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Abstract. This paper presents a mathematical modeling to describe gas transmission networks involving the whole 
chain gas ranging from the gas production wells to the consumer market. Instead of considering the momentum 
conservation principle, a linear programming approach is employed to emulating the gas motion through the network. 
To achieve this goal, a constrained maximization of a suitable linear functional is taking into account. The mass 
conservation principle, along with compatibility conditions and some physical limitations of the components of the 
network, form the set of restrictions in terms of linear equalities and inequalities.  This alternative approach simplifies 
considerable the numerical solution of the problem, rendering a simple, robust and quite genera model. A numerical 
example is presented in order to illustrate the capability of the modeling in properly predict important events in gas 
networks. 
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1. INTRODUCTION 
 

Gas transmission networks are systems that combined different ways of transporting gas through long distances, 
from production wells to consumer centers. As the consumer market begins to grow rapidly new production wells come 
into operation. As a result, an expressive increase in the gas network is experienced. To accommodate this new 
scenario, complex operational management of the whole system is required in order to ensure gas delivery to all 
markets. In a complex branched gas network, decision making regarding to gas deliverability to a market is in general 
not an easy task, since the cost associated with the gas production depends on each production well (Mokhatab et al., 
2006). Moreover, the cost of the gas to a particular market depends on the distance traveled and the specific route the 
gas has traveled in the network (McAllister, 2005). As a first step to address this problem, it is presented in this paper a 
simple mathematical modeling which aims to forecasting the capability of an existing gas network in attending the gas 
demand of whole market. The model is based on the mass balance equation and takes into account, in a suitable fashion, 
pressure and flow rate as well as compressor stations restrictions of the gas lines. Given the production capacity, the 
infrastructure of the network and the gas demand of each consumer, the model predicts the behavior of the whole 
distribution system, verifying automatically all the associated constraints.  Among others, important features such as 
packing and unpacking phenomena in the gas network are accurately described enabling the model as a promising tool 
in the task associated with operational management. 
 
2. PROBLEM DESCRIPTION 
 

A gas transmission system is a complex network which aims to delivering gas from the production wells to the 
consumer markets. To achieve this task, different infrastructures can be used by employing a variety of equipments, 
routes and transport media. If these items have been chosen, then the infrastructure is established and operational 
restrictions have automatically been imposed in the network. As a result, once the gas production capacity in a scenario 
has been specified, question arises as to the capability of the given infrastructure in attending the prescribed gas demand 
of the consumer market. When the gas demand is not fully attended, it also becomes important to precisely identify the 
consumers, the deficit and also the periods for the gas shortage. 

No matter how complex the network can effectively be, the components of the infrastructure can be grouped into 
four distinct classes: production/processing, stock, transport and consumption. Typical components from the 
production/processing class are the associated or non-associated gas wells and the units of gas processing. As 
components belonging to the consumption class, one may cite the industries, the thermo-electrical power plants and the 
cities as a whole. Finally, the transport class may be subdivided into two categories: continuous and non-continuous 
transport. The continuum transport components are the gas pipelines and the non-continuous transport components 
encompass the transport of gas carried out by ships, trains and trucks. 



To sum up, given the infrastructure of a gas network, its gas production capacity and its gas demand the problem in 
analysis consists in properly determine the temporal evolution of the effective production and consumption in the whole 
network. 
 
3. MATHEMATICAL MODELING 
 

The basic physical principle used to govern the gas motion through the distribution system is the mass conservation 
law, which must be stated not only globally (for the system as a whole) but also locally (for each component of the 
system). In fact, if the mass conservation principle is verified for each component of the system, then it is automatically 
satisfied for the system as a whole. As the reciprocal is not true, the starting point in the mathematical modeling process 
is to express the aforementioned principle for each component of the system. In the course of this process, the four 
classes of components (production/processing, stock, transport and consumption) mentioned in the past section are fully 
characterized. 
 
