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Abstract. Hydraulic actuators are used in many applications because its ability in driving large forces with low inertia
and little vibration for a long period of time. However, the main problem in controlling this kind of systems concerns its
dynamics, which presents several nonlinearities and parameters variations. Thus, to control hydraulic systems, appropri-
ated nonlinear models and complex control techniques to achieve a stable force regulation with a specified performance
are necessary. The purpose of this work is the application of a feedback linearization scheme in the design of a force
controller for a hydraulic actuator used in a fatigue test machine. The main control objective considered regards the
achievement of sinusoidal force reference tracking. With this aim the internal model principle is applied by using a dy-
namic compensator (containing imaginary poles with the same frequency of the force reference) in an outer regulation
loop. A state feedback control law, considering both the states of the feedback linearized hydraulic system and the ones of
the dynamic compensator, is therefore designed in order to stabilize the whole closed-loop system. Experimental model
identification and simulation control results are presented and discussed.
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1. INTRODUCTION

Mechanical systems are widely used in industrial automation for different applications with the objective to increment
productivity. After the second war hydraulic actuators were used in a wide variety of industrial application because of
its ability in driving large forces at high speed, low inertia, little vibration and presents the advantage of working for
long periods of time. Unfortunately, the dynamic behavior of these systems are highly nonlinear and its characteristics
may change during the performed task, which difficult the control design. The nonlinearities of the system arise from
the compressibility of the hydraulic fluid, nonlinear flow/pressure characteristics of the servovalve and friction in the
hydraulic cylinder.

The traditional and widely used approach to the control of a hydraulic system is based on the local linearization of
the nonlinear model about a nominal operating point (see, for instance (Merritt, 1967) and (Furst, 2001)) which provides
only local stability. Also, uncertainties of the hydraulic model increase according to the operational point move away
from the nominal point (Cunha, 1997). In order to achieve both stability and reference tracking, several force control
approaches have been developed such as the cascade control proposed in (Cunha, 1997) and (Perondi, 2002), using
feedback linearization and Liapunov functions. Also Canudas et al.(1997) proposed the use of friction compensation
while (Chiriboga et al.1995) propose input-output feedback linearization control. In Niemela and Virvalo (1994) it is
proposed fuzzy logic control.

In this work, the main control objective regards the achievement of sinusoidal force reference tracking. With this
aim the internal model principle is applied by using a dynamic compensator (containing imaginary poles with the same
frequency of the force reference) in an outer regulation loop. A state feedback control law, considering both the states
of the feedback linearized hydraulic system and the ones of the dynamic compensator, is therefore designed in order to
stabilize the whole closed-loop system. Experimental model identification and simulation control results are presented
and discussed.

2. SYSTEM DESCRIPTION

A hydraulic system is a set of physical elements conveniently associated that, using a fluid as way of energy transfer-
ence, allows the transmission and control of forces and movements (Linsingen,2001).

The schematic diagram of a typical hydraulic system is sketched in Fig. 1. It consists of a proportional servovalve
and a hydraulic cylinder (actuator) coupled to a load. The load may be modeled by a damping coefficient Be, a spring
constant Ke and a mass Me. The actuator is the element that applies force to the load; it is modeled by a mass Mc and a
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damping coefficient Bc . The actuator is responsible for the execution of work in association with the linear or oscillating
movement. The servovalve with the actuator transforms the hydraulic energy into mechanic energy. The Ps pressure is
considered constant (supplied by a hydraulic pump), Pr is the pressure of the pump reservatory and it is also supposed
constant. The servovalve controls the flow qC1 and qC2of the hydraulic fluid which are proportional to the displacement
x of the spool and, at the same time, proportional to the electric signal u. F is a force applied by the hydraulic actuator.
Fe is the applied force on the load.

Figure 1. Schematic view of a hydraulic system that interacts with a mechanical load

2.1 Fatigue test machine description

In many laboratories of metallurgy hydraulic fatigue test machines, with electronic control, are used for process
developments, educational works and researches. The objective of a fatigue test machine is to submit a test body to
dynamical load efforts. The actuator of these machines applies accurate dynamical forces on the test bodies in each
experiment. It should be notice that the system parameters depend on the physical characteristics of the test body (e.g.
form, size, material,etc.). In Fig. 2 it can be seen a photo of a fatigue test machine and its main parts.

