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Abstract. This work is devoted to the design optimization of a three-dimensional vehicular structure (space frame 
vehicular structure), used as a chassis of a high performance roadster vehicle. In general, for this type of vehicle, a 
chassis must be as rigid and lightweight as possible in order to fulfill drivability (the degree of smoothness and 
steadiness of acceleration of an automotive vehicle) and maneuverability (the quality of being capable of maneuvering 
or changing position) requirements. As a result, this real world structure is characterized by a complex geometry, 
which entails a number of difficulties in obtaining the optimum design by using analytical formulation. Differently, the 
current state-of-the-art design of vehicles embraces the use of modern computer-based methodologies (Computer-
Aided Design - CAD) that relies upon techniques such as the Finite Element Method and Numerical Optimization. In 
this work a chassis design methodology that integrates a set of nature-inspired optimization tools developed under 
MATLAB® and finite element analysis using the commercial software ANSYS® is presented. Numerical results are 
reported, illustrating the success of using the presented methodology, as applied to the design optimization of a space 
frame vehicular structure. 
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1. INTRODUCTION 
 

The use of three-dimensional vehicular structures became popular in the sixties last century due to the interest in 
designing high performance race cars.  This type of car requires high structural stiffness that can be offered by this type 
of arrangement. Another important feature of three-dimensional structures is that they provide high security level for the 
occupants with respect to crash and rollover. Most of the structures are constituted by members arranged according to a 
planar configuration, as illustrated in Fig. 1. 

 

 
 

(a) Ladder frame (planar configuration). (b) Space frame (three-dimensional arrangement). 
 

Figure 1. Two types of chassis.  
 
In the design phase, the main concern is to obtain rigid and while lightweight structure. These characteristics fulfill 

drivability and maneuverability requirements (Souza, 1990; and Happian, 2002). According to the literature (Thompson 
et al., 1998; Aird, 1997; and Happian, 2002), for design purposes the most effective strategy should consider both the 
mass reduction and the increase of the torsional stiffness. Translating this to the design level, the engineer must choose 
the material (by defining the material density and the Young’s modulus) and design the proper geometry of the structure 
(by defining the total mass and moment of inertia). 

In terms of materials choice, Baker (2004) discusses that steel alloy and aluminum alloy are probably the ideal 
materials for the chassis construction. However, it must be pointed out that they may not be always economically 
interesting. In this case, the use of the 1020 carbon steel seems to be a recommended trade off solution. 



On the other hand, in terms of the geometry, the design starts by choosing a basic form. Figure 2 illustrates some of 
the most common ones. The triangular form is the basis for the development of a rigid structure. In this case, shape and 
dimensions do not suffer extreme changes, unless one of its sides collapses. According to Adams (1993), diagonals bars 
(see Fig. 2c) represent a well-succeeded experience to increase the stiffness of square-shaped elements, since high 
strains along the diagonal direction appear in this type of element, even when the structure is subjected to small loading. 

 

   
 

(a) Triangular form. 
(b) Diagonal strain of a 
square-shaped element 
under loading condition 

(c) Simple diagonal bar. (d) Thin metal panel with a 
diagonal bar (stiffener). 

 
Figure 2. Different construction forms.  

 
The design of a three-dimensional vehicular structure is a complex task. Differently from simple structures, where 

the analytical formulation for the physics may be available, the most common approach in this context is to make use of 
numerical models like those based on the Finite Element (FE) method. On the other hand, numerical optimization 
techniques have been widely used in design applications.  In conjunction with computer automation capabilities, 
optimization is an efficient alternative to the “trial and error” development. 

In summary, the design strategy adopted in this work embraces the use of nature-inspired optimization methods, as 
well as the finite element modeling of the vehicular structure. The choice of the optimization strategies has to do with 
two major aspects: first, authors aimed at testing heuristic methods in real world applications, and second it was 
desirable to take advantage of the robustness found in these techniques to handle the design case addressed. In the 
remainder, an overview regarding the modeling of the vehicular structure is presented and the optimization algorithms 
are discussed. Numerical results are reported, illustrating the success of the methodology presented, when applied in the 
design of a three-dimensional vehicular structure. 

