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Abstract. This paper presents a two-dimensional model for the hydrodynamic lubrication of journal bearings. The analysis 
considers incompressible laminar flow in the bearing with a Newtonian lubricant. The model is based on the Reynolds 
equation of hydrodynamic lubrication for the calculation of the pressure field in the fluid film. The partial differential 
equation is then solved through the application of the so-called Generalized Integral Transform Technique (GITT). 
Therefore, a critical comparison of the present results with those presented in the literature is performed. The major 
contribution of this paper consists in the validation of the GITT approach for the solution of problems in hydrodynamic 
lubrication of journal bearings. 
 
Keywords: hydrodynamic lubrication, journal bearings, lubrication theory, GITT approach, tribology. 
 
1. INTRODUCTION 
 
 The performance of the journals bearings has been studied for many researchers, which have used various numeric 
techniques to solve Reynolds equation. Chandrawat and Sinhasan (1987) presented a comparison between the Gauss-Seidel 
iterative method and a method with complements linear problems. Tayal et al. (1982) investigated the effect of the 
nonlinearity on the performance of the journals bearings with finite width, by using finites elements method. Williams and 
Symmons (1987) analyzed a procedure to solve Navier-Stokes equations for the steady flow, three-dimensional of a non-
Newtonian fluid into the journal bearing with finite width. The procedure applied the finites differences method. Sivak and 
Sivak (1981) obtained a numeric solution of Reynolds equation by modified Ritz method. 

In this paper a hybrid method numeric-analytic, the GITT; it is utilized to solve Reynolds equations for different 
specifics eccentricity and relationships D/L. the results are compared with those of literature. The GITT (Generalized 
Integral Transform Technique) is a method with analytics origins. It derives of the Classical Integral Transform Technique 
presented in the literature by Mikhailov and Özisik, 1984. The basic idea of the method is to transform original partial 
differential equation in an ordinaries differential equations system that can be promptly solved. 
 
2. MATHEMATICAL FORMULATION 
 
2.1. Modified Reynolds equation 
 
For steady and incompressible flow, the Navier-Stokes equations in Cartesians coordinates are: 
 

2 2 2u u u p u u uρ u v w  µ  
2 2 2x y z x x y z

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = − + + +   ∂ ∂ ∂ ∂  ∂ ∂ ∂ 

 (1a) 

 
2 2 2v v v p v v vρ u v w  µ  

2 2 2x y z y x y z

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = − + + +   ∂ ∂ ∂ ∂  ∂ ∂ ∂ 

 (1b) 



 
2 2 2w w w p w w wρ u  v  w  µ  

2 2 2x y z z x y z

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = − + + +   ∂ ∂ ∂ ∂  ∂ ∂ ∂ 

 (1c) 

 
And the three-dimensional continuity equation is: 
 

u v w 0
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (2) 

 
Making the usual hypotheses of hydrodynamic lubrication, the Navier-Stokes equations become: 
 

       
2p uµ 

2x y

∂ ∂
=

∂ ∂
 

p 0
y

∂
=

∂
 

2p wµ  
2z y

∂ ∂
=

∂ ∂
                     (3a-c) 

 
2.2. The boundary conditions 
 

(a) For bearing surface. 
 
        u (x, 0, z) = 0                                                            w (x, 0, z) = 0                                                                 (4a-b) 
 

(b) For journal surface. 
 
       u (x, h, z) = U                                                           w (x, h, z) = 0                                                                 (5a-b) 
 

Integrating the Eq. (3a) and (3c) with boundary conditions (4a), (4b), (5a) e (5c), the velocity components u and w are: 
 

       y 1 pu U   y  ( y h )
h 2 µ x

∂
= + −

∂
                1 pw y  ( y h )

2 µ z
∂

= −
∂

                                           (6a-b) 