3.1. Class description 
 

Whatever the class the component belongs, every component in the system may be physically characterized by only 
one general equation which expresses the mass conservation principle. Thus, for each component n of the system 
consisting of N components we can write, for every time instant t : 
 

( ) ( )

( ) ( ) ( ) ( ) ( )

1 1
1, ,

n nJ I
n n n n n

j i
j i

d V S E P C for n N
dt = =

+ − = − =∑ ∑ …           (1) 

 
in which ( )nV  stands for the quantity of gas mass expressed in Nm3, whose definition is presented ahead, inside the n-th 
component at the instant t , ( )n

jS  and ( )n
iE  denote the  instantaneous mass flow rate which, respectively, leaves and 

comes into the n-th component through the j-th inlet and the i-th outlet and, finally, ( )nC  and ( )nP  represent, 
respectively, the instantaneous time rate of gas consumption and production taking place in the n-th component at the 
time instant t . All the variables in Eq. (1) are functions of t , the only one independent variable in the problem 
formulation. 

Due to the form as Eq. (1) is written, it becomes evident that the following conditions set below must be satisfied: 
 

( ) ( ) ( ) ( ) ( )0, 0, 0, 0, 0 1,..., .n n n n nV S E P C for n Nj i≥ ≥ ≥ ≥ ≥ =         (2) 

 
It is not difficult to realize that not all the components will have all the terms in Eq. (1). As a matter of fact, it is the 

identification of the non-null terms in Eq. (1) that will characterize not only the class the component belongs but also its 
peculiarities within each class. For instance, if the component in consideration belongs to the class 
production/processing, then ( ) ( )0,  1, , ,n n

iE i I≡ ∀ = …  and ( ) 0.nC ≡  In a similar fashion, components which belong to 
the class consumption will be characterized by having the following non-null terms in Eq. (1) : 

( ) ( )0,  1, , ,n n
jS j J≡ ∀ = …  and ( ) 0.nP ≡  

On the other hand, if the component belongs to the class stock or transport, then one must necessarily have ( ) 0nP ≡  
and ( ) 0nC ≡  or ( ) 0nP ≡ , respectively. Based on this classification, it is explicitly assumed that the components of the 
transport class may also stock as well as consume gas. By excluding the components used with the purpose of 
connecting the other components such as the junctions and the derivations, it is admitted as a basic assumption that the 
only difference between the components of the stock and transport class is that the components from this last class 
possess only one inlet and only one outlet, that is, ( ) 1nI =  and ( ) 1nJ = . The junction and the derivation, which 
constitutes the exception to the rule of the transport class, give flexibility in mounting the system by allowing to 
considering branches of pipelines with multiples inlets and outlets, pipelines of varying diameters and so forth. The 
derivation component is characterized by assumption as having only one inlet and two outlets, i. e., ( ) 0nV ≡ , ( ) 0nC ≡ , 

( ) 0nP ≡  with ( ) 1nI =  e ( ) 2nJ = . Similarly, the junction component has only one outlet and two inlets, i. e. ( ) 0nV ≡ , 
( ) 0nC ≡ , ( ) 0nP ≡  with 2nI =( )  e ( ) 1nJ = . 

To ensure that the mass conservation principle is satisfied globally (for the system as a whole), it is imposed 
compatibility conditions between the mass flow rates, at the inlet and at the outlet, of the components of the transport 
class and the mass flow rates of the components connected to them.  Without loosing generality, if we admit that there 
exists M components of the transport class (with M N< ), then there will be 2M compatibility equations as follows: 

 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

{ }
{ }

{ }
( ) ( )

( ) ( )

( )0,   1, 2  1, ,
  1, ,   1, , ,

( )0,   1,2  1, ,

m o
i j

m o
j i

oE S for i with j J
for m M with o N M o m

oS E for j with i I

⎫− = = ∈ ⎪
= ∈ − ≠⎬

⎪− = = ∈
⎭

…
… …

…
     (3) 