 
2. BASELINE DESIGN DEFINITION AND MODELING  

 
The model was first obtained by consulting the literature about high performance race vehicles (Thompson et. al., 

1998; and Aird, 1997). A structure for a high performance roadster vehicle with two passengers was used in this work. 
Figure 3 illustrates the initial configuration of the baseline design. Figure 3-(b) shows indications of the suspensions 
anchorage points. Lack of roof and the presence of side doors make this structure flexible. To overcome this drawback, 
left and right trusses were placed together with diagonal bars in the floor-plan (minimizing buckling tendencies). Before 
continuing, it is worth mentioning that the fact of being based on the literature does not mean that the baseline design 
corresponds to the optimal design.  

 

 

 

(a) Isometric view. (b) Lateral view 
 

Figure 3. Baseline design of the space-frame chassis. 
 
In terms of material, carbon steel circular tubes were chosen. The initial configuration presents 0.0508 m external 

diameter and 1mm of wall thickness. Table  gives details about this initial design configuration 
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Table 1. Baseline details. 
 

Wheelbase [m] Front and rear tracks [m] 
2.62 1.475 

Front suspension type Rear suspension type 
Short long arm MacPherson with aggregate 

 
There are some options regarding the modeling of such a structure: one of them is to make use of shell elements. 

While accurate, this solution is expensive from the computational viewpoint, and thus, it is not convenient within the 
optimization framework. On the other hand, beam elements allow obtaining models at lower computational cost, 
without lacking the necessary accuracy in the design phase. The bar element (BEAM4) was chosen. This element can 
be used in the analysis of tension, compression, torsion and bending. Each element has twelve degrees of freedom (two 
nodes per element): translations along x, y and z nodal directions and rotations with respect to x, y and z nodal axes. 

The formulated optimization problem deals with two responses obtained from the FE model, namely, the mass and 
the torsional stiffness. The baseline design has 19,167 degrees of freedom, the mass is [ ]139.52 Kg and the torsional 

stiffness is [ ]1728.1 degKgf m⋅ . An important point is that in a more realistic design scenario, it would be necessary to 
include other factors such as dynamic responses, manufacture constraints, etc. 

 
3. NUMERICAL OPTIMIZATION AS A DESIGN TOOL 
 

When incorporated to the design process, numerical optimization goes beyond the simple analysis of the structure. 
Fig. 4 illustrates a general scheme regarding the FE analysis. A possible way of incorporating numerical optimization in 
the cycle of development is given by Fig. 5. Modeling of the structure and analysis of design requirements are steps of 
the “problem definition and formulation”. After this first stage, a baseline design is proposed. After each 
“Optimization” step, the candidate solution is revised. If either the requirements were not satisfied or it is possible to 
achieve some extra improvement, the candidate solution is redefined as a baseline for a new iteration of the design 
cycle. This loop continues until the decision maker considers that the candidate solution has fulfilled the initial goals 
proposed. An extra refinement may be an intermediate step before obtaining the final design. 

 

Modeling:

Geometry definition

Material properties

Meshing

Boundary conditions

Analysis:
Solution

Interpretation:
Results

Pre-processing Processing Post-processing

 
 

Figure 4 . FE methodology. 
 
Looking deeply inside the “optimization” step shown in Fig. 5, it is worth mentioning that Venter and Sobieski 

(2002) claim that most general-purpose optimization software used in industrial applications makes use of gradient-
based algorithms. However, in spite of the heavy computational effort as compared to gradient-based techniques, 
nature-inspired probabilistic methods have attracted much attention from the research community. These methods have 
several advantages, such as the easiness to code, the efficiency in using parallel computation architectures, the ability to 
overcome numerical convergence difficulties, and the capability of dealing with discrete and continuous variables 
simultaneously. 

In this work, the “optimization” step follows a cascade-scheme that combines a global optimization method with a 
local optimization method. In the global optimization phase, a suite of heuristic optimization methods is applied to the 
optimization of a three-dimensional vehicular structure. Ant Colony Optimization (ACO), Genetic Algorithms (GA), 
and Particle Swarm Optimization (PSO) are the approaches used to perform this case study. These methods are briefly 
reviewed below. In the local optimization phase, a Nelder-Mead simplex direct search (MATLAB function fminsearch) 
is used. For this, the initial design is provided by the previous global optimization phase. 