 
Substituting the Eq. (6a) and (6b) into of the Eq. (2) and integrating through of the thickness of the fluid film with 

boundary conditions v (x, 0, z) = v (x, h, z) = 0, the Reynolds equations is: 
 

p p d h3 3h h 6  U  
x x z z d x

   ∂ ∂ ∂ ∂
+ = µ   ∂ ∂ ∂ ∂   

 (7) 

 
where 
 

h = c (1 + ε Cosθ)                            (8) 
 

   

 
 

Figure 1. Journal bearing geometry coordinates system and schema of the load components 
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In this study, it is necessary to obtain dimensionless Reynolds equation. Thus, the following dimensionless variables are 
introduced: 

 
θ = x / R ;  η =  z / L ; c h h~ =  ; φ = θ / θL ; λ = 2R / L ; P = pc2 / µUR; ξ = y / c ; u u  U=%  ; w w  U=% . 

 
Thus, the dimensionless velocity components are: 

     ( ) ( )2

L

ξ 1 Pu  ξ  ξ h ξ 
2 θh

∂
= + −

∂ φ
%%

%
               ( ) ( )2λ Pw  ξ  ξ h ξ 

4 η
∂

= −
∂

%%                                  (9a-b) 

 
and Reynolds equation is: 

 

L
L

2θ λ P P3 3h ( ) h ( ) 6 θ  h'( )
2 η η

   ∂ ∂ ∂ ∂  φ + φ = φ     ∂ ∂ ∂ φ ∂ φ     
% % %  (10) 

 
where 
 
        Lh (  )   1  ε cos (  θ )φ = + φ%                                  L Lh' (  )  ε θ  sen ( θ   )φ = − φ%                                     (11a-b) 
 
2.3. Pressure boundary conditions 
 

         P = 0 for η = 0    P = 0 for η = 1           P = 0 for φ = 0  
PP 0∂

= =
∂φ

 for φ = 1       (12a-d) 

 
The Equations (12a) and (12b) are obtained by application of the atmospheric pressure in the journal bearing extremities, 

and the Eqs. (12c) and (12e) are Reynolds conditions. 
 

2.4. Solution methodology 
 

For application of the GITT, the following steps are developed: 
 

2.4.1. Eigenvalue problem determination 
 

The procedure of integral transformation demands the definition of an eigenvalue: 
 

2d ψi µ ψ 0i i2dη
+ =  (13a) 

 
ψi = 0 for η = 0;   ψi = 0 for η = 1 (13b-c) 

 
where ψi (η) e µi are the eigenfunctions and eigenvalues of problem (13) respectively. 
 

Problem (13) is promptly solved analytically and it gives, 
 

ψi (η) = Sin (µi η) (14) 
 
where the eigenvalues are roots of the following equation: 
 

Sin (µi) = 0  ⇒  µi = iπ    ,   i = 1,2,3,... (15) 
 

which satisfy the orthogonality: 
 

( ) ( )
1
ψ  η   ψ  η   d ηi j0∫     ,    

  0 ,        i  j
δij   1,        i  j

≠
=  =

 (16) 



2.4.2. Transform-inverse pair determination 
 

Eigenvalue problem represented by Eq. (13a) allow to define the transform-inverse pair as follow: 
 

        
1

Ρ (  ) ψ ( η ) Ρ ( ,η )  d ηi i0
φ = φ∫% % , transform P ( , η )  ψ  ( η )  P  (  )i i

i 1

∞
φ = φ

=
∑ %% , inverse            (17a-b) 

 
where is the eigenfunction normalized, 
 

       
ψ ( η ) ψ ( η )i iψ ( η )i 1/2 NN ii

= =%  ( )
1 12N     di i 20

= ψ η η =∫                                         (18a-b) 

 
2.4.3. Transformation integral of differential equation 
 

It is executed, multiplying the Eq. (10) by ( ) η iψ
~ , the result is integrated in the domain [0,1] in function of η, which 

after the employ of the orthogonality (13) and inversion formula (17), gives: 
 

       
2d P d P 2i ig (  ) mi  P C  f (  )i i2 dd

+ φ − = φ
φφ

% %
%%  φ = 0 for P 0i =% ;   φ = 1 ⇒ 

dPi 0
d

=
φ

%
                           (19a-c) 

 
where 

 