Figure 2. Fatigue test machine and its main components

The displacement sensor can not be seen in Fig. 2 because it is inside of the hydraulic actuator.
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The fatigue test machine has a steel structure where it is allocated the hydraulic actuator that is coupled to a test
body, which is fixed in the steel structure. This structure must support the dynamic efforts applied to the test body by the
hydraulic actuator. The test body is fixed between the structure and the extremity of the actuator.

To locate the piston rod end of the hydraulic actuator close to the test body it is used a LVDT displacement sensor that
is located inside the hydraulic cylinder.

Aiming at measuring the force F applied by the hydraulic actuator it was used pressure sensors placed in the chambers
C1 and C2 of the cylinder.

To implement a force control on a hydraulic system it is necessary to know the displacement of the hydraulic actuator
and the force applied on the test body, or the difference of pressure between the chambers of the cylinder. This information
is obtained from signals provided by the respective sensors placed in the fatigue test machine. The controller is basically
a processor that uses a control algorithm to calculate the value of the electric signal u in function of the signal values
proceeding from the fatigue test machine sensors.

3. SYSTEM ANALYSIS AND MODELING

The system dynamics can be studied by describing mathematically the given hydraulic system of Fig. 1. To model
this hydraulic system it is used a double acting cylinder coupled to a load and a bidirectional flapper-nozzle servovalve
of two stages and 4 ways. In this type of servovalves, the hydraulic flow is proportional to the spool position and the
displacement of the spool is proportional to the input command u.

For simplicity of the model it is considered that the servovalve and the cylinder presents symmetrical construction
without constructive imperfections, that is, the servovalve has a zero lapped center and there is not leakages in the valve
nor in the cylinder. Thus, qC1 = qC2 = qC , where qC is the load flow.

The spool displacement x is caused by a solenoid which receives an electrical input signal u from the controller.
The relation between x and u could be modeled by a first-order transfer function described in Cunha (2000), but since
the maximum close-loop bandwidth of the hydraulic cylinder is less than 1Hz, it is assumed that the spool position x is
proportional to the input control u approached by a constant kd. Note that in such case, the dynamic of the servovalve is
fast enough to be neglected, as assumed by Perondi (2002).

Moving the spool to the left (x > 0) would cause a communication between the line of pressure Ps and the chamber
C1 of the cylinder, resulting in a fluid flow qC1. For the same situation (x > 0), it will also have a communication between
the line Pr and the chamber C2 creating a fluid flow qC2 of the same value that qC1. As Ps > Pr, the pressure P1 of the
chamber C1 will be greater than the pressure P2 of the chamber C2, thus, the actuator will be displaced X in decorrence
of a force F equal to the difference of pressure ∆P multiplied by the area A of the piston.

∆P = P2 − P1 (1)

Some of the reasons that cause the resultant model of a hydraulic system be represented by nonlinear equation are due
to the laminar and turbulent fluids, geometry of the pipes and friction. Parameters of hydraulic systems depend on the
relationship between speed and pressure of the fluid as well as the viscosity of the oil that varies considerably with the
temperature, (Lischinsky et al., 1999).

The mathematical model used to analyze the hydraulic system is obtained from Bernoulli’s law, continuity law and
the second law of Newton, as described in Negri (2001). Thus, the mathematical formulation that represents the system
is shown in the equations (2) (3) e (4) bellow.

∆Ṗ =
βv(

v
2

)2 − (AX)2

[
Kdu

√
(Ps − sign(u)∆P )−AẊ

]
(2)

F = ∆PA = (M + Me)Ẍ + (Bc + Be)Ẋ + KeX (3)

Fe = y = MeẌ + BeẊ + KeX (4)

where v is the volume of the hydraulic cylinder [m3], β is fluid bulk modulus [Pa], Bc is the constant damping of the
actuator [Nm−1s], Be is the constant damping of the test body [Nm−1s], Ke is the elastic constant of the test body
[Nm−1] and Fe is the applied force [N ] on the test body that is equivalent to the system output y.