 
 

Are 
requirements 

satisfied?

Results

Problem 
definition and 
formulation

Baseline design Optimization

Design refinement

Design refinement

Analysis of the 
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Figure 5. Optimization included in the design cycle. 

 
3.1. Ant colony optimization 

 
ACO was first introduced by Marco Dorigo in his doctoral thesis in 1992 (Dorigo, 1992) as a probabilistic technique 

for solving computational problems, which can be reduced to finding good paths through graphs. This population-based 
technique is inspired by the behavior of real ants and their communication scheme by using a pheromone trail. ACO has 
attracted much attention from the research community mainly due to its efficiency in solving combinatorial 
optimization problems, such as the traveling salesman problem (Dorigo et al., 1996) and the routing problem in a 
computer network (Di Caro and Dorigo, 1998). Nevertheless, the expansion to continuous variables is recent 
(Pourtakdoust and Nobahari, 2004) and it is seen as a new development in the history of ACO. 

A moving ant lays some pheromone on the ground, thus marking the path. The collective behavior that emerges 
from the participating agents is a form of positive feedback where the more the ants follow a trail, the more attractive it 
becomes. ACO follows some basic concepts, as presented below (Pourtakdoust and Nobahari, 2004): 

• A search performed by a population of ants, i.e., by simple independent agents. 
• Incremental construction of solutions. 
• Probabilistic choice of solution components based on stigmergic information of pheromone. A stigmergic 

process is the process through which the results of a worker insect's activity act as a stimulus for further 
activities. 

Figure 6-(a) shows the outline of a basic ACO. More details about ACO are provided by Dorigo (1992), Dorigo et 
al. (1996), Di Caro and Dorigo (1998), and also by Pourtakdoust and Nobahari (2004). 

 
3.2. Genetic algorithms 

 
GA is an optimization algorithm used to find approximate solutions to difficult-to-solve problems through the 

application of the principles of evolutionary biology to computer science (Michalewicz and Fogel, 2000 and Haupt and 
Haupt, 2004). GA is based on Darwin's theory of survival and evolution of species, as explained in Michalewicz and 
Fogel (2000) and Haupt and Haupt (2004). GA uses biologically-derived concepts such as inheritance, mutation, natural 
selection, and recombination (or crossover). 

The algorithm starts from a population of random individuals, viewed as candidate solutions to a problem. During 
the evolutionary process, each individual of the population is evaluated, reflecting its adaptation capability to the 
environment. Some of the individuals of the population are preserved while others are discarded; this process mimics 
the natural selection in Darwinism. The members of the remaining group of individuals are paired in order to generate 
new individuals to replace those which are discarded in the selection process. Finally, some of them can be submitted to 
mutation, and as a consequence, the chromosomes of these individuals are altered. The entire process is repeated until a 
satisfactory solution is found. 

Figure 6-(b) shows the outline of a basic GA. Although the initially proposed GA algorithm was dedicated to 
discrete variables only, nowadays improvements are available to deal with discrete and continuous variables see 
Michalewicz and Fogel (2000) and Haupt and Haupt (2004) for more details. 

 
3.3. Particle swarm optimization 

 
Particle Swarm Optimization was introduced by Kennedy and Eberhart (1995). The method reflects the social 

behavior of some bird species. The main idea of the PSO is to reproduce the search procedure used by a swarm of birds 
when looking for food or nest. Consider the following situation: a swarm of birds is searching for food in the 

Yes No
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neighborhood of a delimited area. Suppose there is just one place where food can be found and the birds do not know 
where it is, then if one bird is successful in its search, it can attract other birds, and as a result of this social behavior, the 
others will follow and also find the food. Following this principle, each individual learns (and contributes) primarily to 
the success of his fellows. This fact requires balance between exploration (the capacity of individual search) and 
exploitation (the capacity of learning from the neighbors). 

Behind of the scenes, this is achieved by modeling the flight using a velocity vector, somewhat analogous to a 
search for direction. The velocity vector considers the contribution of the current velocity and other two portions 
referred to as the knowledge of the particle itself and that of the swarm, respectively, about the search space. In such a 
way, the velocity vector is used to update the position of each particle in the swarm. The outline of a basic PSO 
algorithm is illustrated in Figure 6-(c). PSO is comprehensively presented in Venter and Sobieski (2002) and Kennedy 
and Eberhart (1995). 

