (Φ) m Sin(θ Φ)  Sinh(m Φ)i 2 Cosh(m )m m θ

 
= − 

 +
%  (14) 

 
 The angle θL depends of the cavitation frontier, if there is not cavitation θL = θ and if there is cavitation its value 
is θL = θ + α, where α is the cavitation angle. The problem defined for the Eq. (8) depends of θL and it makes part of the 
problem solution. Then, θL is calculated using the boundary condition (8.c) (i.e. P(Φ,η 1) 0= = ), of the following form 
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i i Φ 1
i 1

ψ (η) P (Φ) 0
∞

=
=

=∑ %%  (15) 

 
 The non-linear Eq. (15) is truncated in a sufficiently high order N to determine θL. In the solution of such 
equation an appropriate subroutine must be employed, such as the subroutine ZREAL from IMSL Library (1989). After 
solution of the non-linear Eq. (15), the inversion formula, Eq. (11.b), is recalled to provide the pressure field. 
 
2.5. Determination of load carried and attitude angle 
 
  The load components (axial W1 and normal W2) in the dimensionless form are defined by: 
 

( ) ( )L L1
1

W θ  P     cos    θ   d
0

= − φ φ φ∫% ,                  ( ) ( )L L2
1

W θ  P     sen   θ   d
0

= φ φ φ∫%  (13, 14) 

 
The dimensionless load carrying capacity W and the attitude angle φ are: 
 

2 2
1 2W  W W= +% % % ,    2

1

W1tg
W

 −ϕ =   
 

%

%
 (15, 16) 

 
2.6. Determination of the friction coefficient 
 
 The friction force can be obtained by integrating the shear stress around the journal surface. The shear stress at 
the journal surface: 
 

u U h pτ µ µ w y h 2 µ xy h

 ∂ ∂
= = + ∂ ∂ =

 (17) 

 
The friction force can be obtained by integrating the shear stress around the journal surface and written as: 
 

1
L

0 L

1 h( ) dPF d
2 dh( )

 φ
= θ + φ  θ φφ 

∫
%

%
%

 (18) 

 
The coefficient of friction can be obtained by dividing friction force by the film force: 
 

FCf W
=

%

%
 (19) 

 
2.7. Determination of side leakage flow 
 
 The dimensionless side leakage flow for a journal bearing is defined by: 
 

L 1θ P3Q  h (  )  dS 6 η0 η 0

∂
= − φ φ

∂ =
∫ %%  (20) 

 
For the cases where P is function of φ only, the flow axial for journal bearing is, 
 

Q 0S =%  (21) 

 
However when P is function of φ and η , we have:  
 

L

0
S

iQ Ei6
i 1 η=

= −

∞ ∂ψθ
∂η

=
∑

%
%  (22) 

 
where the coefficient Ei is obtained from following integral: 



  

 
1 3E h ( ) P ( ) di i0

= φ φ φ∫ % %  (23) 

 
3. RESULTS AND DISCUSSION 
 
 To solve the non-linear equations above, can be use the Mathematica 5.0 and. Therefore, also, to solve the Eq. 
(14) and (15) a computational program has been developed in FORTRAN 90/95, and it uses the subroutine ZREAL of 
library IMSL (1989). 
  In tables 1, 2 and 3 shown the convergence results for θL, ϕ, W~ , Pmax (maximum pressure) of the problem given 
by Eq. (14) and (15) for small eccentricity. The convergence has been investigated with different truncation orders (NT) 
in the solution of the pressure equation. An excellent convergence rate is evaluated for the parameters studied in the 
medium plan of the journal bearing. 
 

Table 1. Convergence de θL, ϕ, W~  e Pmax with ε = 10-5 e D/L = 10-5. 
NT 

Lθ  ϕ  w~ x 103 Pmáx x 104 

10 257.453 70.9107 0.130 0.871 
20 257.453 70.9107 0.133 0.793 
30 257.453 70.9107 0.134 0.836 
40 257.453 70.9107 0.135 0.806 
50 257.453 70.9107 0.135 0.829 

100 257.453 70.9107 0.135 0.814 
200 257.453 70.9107 0.136 0.816 
400 257.453 70.9106 0.136 0.818 
600 257.453 70.9108 0.136 0.818 

# 257.453 78.790 0.136 0.818 
   # Results obtained by Eq. (5.b) for D/L → 0 and ε → 0 (Case A).  
 
 In table 1 is presented the convergence behaviors θL (angle that characterize the oil film length), ϕ (attitude 
angle), W~  (load carried) and Pmax (maximum pressure) with ε = 10-5 e D/L = 10-5 (i.e. long journal bearing and small 
eccentricity). It is noted a good convergence rate for these parameters. The convergence is established with less of 10 
terms in series solution for θL and ϕ, but W~ converges with NT between 100 and 200 terms and Pmax with NT between 200 
and 400 terms. Also, it is observed in this table an excellent agreement with the analytic solution for journal bearing 
infinitely long (D/L → 0) and its eccentricity is small (ε → 0). 
 In tables 2 and 3 are presented the convergence behaviors form small eccentricity (ε = 10-5) and short journal 
bearing (Table 2 - D/L = 0.1 and Table 3 - D/L = 0.5). It is observed that the parameters are converged with three digits 
significant for the low truncation orders, no more that 200 terms. But, how much lesser the journal bearing (i. e. D/L = 
0.1) more terms in series solution are necessary to reach the convergence of Lθ . 
 