 
Every variable which appear in Eq. (1) are submitted, for every time instant t , to the additional conditions in 

the following form: 
 

   n n n n n n n n n n
j j i iC C V V S S E E P P≤ ≤ ≤ ≤ ≤( ) max ( ) ( ) max ( ) ( ) max ( ) ( ) max ( ) ( ) max ( ), , , ,       (4) 

 
for 1n N= , ..., , in which 

nCmax ( )
, 

nVmax ( ) , n
jSmax ( ) , n

iEmax ( )  and nPmax ( ) are, for a given time instant,  known 

positive constants which represent the maximum admissible values for nC( )
, 

nV ( ) , n
jS ( ) , n

iE( )  and nP( ) , 
respectively. From the physical view point, these upper bounds stand for operational restrictions associated with each 
component. For instance, nVmax ( )

represents the maximum stock capacity of a component, 
nPmax ( )  the maximum time 

rate production of gas, nCmax ( )
the maximum time rate consumption of gas (also named demand) and, finally, 

n
jSmax ( ) and n

iEmax ( ) the maximum mass flow rates in the components of the transport class. If the component is a 

pipeline, then 1 1
n n nS E Q= =max ( ) max ( ) max ( ) , in which nQmax ( )  is the maximum mass flow rate in the pipeline. Besides the 

specification of the upper bounds involved in Eq. (1), initial conditions are required with respect to the initial quantities 
of gas (say at time 0t = ) of each variable ( )nV , 
 

( ) ( )
0 0 1,..., .n nV V at t for n N= = =            (5) 

 
With exception of the pipeline component, the initial quantity of gas in all components of the system is assumed to be 
an input. The approach used to estimate the initial quantity of gas in a pipeline based on the process variables will be 
described in section 3.3. 

Once the basic features of each of the four classes have been defined, we are able to enumerate the set of 
fundamental assumptions which characterize the nature of the gas which is transported through the whole system. 
 
3.2. Basic assumptions 
 

To fully describe the proposed model, some fundamental assumptions enumerated ahead are assumed with regard to 
the constitutive nature of the gas: 
 

1) The gas density, with respect to the air at the normal conditions of pressure and temperature, is for every time 
instant (including the initial at 0t = ) and in every component of 0.725, which is equivalent to admit that the 
molecular weight is constant and equal to 21. 

 
2) The compressibility factor of the gas can be approximated by  the following expression of the CNGA – 

California Natural Gasoline Association (McAllister, 2005): 
 

       ( ) 1,294125

3,825

1ˆ , :
517060 101

Z Z p T
p

T

= =
×

+
           (6) 

 
      with T expressed in degrees Kelvin and p, the gauge pressure, expressed in kgf/cm2. 

 
3) Whatever the system is, the gas temperature is assumed to be uniform and constant, being equal to 20oC. 
 
4) For all effects, it is assumed that the gas obeys the following equation of sate: 

 
      pV nZRT=            (7) 
 
     in which V represents the volume, n the number of moles and R the universal constant of the gases. 
 



5) The unit of mass adopted for every component is the normal cubic meter, Nm3. By definition, it is the mass of 
gas in a 1 m3 at a reference temperature refT =20oC and at a reference absolute pressure refp =1 atm.  

 
6) The superior caloric power of the gas, PCS, is constant and equal to 9500 kcal/Nm3. According to the 

classification of the Brazilian Agency of Petroleum ANP, the gas is considered a medium natural gas with PCS 
within the interval 8800 to 10200 kcal/Nm3. Moreover, the superior caloric power is assumed to be 90 % do 
PCS. 

 
Based upon the aforementioned assumptions, it can be verified that the compressibility factor in the reference state, 

2ˆ ( 0kgf/cm , 293.15K)refZ Z p T= = = , obtained from Eq. (6), is equal to 1.  
 

With the assumptions set before one can estimate the initial quantity of gas inside the pipeline, i. e., that is its initial 
condition. In the next section we present a simple way to estimate the amount of gas inside the pipe according to its 
operational parameters. 
 