 

 
 

(a) ACO. (b) GA. 

 
(c) PSO. 

 
Figure 6. Basic schemes for some nature-inspired optimization methods. 

 
3.4. Multi-objective and constrained optimization 

 
The most general optimization problem is the multi-objective constrained one. In this scenario, numerical 

optimization is dedicated to the following nonlinear, constrained problem: find the point in the design space, ∗x , that 
will minimize the vector of objective functions, as presented by eqs. (1) and (2): 

 ( )

( )
( )

( )

1

2= ,

P

F
F

F

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

x
x

F x

x
M

 (1) 

 
 



subject to: 

 ( )
( )

, 1, 2, , ,
, 1, 2, , ,

, 1, 2, , ,

l u
i i i

j

j

x x x i N
G j M

H j M M L

≤ ≤ =

=

= + +

x

x

K

K

K

 (2) 

where: 
 

• ( )F x  is the vector of objective functions, 
• l u

i i ix x x≤ ≤  imposes the side constraints to the design space, and 
• ( )jG x  and ( )jH x  are the inequality and equality constraint functions, respectively. 

 
The basic nature-inspired algorithms are defined for unconstrained problems only. Since most engineering problems 

are multi-objective and/or constrained problems in one way or the other, it is important to add to the formulation the 
capability of dealing with this type of problem. For the sake of simplicity, it was decided to deal with multiple 
objectives by making use of the “Weighted Global Criterion Method” (Marler and Arora, 2004). This approach 
combines all objective functions to form a single scalar function, as given by eq. (3): 
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=∑ ) and ( )oF x  is the ideal point (Marler and Arora, 2004), which is defined 

as ( ) ( ){ }min  |  Feasible space , 1,2,  ,o
k x kF F k P= ∈ = …x x x . Generally, the relative value of the weights reflects the 

relative importance of the objectives. 
Following the same idea of keeping the formulation as simple as possible, constraints are handled by using the 

“Classical Exterior Penalty Function” (Michalewicz, 1995; and Coello, 2002). This technique penalizes unfeasible 
individuals by modifying the objective function in the unfeasible space. The idea is to increase the value of the 
objective function in this region. This means that during the optimization task, all individuals will tend to the feasible 
space. The formulation follows the scheme proposed by eq. (4). 

 ( ) ( ) ( ),J F penalty= +x x x  (4) 

where ( )penalty x  is zero, if no violation occurs, and positive otherwise. 
In addition, this method puts all constraints together by using a set of functions ( )jf x  given by eq. (5): 
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In this method, the penalty function is written according to eq. (6): 

 ( ) ( )
1
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j
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=
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where r  and β  are constants. The choice of r  depends on the problem and must be defined by the user. On the other 
hand, a common choice for β  is 2β = . 

 
4. OPTMIZATION RESULTS 

 
Regarding the central part of the chassis, a total number of 31 nodal coordinates are assumed as continuous 

variables. The bounds for these variables are defined as an interval for which the center is taken from the baseline 
design. In the present work, the bounds range from 0.75 to 1.25 of the baseline values. It means that the baseline design 
is placed at the center of the design space and each node can be shifted to a position that has coordinates varying from 
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75% to 125% of the baseline counterparts. About the tube, the external diameter is a discrete variable that can assume 
one of the values shown in Tab. 2. For all these diameter values, the thickness ranges from 31.06 10 m−×  
to 33.00 10 m−× . It is worth mentioning that these values were obtained from commercial steel tubes found in the 
market. This way, the optimization is defined as a problem of 32 design variables (31 continuous and 1 discrete). 

 
Table 1.External diameter. 

 
Design variable values 1 2 3 4 5 

Corresponding diameter 310 m−⎡ ⎤×⎣ ⎦  38.10
 

41.27
 

44.45
 

47.60
 

50.80
 

 
Figure 7 illustrates where the 31 nodal coordinates take place in the baseline design. 
 

 
 

Figure 7. Nodal points for optimization. 
 