2
L Lf (  ) 6 θ  ε sen ( θ   )φ = − φ  

3 h' (  )g (  )   
h (  )

φ
φ =

φ

%

%
 

f (  )f (  )  
3h  (  )

φ
φ =

φ
%

%
        (20a-c) 

 
1  cos (  µ )i Ci µ  Nii

−
=  Lθ λ µimi

2
=                                                                       (21a-c) 

 
2.4.4. θL calculation 
 

The angle θL characterizes the film fluid length and it depends of cavitation boundary. Thus, if there is not cavitation θL 
= θ, if there is cavitation its value is θL = θ + α, where α is cavitation angle. It is calculated with boundary condition (Eq. 
12d), that is, P (φ, η) = 0 for φ = 0. The problem defined by Eq. (19a) depends of θL and this one made part of the problem 
itself. By using the additional condition (Eq. 12.d) one obtain transcendental equation for θL calculation, 

 

i i
i 1 1

( ) P 0
∞

= φ=
ψ η =∑ %%  (22) 

 
Eq. (22) is solved through the ZREAL routine (IMSL, 1987), with prescript error of 10-9. 

 
With θL determined, the transformed potentials can be obtained, iP ( , )φ η% . They are used to build the original potential 

original P (φ, η) by inversion formula (Eq.17b), in everyplace of interest. 
 

2.4.5. Load capacity and action angle calculation 
 

Axial load component: 

L1W  A  Ci i
i 1

∞
= − θ

=
∑%  (23) 
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Normal load component to the axis: 

2 LW θ  B  Ci i
i 1

∞
=

=
∑%  (24) 

where the coefficients above are determined through of the following integrals: 
 

L
1

A P  (  ) cos ( θ   )  di i0
= φ φ φ∫ %     i L

1
B P ( ) sen (θ ) di 0

= φ φ φ∫ %                   1
C ψ  ( η )  d ηi i0

= ∫ %                     (25a-c) 

 
2.4.6. Friction coefficient calculation 
 

For this calculation it is necessary to obtain the shear stress, defined by: 
 

u U h pτ µ µ w y h 2 µ xy h

 ∂ ∂
= = + ∂ ∂ =

 (26) 

 
Thus, the dimensionless friction force can be obtained by multiplying of shear stress τw by journal bearing surface: 
 

1
L i i

0
i 1

1 1F d D C
2h( )

∞

=

= θ φ +
φ ∑∫%

%
 (27) 

 
where 
 

1
i

i
0

dP
D h( ) d

d
= φ φ

φ∫
%

%  (28) 

 
Therefore, the friction coefficient is calculated by equation: 
 

FCf W
=

%

%
 (29) 

 
2.4.7. Axial flow rate calculation 
 

It is calculated by following equation: 
 

L i
S i

i 1

ψ  (  η 0 )θ
Q    E

6 η

∞

=

∂ =
= −
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%

%  (30) 

 
where coefficient Ei is obtained by: 
 

1

i i0

3E h ( ) P ( ) d= φ φ φ∫ % %  (31) 

 
And the eigenfunction derived is given by: 

 
µiψ ( η 0 )i Ni

= =%  (32) 

3. RESULTS AND DISCUSSION 
 

Generalized Integral Technique Transformed was used for solution mathematical model given by Eq. (19a). The 
technique implementation was made via a program in language computational FORTRAN 90/95, where was utilized the 



subroutine BVPFD of the library IMSL (1987). Tab. 1, 2, 3 and 4 show the θL, ϕ, W~  and Pmax (maximum pressure) 
convergence of the problem. The convergence has been investigated for different truncation orders (NT) in the solution of 
pressure field. It is observed that a convergence excellent rate is obtained for the parameters analyzed in the journal bearing 
medium plan. 

 
Table 1. Convergence of θL, ϕ, w~  and Pmax for journal bearing medium plan for ε = 10-5 and D/L = 10-5. 