3.3. Initial condition for the pipeline 
 

The procedure used to estimate the initial quantity of gas inside the pipeline, as well as its minimum and maximum 
stock capacities, is presented next. The quantity of gas, which obeys the assumptions set before in the past section, that 
can be stored in a pipeline of internal diameter D and length L can be expressed according to: 
 

( ) 0
ˆ , , : ref refM

M M
M ref

Z Tp
V V Z p T V

Z p T
= =             (8) 

 

in which 
2

0 4
D LV π

= , ( )ˆ ,M M M refZ Z p T=  is the compressibility factor for the mean pressure Mp within the pipeline 

segment. 
If the pipeline is in the shut-in condition (null flow rate or, equivalently, in static condition), the pressure Mp is the 

absolute and uniform pressure inside the pipeline. On the other hand, if it is running (or operates under dynamic 
condition), then the mean pressure Mp  inside the pipeline can be estimated by the following expression (Mokhatab, 
2006): 
 

1 2
1 2

1 2

2
3M

p p
p p p

p p
⎛ ⎞

= + −⎜ ⎟+⎝ ⎠
           (9) 

 
in which 1p  e 2p  represent the absolute pressures at the inlet and at the outlet of the pipeline segment, respectively. 

By knowing the pipeline geometrical dimensions, the inlet pressure and also the mass flow rate Q, then the outlet 
pressure can be estimated based on the Weymouth formulae (Mokhatab et al., 2006): 
 

8 / 3 0.512 2
1 20.51453 DQ p p

L
⎡ ⎤= −⎣ ⎦             (10) 

 
in which Q is given in Nm3, D stands for the inside diameter (in inches), L is the pipeline length expressed in km and 

1p  and 2p  are the pressures in kgf/cm2. 
By admitting that Q, D, L and 1p are taken as input data for the pipeline, then Eq. (10) can be used to estimate 2p . It 

is worthwhile noting that one must have 2 1p p≤ . If 2 1p p<  then, the pipeline segment operates dynamically. If, on the 
other hand, 2 1p p=  is in shut-in condition. With 1p  and 2p we compute via Eq. (9) the pressure Mp  and, in the 

sequence, ( )ˆ ,M M refZ Z p T=  through Eq. (6). Finally, with Mp  and MZ  we compute the initial quantity of gas in the 

pipeline segment ( )ˆ , ,M M refV V Z p T=  by using Eq. (8). 
The minimum and maximum quantities of gas that can be stored in the pipeline segment can be estimated based 

upon the minimum minp and maximum maxp operational pressures. These data are also assumed to be input data for each 

pipeline segment. The minimum gas quantity in the pipeline is ( )ˆ , ,min
min M min refV V Z p p T= =  in 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

which ( )ˆ ,min min refZ Z p T= . Analogously, the maximum quantity of gas in the pipeline segment is 

( )ˆ , ,max
max M max refV V Z p p T= =  in which ( )ˆ , .max max refZ Z p T=  

 
3.4. Mathematical formulation 
 

The fundamental background required by the proposed model to describe gas transmission networks have been 
presented in the past sections. However, the use of the mass conservation principle itself is not sufficient to describe the 
gas motion throughout the network. From the mechanical viewpoint, it would be necessary to consider additionally the 
momentum conservation principle for each component. However, the use of this principle not only requires the 
knowledge of a large amount of operational data, in general not easily available, but also is itself not sufficient to fully 
describe the operandi modus of such networks.  To overcome such difficulty, we proposed an alternative and simple 
way to describe the network operation, without appealing to the momentum conservation principle. As we shall see 
next, the motion of gas throughout the network is emulated by maximizing a linear functional suitably postulated, 
subjected to the restrictions imposed by the mass conservation principle Eq.(1-2), by the compatibility equations Eq.(3), 
by the effective capacities given by Eq.(4) and also the initial conditions expressed by Eq.(5). 