Generally, force controllers use pressure sensors to control hydraulic actuator. For special applications that require
enough accuracy in the force control it will be necessary to consider inertia forces and friction forces. It should be noticed
that the force F is not the actual force applied on the test body due to friction force effects that appear because of the
contact of the piston ring with the interior of the cylinder, (Perondi, 2002).
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3.1 System representation in state variables

To develop a state-space representation, it is selected the following state-vector z = [XẊ∆P ] and the output y = Fe.
Then, the system equation (2), (3) and (4) can be re-written as follows:

ż1 = z2 (5)

ż2 = − Ke

(M + Me)
z1 −

(Be + Bc)
M + Me

z2 +
A

(M + Me)
z3 (6)

ż3 =
βv(

v
2

)2 − (Az1)2

[
Kdu

√
(Ps − sign(u)z3)−Az2

]
(7)

y =
KeM

M + Me
z1 +

BeM + BcMe

M + Me
z2 +

AMe

M + Me
(8)

4. FEEDBACK LINEARIZATION

The traditional approach to model a hydraulic system is based on local linearization about a nominal operating point
of equation (7) (Cunha, 1997) as it is shown in the follow equation:

ż3 =
4β

v
(KQu−KCz3 −Az2) (9)

where KQ = Kd

√
Ps is called the flow-gain [m3(V s)−1] and KC = Kd

√
Ps

2Ps
|u| is called the flow-pressure coefficient

[m5(Ns)−1]. This parameters are estimates for a nominal operating point which is generally considered as the origin.
The nonlinearities and parameters variations due to deviations from the nominal operating condition are then considered
as plant uncertainties. Applying Laplace transform at equations (5), (6) and (9) allows the calculation of the transfer
function of the linearized system as follows.

H(s) =
Fe(s)
U(s)

=
4βKQ

v

[
AMe

(M+Me)s
2 + 2AMKe

(M+Me)2

]
s3 +

[
4βKc

v + (Bc+Be)
(M+Me)

]
s2 +

[
4βKc

v
(Bc+Be)
(M+Me) + 4βKcA2

v + Ke
(M+Me)

]
s + 4βKcKe

v(M+Me)

(10)

where Fe(s) is £ {Fe(t)}, U(s) is £ {u(t)} and £ is the Laplace operator. The linearized system around a point can be
represented in Fig. 3.

Figure 3. Linearized system around an equilibrium point.

where the output y is the force applied on the test body (Fe) and u is the input of the servovalve.

Feedback linearization is an approach to nonlinear control design. The central idea of this approach is to algebraically
transform a nonlinear system into a linear one, (Slotine, 1991). So that, a linear control technique can be applied to the
resulting linear model. Feedback linearization differs completely from other traditional local linearization techniques,
because it linearize the system for all operating points.

Feedback linearization techniques can be viewed as a way of transforming original system models into equivalents
models of a simpler form, canceling the nonlinearities of the original model to linearize it, (Then et al., 1995). Figure 4
presents a block diagram of the feedback linearization technique applied to a nonlinear system. There are two important
loops in this scheme, one to perform the plant linearization and another one to control it.

In Fig. 4, G(s) is the transfer function of the linearized system using feedback linearization, and F (s) is the close-loop
transfer function of G(s). For unit feedback F (s) = G(s)

1+G(s) .
For the cancellation of the plant model nonlinearities it is always recommendable to use its companion form represen-

tation. A system is represented in the companion form if:

z(n) = f(z) + b(z)u (11)

where z(n) is nth derivative of the state z.
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Figure 4. Schematic block diagram for Feedback Linearization.

For the hydraulic system previously modeled there is only one equation (2) thats presents nonlinearities and, at the
same time, relates the derivate of one of the states (ż3) with the input u. This equation can be represented in the following
form:

ż3 = f(z) + b(z)u (12)

To cancel the nonlinearity it is proposed the following control law:

u =
1

b(z)

[
h(z) − f(z)

]
(13)

where h(z) is a polynomial that depends on the states of the plant and that defines the dynamic of the system. The input u
will always be valid for b(z) different of zero. To apply feedback linearization in the nonlinear hydraulic model, f(z) and
b(z) will be defined as follows:

f(z) = − βvAz2(
v
2

)2 − (Az1)2
(14)

b(z) =
βvKd

√
Ps − sign(u)z3(

v
2

)2 − (Az1)2
(15)

Finally, the input u of the system will be computed from the following equation:

u(z) =

(
v
2

)2 − (Az1)2

βKdv
√

PS − sign(u)z3

[
h(z) +

βvKdAz2(
v
2

)2 − (Az1)2

]
(16)

It is important to remark that it will not be possible to calculate u when z1 = v
2A nor when ∆P = Ps, due to

indetermination of the equation (15). Thus, it will not be possible to control hydraulic actuator for the maximum force
nor for maximum displacement.