Following the design framework suggested in Figure 1, four different formulations were tested in the first 

“optimization” step of the design cycle. Table 2 gives the description of each of the four formulations. 
 

Table 2. Formulation of the optimization problem. 
 

Scenario Description Formulation 
# 1  The optimization problem is defined as the 

minimization of a dummy objective function, 
while both the mass and the stiffness are 
considered as design constraints. 
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# 2  Mass reduction is an objective function while 
stiffness increase is taken as a constraint. ( )
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Mass objective:

Stiffness constraint: 1.0 0
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# 3  Stiffness increase is an objective while mass 
reduction is a constraint. ( )
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Stiffness objective:

Mass constraint: 1.0 0
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# 4  Multi-objective optimization containing two 
objective functions: mass reduction and 
stiffness increase. 

( )
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Mass objective:

Stiffness objective:
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M
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Table 4 contains the optimal results obtained in the first “optimization” step, in which all heuristic methods were set 
up with a population size of 50 and number of iterations of 50,  [ ]limit 100 M Kg=  and [ ]lim 1900 degitK Kgf m= ⋅ .  

 
Table 3. Optimal results for the first step. 

 
Method Formulation Mass Torsional stiffness 

  
Value 
[ ]Kg  % of reduction 

Value 
[ ]degKgf m⋅  % of increasing 

# 1  107.24 23.1365 1897.7 9.8142 
# 2  115.93 16.9080 1937.8 12.1347 
# 3  100 28.3257 1765.08 2.1399 

ACO 

# 4  105.31 24.5198 1937.8 12.1347 
# 1  107.96 22.6204 1774.54 2.6873 
# 2  126.34 9.4467 1937.8 12.1347 
# 3  100.03 28.3042 1809.56 4.7138 

GA 

# 4  100 28.3257 1937.8 12.1347 
# 1  106.08 23.9679 2106.25 21.8824 
# 2  110.01 21.1511 1937.8 12.1347 
# 3  108.55 22.1975 1933.4 11.8801 

PSO 

# 4  105.63 24.2904 1868 8.0956 
Baseline 139.52 1728.1 

 
So far, given the values of both mass and torsional stiffness, PSO using formulation # 1  has shown to perform best 

in optimizing the original baseline structure. This way, this is the only configuration for the “optimization” step in a 
second iteration of the design cycle. Figure 8 illustrates the first candidate solution given by this configuration. 

 

 
Figure 8. First candidate solution. 

 
Table 4 summarizes all information about the only two iterations required to achieve an optimal design, following 

the framework given by Figure 5. A “design refinement” of the candidate solution in the first iteration was performed . 
After this, slight improvements can be observed both in the mass and torsional stiffness values. See the differences 
between the candidate solution of iteration # 1  and the baseline design of iteration # 2 . In the second iteration, PSO 
was set up with a population size of 100 and number of iterations of 100, Mlimit = 80 [Kg] and Klimit = 2835 [Kgf.m/deg]. 

Figure 9 illustrates the optimal design. As shown in Table 4, the final design presents an improvement of nearly 
25.5% for the mass value and 62.6% for the torsional stiffness as compared with the initial baseline design. 
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Table 4. General data regarding the obtained results. 
 

Design cycle iteration Designs Mass [ ]Kg  
Torsional stiffness 
[ ]degKgf m⋅  DOF of the model 

Baseline 139.52 1728.1 19167 # 1  
Candidate solution 106.08 2106.25 18609 

Baseline 105.7 2266 18675 # 2  
Candidate solution 109 2880 18333 

Final design refinement Optimal 104 2810 17643 
% Improvement (reduction for mass and 

increasing for stiffness) 25.4587 62.6063 --- 

 

 
Figure 9. Improved Design (local optimum) 

 
5. CONCLUSIONS 

 
The present contribution demonstrated the application of numerical optimization, particularly nature-inspired 

optimization techniques to solve a realistic design optimization test problem represented by a three-dimensional 
vehicular structure. The investigation showed the possibility of using the present techniques in real world environment. 
The results are very encouraging in the sense that other system requirements, embracing for example the gravity center, 
dynamic and manufacture constraints, will be included in the optimization problem in further research work. 
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