Formally, by considering that nVmax ( ) , n
jSmax ( ) , n

iEmax ( ) are known quantities and that nCmax ( )  and nPmax ( )  are 

prescribed for each time instant, for 1,...,n N= , ( )1,..., ni I=  and ( )1,..., nj J=  (when pertinent), then the mathematical 
problem which describes the gas motion in the system in consideration consists to find ( )nV , ( )n

jS , ( )n
iE , nC ( )  and ( )nP  

for 1,...,n N= , ( )1,..., ni I=  and ( )1,..., nj J= (when pertinent), subjected to Eq.(1-5). 
By inspecting the system of equations formed by Eq. (1) and Eq. (3), along with Eq. (5), we can see that it is 

undetermined since there are more unknowns than equations. To allow that this initial value problem has a solution 
which consistently represents an actual operation of the gas network, it becomes necessary to impose additional 
condition(s). This is done by choosing a suitable linear functional of some variables of the problem, which has to be 
maximized. 

Thus, the mathematical problem can now be formally formulated as follows: 
 

Given nCmax ( )  e nPmax ( )  for all time instant t, find ( )nV , ( )n
jS , ( )n

iE , nC ( )  e ( )nP  for 1,...,n N= , 
( )1,..., ni I=  and ( )1,..., nj J=  (when pertinent) which satisfy Eqs. (1) to (5) and that maximize the linear 

function ( )n n n n n
j if V S E C P( ) ( ) ( ) ( ) ( ), , , , .  

 
Naturally, the choice of f is crucial in order to ensure uniqueness of solution (if it exists!) and, at the same time, to 

properly describe the actual operation of a gas network. To achieve these goals, we proposed based, on some the 
practical information available in (Nayyar, 2000), that the linear functional have the following form: 
 

( ) 2
1

:
N

n n n n n n n n n n n n
j i c p

n

f V S E C P p C p P V V
=

⎡ ⎤= + +Ω +⎣ ⎦∑( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,      (11) 

 
in which n

cp ( )  and n
pp ( )  are prescribed functions of the time, with image within the real interval [1,10], and represent 

the priorities associated with the variables nCmax ( )  and nPmax ( )  of the component n  of the consumption and 
production/processing classes, respectively. 

The variable nΩ( )  which appears in Eq. (11) is a  function of the time and is defined as: 
 

( )

1,  if there exists, at the current time instant, a discoontious component of the transport class connected 
    to the  component;
0, otherwise.

n n
⎧
⎪Ω = ⎨
⎪
⎩

   (12) 

 
The third term at the right-hand side of Eq. (11) is taken into account in the linear functional in order to emulate the 
loading and unloading of the discontinuous components of the transport class, such as train, truck and ship. In this term 
the variable nV ( ) stands for the quantity of gas in the tank of these components for the loading process or the quantity of 
gas in the tank of the component which receives the gas in the case of the unloading process. 

To assign the model a more realistic behavior, we decompose the variable which represents the quantity of gas nV ( )  
inside the pipeline into two distinct additive parcels, that is ( ) ( )

1 2
(n) n nV V V= + , with  ( ) ( )

10 0.2 n max nV V≤ ≤ .and 



( ) ( )
20 0.8 min n max nV V V< ≤ ≤ , being min nV ( )  and max nV ( ) the minimum and maximum capacities of storing gas inside the 

pipeline. To emulate the packing and unpacking effects in the pipeline the variable 2
nV ( ) is included in the linear 

functional given by Eq. (11). Besides the packing/unpacking behavior, this strategy implicitly imposes a mean 
operational pressure in steady-state around 80% of the maximum allowable operational pressure in the pipeline. 

Finally, it is possible to prove that if the totally implicit Euler method is employed to approximate the time 
derivative in Eq.(1), then the mathematical formulation presented in this section forms a typical problem of linear 
programming (Luenberger, 1973). To numerically solve this problem we use the well-known SIMPLEX method 
(Luenberger, 1973).  
 