The resultant equation of feedback linearization is:

ż3 = h(z) (17)

where the resultant dynamic of the linearized system will be defined by the polynomial h(z):

h(z) = −k1z1 − k2z2 − k3z3 + ū (18)

where ki i = 1, ..3 are chosen so that the pole location of h(z) is in the left half-plane in order to get an exponentially
steady-state dynamic and ū is the new input of the system.

Thus, the obtained linear system is given by: ż1

ż2

ż3

 =

 0 1 0
− Ke

(M+Me) − (Bc+Be)
(M+Me) − A

(M+Me)

−k1 −k2 −k3

 z1

z2

z3

 +

 0
0
1

 ū (19)

y =
[

KeM
(M+Me)

BeM−BcMe

(M+Me)
AMe

(M+Me)

]  z1

z2

z3

 (20)
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5. REFERENCE TRACKING AND DISTURBANCE REJECTION

With the aim to improve reference tracking and disturbance rejection it is proposed the block diagram of Fig. 5,
where it can be observed the iteration between a dynamic compensator and the linearized system G(s). The dynamic
compensator projected is based on the internal model principle (Chen, 1999). Now, the linear model studied is the
following one:

ż = Az + Bu + Bqq
y = Cz + Eu + Eqq

(21)

where q is the disturbance due to noise in the measured signals.
Let as introduce the following dynamic compensator for tracking and/or disturbance rejection:

żd = Adzd + Bde
yd = zd

(22)

where the matrix Ad and Bd depends on the type of reference signal and disturbance signal, and can be calculated as
shown in Chen (1999), considering (22) the following augmented system that models the scheme of Fig. 5, is obtained:[

ż
żd

]
=

[
A 0

−BdC Ad

] [
z
zd

]
+

[
B

BdE

]
u +

[
0

Bd

]
r +

[
Bq

−BdEq

]
q (23)

u =
[

K Kd

] [
z
zd

]
(24)

Figure 5. Block diagram of the increased system for reference tracking and disturbance rejection

As mentioned before, to calculate matrix Ad and Bd it is necessary the knowledge of the type of reference signal
and disturbance signal. In this work, reference signals are considered sinusoidal and, in the same form, are considered
disturbance signals. Thus, it is important to know the frequency of the reference signal (ωr) and the frequency of the
disturbance signal (ωo). Gains K and Kd are then computed in order to ensure the close-loop stability as well as reference
improvement of the resultant closed-loop system represented by the transfer function T (s) = r(s)/y(s).

Another point of view of the effects introduced by the dynamic compensator is that for the obtained T (s) one gets
|T (jωr)| = 1. Note that if we consider just a simple unit feedback, without (22), as in Fig. 4, one probably obtain
|F (jωr)| 6= 1 and 6 F (jωr) 6= 0. Then the perfect tracking is not achieved.

6. FORCE CONTROLER DESIGN

6.1 Parameter estimation for the hydraulic system

The following parameters were measured:

Table 1. Parameters of the hydraulic system measured

Me 825[Kg] M 768.32[Kg]
β 6 · 108[Pa] Ps 2.06x107[Pa]
v 0.0321[m3] Be 0[Nsm−1]
A 0.1279[m2]

The value used for β was recommended in Merritt (1967). Many experiments were devised to identify other parameters
of the model, such Ke and Bc. Ke depends on the test body. It was obtained from a static traction experiment made on
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the test body measuring force F and position X . Plotting F versus X results an approximated straight line whose slope is
the elastic constant Ke. For the hydraulic system study with an specific test body, we obtained Ke = 163447400[Nm−1]

Friction has significant effects on controllert’s performance, (Perondi, 2002), (Cunha, 1997). One standard experi-
mental method is to model friction as a function of velocity, by measuring the friction force required to move the piston
without load at constant velocity and then develop a model such g(Ẋ). A simple open-loop constant control signal was
used to move the piston at constant velocity and register the data. Due to the low velocity of the hydraulic system, Bc was
calculated making a median of all the values registered for positive velocity and later it was calculated in the same way
for negative velocity, obtaining Bc = 14906[Nm−1s] for X < 0 and Bc = −6.6799× 103[Nm−1s] for X > 0.