Table 2. Convergence of θL, ϕ, W~  and e Pmax with ε = 10-5 and D/L = 0.1. 
NT 

Lθ  ϕ  w~ x 103 Pmax x 104 

10 256.719 76.145 0.116 0.826 
20 256.542 75.899 0.117 0.810 
30 256.547 75.861 0.117 0.813 
40 256.510 75.851 0.117 0.812 
50 256.507 75.847 0.117 0.813 
100 256.505 75.843 0.117 0.812 
200 256.504 75.843 0.117 0.812 
400 256.504 75.843 0.117 0.812 
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Table 3. Convergence of θL, ϕ, W~  and Pmax with ε = 10-5 e D/L = 0.5. 
NT 

Lθ  ϕ  w~ x 104 Pmáx x 104 

10 232.708 80.366 0.560 0.490 
20 232.678 80.350 0.561 0.489 
30 232.674 80.349 0.561 0.489 
40 232.673 80.348 0.561 0.489 
50 232.673 80.348 0.561 0.489 

 
 The behavior of pressure field, W~ , QS and Cf field are analyzed in graphic form. The results obtained in each 
formulation are compared using the following parameters ε = 10-5 and D/L = 10-5, 0.1 and 0.5. 
 Initially is analyzed (Figure 2), in solution obtained with CITT approach (Case C), that for an infinitely long 
bearing (D/L → 0) the pressure field is independent of the axial position (η). 
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Figure 2 –Pressure field versus θ for different axial 
positions (η) with ε = 10-5 e D/L = 10-5 (CITT Approach). 
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Figure 3 –Pressure field versus θ for different axial 
positions (η) with ε = 10-5 e D/L = 0.5 (CITT Approach). 

 
 In Figure 3 is observed the same tendency of the curves of the figure 2. However, in this situation D/L = 0.5 
characterize a narrow bearing and it is verified that pressure field depends of the axial positions η. Others facts are the 
coincidence between symmetric positions curves and the maximum pressure is obtained in the medium plan of bearing. 
From figures 2 and 3, is noted that the maximum pressure is inversely proportional to D/L relation. 
 In Figures 4 and 5 are shown the influence of the eccentricity in axial flow for D/L = 0.1 and 0.5, respectively. It 
is possible to observe in the Figures 4 and 5 that the curves are analogous with relation to the positions analyzed (η = 0.1, 
0.5 and 0.9); given that the formulation is only valued for small ε, conclude that in despite of the curves have the tendency 
waited, the flow increase with raise of ε (for small ε). These results are not realists, because when ε raise, the results 
should to diverge of the results waited. 
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Figure.4. – Axial flow variation versus ε for different 
axial positions and D/L = 0.5 (CITT Approach). 

0 0.2 0.4 0.6 0.8ε

0

2

4

6

8

10

12

14

Q
(2

Q
L

/U
R

2 c)

D / L = 0,5
η  = 0,1
η = 0,5
η = 0,7

 
Figure 5 – Axial flow variation versus ε  for different axial 
positions and D/L = 0.5 (CITT Approach). 

 
 In the figures 6 and 7 as in the figures 4 and 5 (axial flow), even that the curves have the comportment waited, W 
should increase with augment of ε. This results they are only valid for small ε, therefore this was the hypothesis used for 
this formulation. 
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Figure 6 – Load carried variation versus ε for different 
axial positions and D/L = 0.1 (CITT Approach). 
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Figure 7 – Load carried variation versus ε for different 
axial positions and D/L = 0.1 (CITT Approach). 

 
 In the figures 8 and 9 are presented a comparison of the results, of the W (load carried) and Cf friction coefficient 
in function of the relative eccentricity ε, for limit cases presented in this paper (i. e. A: λ → 0 and ε → 0; B: λ → 0 and 
any ε, except ε → 0; and C: CITT Approach – ε → 0). Can be observed in these figures an excellent agreement between 
the results, where if it verifies that the trend of the curves is kept until ε ≈ 0.1. But, for ε > 0.1 the cases A and C (ε → 0) 
are in perfect agreement and they disagree of the Case B. This results already waited since the formulations A and C have 
as hypotheses ε → 0. 
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Figure 8 – Figure 8 – Comparison of the Load carried 
variation versus ε for case A (λ → 0 and ε → 0), case B 
(λ → 0 and any ε, except ε → 0) and case C (CITT 
Approach – small ε). 

Figure 9 – Comparison of the friction coefficient variation 
versus ε for case A (λ → 0 and ε → 0), case B (λ → 0 and 
any ε, except ε → 0) and case C (CITT Approach – small 
ε). 

 
4. CONCLUSIONS 
 
 In this work are presented three limit solutions for the Reynolds Equation, to study hydrodynamic lubrication of 
journal bearings, are they: Case A for λ → 0 and ε → 0, case B for λ → 0 and any ε (except ε → 0) and C for ε → 0. In 
case C was applied the Classical Integral Transform Technique to get the analytical solution of the EDP, where was 
observed an excellent convergence rate in the series solution. In the condition of small eccentricity and for journal bearing 
infinitely long these solutions tend to converge to one same value. Also, in the cases A and B the transcendental equation 
to calculate the θL (angle that characterize the oil film length) is the same and do not depend of ε and λ. 
 To the journal bearing infinitely long the pressure field do not depend of axial coordinate. But, short journal 
bearing the pressure field starts to depend on the axial coordinate. For the short journal bearings (case C) symmetry is 
observed in pressure field and the maximum pressure is reached in medium plan of bearing in an angular position θ. This, 
however, does not depend of ε for short bearing, but it depends of the D/L ratio. 
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