 
NT Lθ  ϕ  w~  x 103 Pmax x 104 

10 257,453 70,911 0,130 0,824 
22 257,453 70,911 0,133 0,825 
30 257,453 70,911 0,134 0,878 
42 257,453 70,911 0,135 0,878 
50 257,453 70,911 0,135 0,829 
62 257,453 70,911 0,135 0,827 
70 257,453 70,911 0,135 0,825 
82 257,453 70,911 0,135 0,825 
90 257,453 70,911 0,135 0,814 
102 257,453 70,911 0,135 0,817 
110 257,453 70,911 0,135 0,818 
122 257,453 70,911 0,135 0,818 

 
In the Tab. 1, for ε = 10-5 e D/L = 10-5, is verified that few terms are necessaries to converge θL and ϕ, that is, less of 10 

series terms, while w~  and Pmax have a convergence more slow, starting to converge with 42 and 102 terms respectively. 
 

Table 2. θL, ϕ, w~  and Pmax convergence for journal bearing medium plan with ε = 10-5 and D/L = 0,5. 
 

NT 
Lθ  ϕ  w~ x 104 Pmax x 104 

10 232,71 80,37 0,5604 0,490 
22 232,67 80,34 0,5607 0,489 
30 232,67 80,35 0,5607 0,489 
42 232,67 80,35 0,5607 0,489 
50 232,67 80,35 0,5607 0,489 

 
In the Tab. 2, as in the Table 1 is observed a good convergence, with few terms, for the analyzed parameters. It is noted 

that θ L and ϕ start to converge for 22 and 30 series terms; while w~  and Pmax converge with less than 10 series terms. 
 

Table 3. θL, ϕ, w~ and Pmax convergence for journal bearing medium plan with ε = 0,5 and D/L = 10-5. 
 

NT Lθ  ϕ  w~  Pmax 
10 219,69 58,30 6,19 4,757 
22 219,69 58,30 6,34 4,604 
30 219,69 58,30 6,37 4,570 
42 219,69 58,30 6,39 4,543 
50 219,69 58,30 6,40 4,531 
62 219,69 58,30 6,41 4,521 
70 219,69 58,30 6,42 4,516 
82 219,69 58,30 6,42 4,510 
90 219,69 58,30 6,43 4,507 
102 219,69 58,30 6,43 4,503 
110 219,69 58,30 6,43 4,503 
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Table 4. θL, ϕ, w~ and Pmax convergence for journal bearing medium plan with ε = 0,5 e D/L = 0,1. 
 

NT 
Lθ  ϕ  w~  Pmax 

10 219,89 60,68 5,694 4,588 
22 219,63 60,13 5,756 4,493 
30 219,68 60,26 5,751 4,482 
42 219,66 60,21 5,756 4,477 
50 219,67 60,23 5,754 4,476 
62 219,66 60,23 5,755 4,475 
70 219,66 60,23 5,755 4,475 
82 219,66 60,23 5,755 4,474 
90 219,66 60,23 5,755 4,474 

 
In the Tab. 3 is verified that θL and ϕ convergence occur with less than 10 series terms, while w~  and Pmax converge with 

90 and 102 series terms respectively. In the Table 4 is noted that θL converge with a series of 30 terms, ϕ between 62 and 70 
terms, w~  with 22 and Pmax about 70 terms. 
 

Table 5. Load capacity - present work and available literature. 
 