Although equations used to model hydraulic systems are well known, there are no way to measure the parameters KC ,
KQ and Kd, because of dynamic variations along the time and because they depend on the structure and physic properties
of each load. In this section it is proposed the use of a statistical technique base on linear regression to estimate the values
of the non measurable parameters by data acquisition of several experiments of the physical system, (Montgomery, 1991).
In this physical system, the available data to be measured are x, ∆P and u. So, this variables were registered along
the time for different experiments. These experiments consists in introducing sine waves with different amplitudes and
frequencies in the input u of the fatigue test machine. It was used a steel piece as test body along the experiments. To
make the parameter estimation in an off-line data processing it is necessary the knowledge of all the states of the model
along the time, thus, F was calculated as A∆P and ẊeẌ were calculated based on x derivative. Then, linear regression
technique was used to estimate KC and KQ of the linear equation (9) and also to estimate Kd of the nonlinear equation
(7). Parameter estimation results were:

Table 2. Parameters of the hydraulic system estimated

KC KQ Kd
1.57 · 10−12[m4N−1s] 2.59 · 10−5[m3s−1v] −1 · 10−10[m3v−1Pa−0.5]

Once all the parameters were calculated and estimated, the system transfer function H(s) can be obtained from
equation (10) as follows:

H(s) =
6.967× 105s2 + 1.361× 1011

50.99s3 + 1067s2 + 9.33× 106s + 6.467× 104
(25)

This transfer function is used to obtain the poles of the open loop system, considering a linearization around the equi-
librium point (origin). These poles are given by:

λ1 = -0.01
λ2 = -10.46 + 427.63i
λ3 = -10.46 + 427.63i

This transfer function has a pair of zeros in the imaginary axis, a real pole near the origin and a pair of complex poles
located at the left half side of the complex plane and very far of the real axis, meaning low damping.

Once the pole location of the original open loop system is known, it is suggested to apply Laplace Transform at
equations (19) and (20) that allows the calculation of the transfer function G(s) of the linearized system obtained by the
application of the feedback linearization, as follows:

G(s) = C(sI −A)−1B (26)

G(s) =
AMe

(M+Me)s
2 +

[
ABe

(M+Me)

]
s + KeA

(M+Me)

s3 +
[

Bc+Be

(M+Me)

]
s2 +

[
k3(B+Be)+Ak2+Ke

(M+Me)

]
s + Ak1+k3Ke

(M+Me)

(27)

With the objective to increase the dynamic and the damping ratio of the close-loop system F (s), it is proposed to move
the poles far away from the imaginary axis and, at the same time, to approach it to the real axis maintaining the natural
frequency ωn.

6.2 Feedback linearization design

It was devised a script in MATLAB to calculate the coefficients ki depending of the pole placement desired for the
close-loop system. Using the SIMULINK/MATLAB to implement the block diagram of Fig. 6 it was simulated the
response of the hydraulic system with feedback linearization.
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Figure 6. Block diagram implemented to simulate feedback linearization applied to a nonlinear system

The performance of the system was analyzed for many sine wave force references, performing several simulation until
finding a pole placement that makes the system faster enough with a damping ratio bigger than its original. For each
simulation it was taken into account the input saturation because the system input is limited in ±10 Volts for the real
system.

The obtained pole position and coefficients ki for the close-loop linearized system are shown in Table 3.

Table 3. Pole position and coefficients ki calculated

λ1 −10 k1 6.7240 · 1012

λ2 −400− 50i k2 1.0625 · 109

λ3 −400 + 50i k3 830.8397

which corresponds to the following transfer function:

F(s) =
0, 06622s2 + 1, 312 · 104

s3 + 810s2 + 1, 705 · 105s + 6, 25 · 108
=

G(s)
1 + G(s)

(28)

6.3 System dynamic analysis

In Fig. 7 (B) it is observed the simulation response of the close loop linearized system F (s) for a sine wave force
reference with a maximum force Fmax = 2000[KN ] and a minimal force Fmin = 200[KN ] and with a frequency
(ω = 0.088[rads−1] ) without input saturation. The input signal u of this simulation is observed in Fig. 7 (A).

Figure 7. Simulation of the linearized system response for a sine wave reference

Note a little reference tracking erro.