4. NUMERICAL EXAMPLE 
 

To illustrate the capability of the proposed model in properly describe the gas transmission network a representative 
numerical example is shown in this section The example presented ahead aims to illustrating the following features: 

 
a) operational situations in which the effective production becomes inferior to its maximum capacity; 
b) gas shortage; a situation in which at least one component of the consumption class is forced to present an 

effective consume that is inferior to its demand; 
c) time variation of the gas stock in the network when the gas production supplants the gas demand or is less 

than to it; 
d) the packing/unpacking effect in the gas pipeline, highlighting its ability to operate as regulator element of 

the gas supply in the network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schematic representation of the gas network analyzed. 
 
The network simulated in this example has nine components and is illustrated in Figure 1. The gas from the well is 

transported to the unit of gas processing through a pipeline of short extension (Pipe1). From that point, the gas can flow 
through two different routes. It can be directed to a gas reservoir, by means of a short pipeline (Pipe 2), which aims to 
attending the demand in critical operational situations. Alternatively, it can be conveyed to the gas compression station 
which is responsible by the gas delivery to the city (the unique consumer in the network) through a pipeline 150 km 
long (Pipe 3). Since in this example there exists only one component of the production class and only one component of 
the consumption class there is no need to specify the priorities associated to them. 

The maximum production capacity of the well varies along the time and is specified in the input data as being of 
3000kNm3/day until the end of the 11th day. At the end of the 12th day, the maximum production is reduced to 25000 
kNm3/day, raised to 35000kNm3/day at the end of the 13th day and, finally, elevated to 40000 kNm3/day at the end of 
the 14th and then kept constant from that day on. 

The gas demanded by the city is also an increasing function of time, being of the order of 15000 kNm3/day in the 1st 
day, 20000 kNm3/day at the end of the 2nd day, 30000 kNm3/day at the end of the 3rd day and, finally, 35000 kNm3/day 
at the end of the 4th day. From that day on, the gas demand remains constant. The complete specification of input data 
associated with these and other components are presented in the Appendix. 

Figure 2 shows the gas demand curve of the city as a function of the time as described in the preceding paragraph 
for a twenty-day period of simulation. Also represented in this figure are the effective gas consumption and gas 
production of the city and of the well, respectively. Although the city consumption is of only 15000 kNm3/day in the 
first day, the well production totalizes 30000 kNm3/day, resulting an excess of 15000 kNm3/day. This amount of gas is 
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stored in distinct regions of the network. More specifically, it is retained in the gas reservoir, inside pipe 3 and in a 
small capacity reservoir that exists in the city (see Figure 4). 
 

 

Figure 2. Gas consumption, gas demand and gas production as a function of time. 
 

At the end of 0.7 days approximately, there is no more room in these components to store the gas, forcing the gas 
well production to decrease form 30000 kNm3/day to 15000 kNm3/day – the same amount demanded by the city – as it 
can be observed in Figure 2. From this time instant to the end of the 3rd day, the progressive increase in the city demand 
is followed by an effective increase of the well production until it reaches 30000 kNm3/day – the maximum production 
capacity specified in the input data. From this time instant to the end of the 9th day approximately, although the gas 
demand in the city is greater than the maximum production capacity, there is no gas shortage in the city since the gas 
initially stored in the components of the network is enough to attend the deficit of 5000 kNm3/day. When the gas stock 
in the network is run off, being the gas demand (of 35000 kNm3/day) greater than the maximum production capacity, it 
is observed a gas shortage in the city from the 9th day until the end of the 13th day.  This period is identified in the graph 
by the elapsed time in which the gas consumption becomes inferior to the gas demand, as it can be seen in Figure 2 and 
highlighted in Figure 3. 

 
 

Figure 3. Gas consumption and gas demand as a function of time. 



 
 

Figure 4. Gas stock as a function of time. 
 
Due to the increase in the gas production as defined in the input data, from the 13th day to approximately to the end 

of the 19th day, the maximum production capacity supplants the gas demand in the city. Once again, the excess of the 
gas production is stored in the city, in the gas reservoir and in pipe 3, as illustrated in Figure 4. Ceased the time 
variation imposed in the gas production in the well and in the demand in the city, the system reaches its steady-state 
regime at the end of the 19th day, being the demand of 35000 kNm3/day less than the maximum gas production capacity 
of 40000 kNm3/day. 