Eccentricity Specific (ε)  
L/D 

 
Methods 0,1 0,4 0,5 0,6 0,8 
Reason and Narang1(1982) 0,228 - 1,722 - 6,924 
FEM[1] 0,228 - 1,584 - 5,964 
Hirani et al. (1997) 0,228 - 1,62 - 6,204 
D. Sharma et al. (1991) - 1,2386 - 2,7206 7,578 

 
 
1 

Present work 0,239 1,2154 1,767 3,9064 8,082 
Reason and Narang1(1982) 0,0192 - 0,1782 - 1,2216 
FEM [1] 0,0198 - 0,1740 - 1,1304 
Hirani et al. (1997) 0,0192 - 0,1770 - 1,1616 
D. Sharma et al. (1991) - 0,1123 - 0,2967 1,1855 

 
 
0,25 

Present work 0,0196 0,1959 0,2868 0,4287 1,2410 
 

Table 5 illustrate the obtained results in the present work and those available in the literature for the load capacity with 
L/D = 0,25 and 1 and ε = 0,1, 0,4, 0,5, 0,6 and 0,8. It is observed that the results of the present work have a concordance 
acceptable with the results of the literature for L/D = 1 and eccentricity ε ≤  0,5. When L/D = 0,25, the good results only 
there are for ε = 0,1 and 0,8. 

Graphics results are obtained for dimensionless pressure field in the circumferential direction, load capacity, friction 
coefficient and axial flow rate for different values of ε, λ and η in the journal bearing medium plan. Which are compared 
with results obtained by Mokhiamer et al. (1999), Sharma et al. (1991) and Williams and Symmons (1987). The Fig. 2 
shows an excellent concordance of the present work results with the literature results. 
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Figure 2. Comparison of pressure field in the 
circumferential direction. 

Figure 3. Comparison of the friction coefficient in 
function of the specific eccentricity. 
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Figure 4. Comparison of the axial flow rate in function of 
the specific eccentricity. 

Figure 5. Comparison of the capacity load in 
function of the specific eccentricity. 
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Figure 6. Comparison of pressure maxima in function of the axial position 
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In the Figs. 2 to 6 it is noted an excellent concordance between the results of the present work and those of the literature. 
This fact validates, one more time, the computational program developed in this study. 

The pressure field depends of specific eccentricity and relation ship D/L. Thus, it is interesting to simulate the pressure 
field in function of ε and D/L. The simulation was executed for specific eccentricity equal to 10-5 and 0,5 and D/L equal to 
10-5 and 1, as showed in the Figs. 7 to 10. 

 

 
 

 
 

Figure 7. Pressure field in function of θ for ε = 10-5, D/L = 
10-5 in different positions of the journal bearing. 

Figure 8. Pressure field in function of θ for ε = 0,5, D/L = 
10-5 in different positions of the journal bearing. 

 
In the Figs. 7 and 8 can be observed that for longs journals bearing (D/L → 0), the circumferential pressure field does 

not depend of the axial position. It is explained for the pressure gradient in the direction η to be negligible in relation to the 
gradient in the direction θ (∂p/∂θ >> ∂p/∂η). For longs journals bearing, the flow in the direction θ is very more important 
that those in the directionη. It is also verified that the pressure in the journal bearing is proportional to ε. The variation in the 
pressure field is due to eccentricity (ε) to regulate the wedge effect. In other words, this effect is major when major is the 
eccentricity and consequently major is the lubricant shear, which is proportional to hydrodynamic pressure, as can be 
observed in the Eq. (26). 

In the Fig. 9, it is observed that pressure field vary in the direction η and it is due to the journal bearing not be long (D/L 
= 1). As in the Figures 7 and 8, the pressure is proportional to ε. Comparing the Figures 7 and 9 and the Figures 8 and 10, it 
is noted that the pressure and θ are inversely proportional to D/L. This demonstrates that there is a dependence of the 
pressure in relation to the parameter D/L, which determines if a journal bearing is long or short. 
 

  
Figure 9. Pressure field in function of θ in different 
positions of the journal bearing for ε = 10-5, D/L = 1. 

Figure 10. Pressure field in function of θ and in different 
positions of the journal bearing for ε = 0,5, D/L = 1. 

 
4. CONCLUSIONS 
 

This paper demonstrate the applicability of the GITT, as a method able to provide good results for problems of 
hydrodynamic lubrication The model is based in the Navier-Stokes equations, by reproducing results with good 
concordance in relation to those of the literature. This fact validates the computational programs developed in this analysis. 
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