6.4 Tracking and disturbance rejection

With the aim to test the dynamic compensator to improve the reference force tracking of a sinusoidal reference of
frequency ωr and disturbance rejection of frequency ω0 added to the pressure signal, it was simulated the linearized
increased system of equations (22) and (23) T (s) using the block diagram of Fig. 5. The matrix Ad , Bd and Eq of the
increased system were calculated in function of ωr and ω0. This procedure was based on the internal model principle.
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The hydraulic actuator tested on this work with feedback linearization can drive a nominal force of 2500[KN ] limited
by a frequency ωr = 0.088[rads−1]. In such conditions, the simulations of the linearized system does not presents error
tracking to sinusoidal force reference. Due to the natural behavior of hydraulic systems, to obtain sinusoidal responses of
higher frequency, the amplitude of the sinusoidal force reference may be decreased to the servovalve input not saturate,
this means that the applied force Fe must be decreased when the reference frequency ωr is increased. Thus, it was
simulated the linearized system without dynamic compensator for a sinusoidal reference with minimal force of 150[KN ]
and maximum force of 1500[KN ] to increase the reference frequency at ωr = 0.35[rads−1] , taking care that system
input does not saturate. Hence, Fig. 8 (A) shows the input of the system simulated (servovalve input) and Fig. 8 (B)
shows the reference force tracking of the simulated response which presents erro tracking. Then, the linearized system
G(s) was simulated using a dynamic compensator C(s) designed to track references with ωr = 0.35[rads−1] and reject a
sinusoidal disturbance of frequency ω0 = [370rads−1] (noise that usually are induce by electric line). The improvement
of the resultant system is observed in Fig. 8 (D) which presents null tracking erro for steady state. Figure 8 (C) shows the
system input obtained with the dynamic compensator. It can be seen that the input amplitude has increased, comparing
with Fig. 8 (A), because of the dynamic compensator improves reference tracking.

The gains Kc used to the feedback of the dynamic compensator were calculated to make the dynamic compensator
faster enough to reject disturbance signals up to ω0 = 370[rads−1] and to stabilized the close-loop system T (s). The
pole position of the dynamic compensator is shown as follows:

λc1 = −20
λc2 = −25
λc3 = −30
λc4 = −35
Other simulation was made for the same conditions but adding sinusoidal noise, injected in the signal pressure sensor

how is shown in Fig. 9 (C). The frequency of the disturbance was ω0 = 370[rads−1] with an amplitude of 1 per cent of
the reference amplitude obtaining reference tracking null observed in Fig 9 (B). Simulation of the system input, shown in
Fig. 9 (A) present longer amplitude and harmonics of frequencies ω0, thus, dynamic of the servovalve may be considered.
This simulation were made for another frequencies ω0 < 370[rads−1] obtaining reference null tracking erro. Thus, using
the dynamic compensator, the reference tracking and the disturbance rejection for disturbances of frequencies less than
ω0 are improved. In Fig. 9 (D) can be observed a zoom of the Fig. 9 (B).

Figure 8. simulation of reference tracking without dynamic compensator

Parameter uncertainties were also introduced in simulations, varying up to 50 per cent of the coefficients used in the
nonlinear model of the system. The system output responses were achieved reference tracking null for uncertainties in any
parameter, but for some parameters like A and Kd system input was considerable increased its amplitude to compensate
this uncertainties. Thus, parameters A and Kd may be carefully measure and estimated in order to not compromise the
performance of the controller.

After several simulations made with the dynamic compensator for different disturbance amplitudes it was observed
that the reference force tacking error of the close loop system does not change but the dynamic compensator increase the
system input amplitude to compensate the disturbances as shown in Fig. 9(A), compared with Fig. 8(C). Then, for larger
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Figure 9. simulation of the input system with dynamic compensator and disturbance in the pressure sensor signal

disturbances the system input may be saturated, which can difficult the control.

7. CONCLUSION AND PROPOSALS FOR FURTHER WORK

The propose of this work was the application of a feedback linearization scheme in the design of a force controller
for a hydraulic actuator used in a fatigue test machine. The main control objective considered regards the achievement of
sinusoidal force reference tracking. With this aim the internal model principle is applied by using a dynamic compensator
in an outer regulation loop.

Considering several simulation it was observed that the control law improves disturbance rejection of the hydraulic
system and perform reference force tracking for sinusoidal references. The dynamic compensator increases the amplitude
of the hydraulic system input for disturbance rejection, thus, in order to avoid input saturation in a fatigue test machine
it is recommended the selection of the frequency ωr in function of the reference amplitude. Parameter uncertainties
were also introduced in simulations observing good force tracking for closed-loop system but, system input amplitude
must be increased to compensate this uncertainties. It is important a good parameter estimation to avoid the performance
degradation of the controller.

For disturbance rejection, it was shown in simulations that the input system presented harmonics of frequencies around
ω0, thus, servovalve dynamic may be considered.

As future work it is proposed to implement this control law in the electronic controller of the hydraulic system to obtain
experimental results. Another proposal is the simulation of disturbance rejection considering the servovalve dynamics.
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