Finally, it is presented in Figure 4 the temporal evolution of the gas stock in the components of the network. These 
curves are characterized by periods in which the gas stock is raised until it reaches its maximum capacity, reduced to its 
minimum capacity and, finally, kept constant in their limit levels in situations the gas becomes equal to or less than to 
the maximum production capacity. It should be noticed in particular in Figure 4 the packing/unpacking phenomenon of 
gas inside the pipeline 3, which is in fact present in actual installations. It is also worth mentioning that in the context of 
the proposed modeling the unique effect of the presence of the gas compression station is the one associated with the 
self consume, when it exists. This explains the reasons for not including the gas compression stations at the entrance of 
pipe 1 and pipe 2. 
 
6. CONCLUDING REMARKS 
 

It has been presented in this paper a mathematical modeling to describe gas transmission networks involving the 
whole chain gas, ranging from the gas production wells to the consumer markets. Although pipelines are the most 
common way of transporting gas through a network, the proposed model is also capable to deal with discontinuous 
means of carrying gas, such as ships, trains and trucks. 

Mass quantities and mass flow rates are taken as being the dependent variables only. The time instant is the unique 
independent variable. Instead of considering the momentum conservation principle, a linear programming approach is 
employed to emulating the gas motion through the network. To achieve this goal, a constrained maximization of a 
suitable linear functional is taking into account. The mass conservation principle, along with compatibility conditions 
and some physical limitations of the components, form the set of restrictions in terms linear equalities and inequalities.  
This alternative approach simplifies considerable the numerical solution of the problem, rendering a simple, robust and 
quite general model. 

The versatility and capability of the model in emulating several actual features in the gas transmission networks are 
illustrated in a very elucidative and interesting numerical example. 
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9. APPENDIX 
 

Table 1. Gas well parameters and conditions. 
 

Gas well 
Pmax  40000 kNm3/day 

( 11 day) P t =  30000 kNm3/day 
( 12 day) P t =  25000 kNm3/day 
( 13 day) P t =  35000 kNm3/day 
( 14 day) P t =  40000 kNm3/day 

 
 

Table 2. Natural gas processing plant parameters and conditions. 
 

Natural gas processing plant 
Pmax  50000 kNm3/day 

Cmax  0 kNm3 

Vmax
 0 kNm3 

jSmax  20000 kNm3/day 

 
 

Table 3. Reservoir gas parameters and conditions. 
 

Reservoir gas 
Vmax  10000 kNm3 

jSmax  20000 kNm3/day 

( 0 day) V t =  90% of Vmax  
 
 

Table 4. City parameters and conditions. 
 

City 
Vmax  150 kNm3 

( 0 day) V t =  100% of Vmax  
( 1 day) C t =  15000 kNm3/day 
( 2 day) C t =  20000 kNm3/day 
( 3 day) C t =  30000 kNm3/day 
( 4 day) C t =  35000 kNm3/day 

 
 
 
 
 
 
 



 
Table 5. Compression station parameters and conditions. 

 
Compression station 
Cmax  0 kNm3 

jSmax  20000 kNm3/day 

 
 

Table 6. Pipeline 1 and 2 parameters and conditions. 
 

Pipeline 1 and 2 
L  1 km 
D  32” 

1p  80 kgf/cm2 
Q 20000 kNm3/day 
minp  15 kgf/cm2 

maxp  150 kgf/cm2 

Smax  40000 kNm3/day 
 
 

Table 7. Pipeline 3 parameters and conditions. 
 

Pipeline 3 
L  150 km 
D  32” 

1p  80 kgf/cm2 
Q 20000 kNm3/day 
minp  15 kgf/cm2 

maxp  150 kgf/cm2 

Smax  50000 kNm3/day 
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