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Abstract. Dynamic vibration absorbers (DVAs) are mechanical devices used normally to attenuate the vibration level 
in different types of structures and machines. They were developed in the beginning of the last century and have been 
used in a number of applications in engineering, such as in ships, in power lines, in aeronautic structures, in civil 
engineering constructions subjected to seismic induced excitations, etc. In this work, a damped nonlinear dynamic 
vibration absorber will be studied. The nonlinear effect is introduced in the system by nonlinear springs. Then, the 
main propose is to verify the nonlinear effects, intended to increase the efficiency of the DVA into the frequency band 
of interest. The first part presents the equation of motion of the nonlinear DVA. Next, the response functions of the 
system are obtained and the optimal operation conditions of the nonlinear DVA are calculated by using a global 
heuristic optimization procedure (genetic algorithms). Finally, some numerical examples are presented to evaluate the 
performance of the optimal nonlinear DVA.  
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1. INTRODUCTION  

 
Dynamic vibrations absorbers (DVAs) have been used to attenuate vibrations in several types of structures and 

machines. They were first developed in the beginning of last century by Frahm (1911) and have been used extensively 
in many applications in the mechanical, civil and aeronautical engineering. Practical applications of these devices can 
be seen in ships, power lines, aircrafts and helicopters, buildings and towers, etc. A comprehensive study on the theory 
and practice of DVA's is given by Koronev & Reznikov (1993). More recently, Cunha Jr (1999) studied some complex 
configurations of DVAs such as those dedicated to multi-degree-of-freedom and distributed parameter systems. Rade & 
Steffen (1999) studied the optimization of DVA’s parameter over a frequency band using a substructure coupling 
technique. 

Pai & Schulz (1998) performed a theoretical study on how to use saturations phenomena to design nonlinear 
vibration absorbers and how to improve their stability and effective frequency bandwidth, leading to a refined nonlinear 
vibration absorber. Rice & McCraith (1987) used optimization techniques for designing a nonlinear DVA with an 
asymmetric nonlinear Duffing-type element incorporated for narrow-band absorption applications. 

Today, new engineering applications demand the structures to be lighter and more flexible. Besides, design 
constraints make the vibration control problem an important design issue.  

In this work a study regarding a damped nonlinear dynamic vibration absorber will be performed, for which the 
springs of the DVA have nonlinear characteristics. With this aim, the contribution of the nonlinearity to the 
improvement of the efficiency of vibration attenuation provided by the absorber will be analyzed.  

An optimization problem is solved by using genetic algorithms (GAs) (Goldberg, 1989) to determine the optimal 
DVA’s parameters such as the band of frequency for which the DVA is the most effective in absorbing vibrations. 

In the remainder, the equations of motion are first presented, followed by the definition of the performance indexes 
to be optimized. Then, numerical examples are shown to illustrate the main features of the proposed methodology.  

 
2. DYNAMIC MODEL  
 

Consider the vibratory system represented by the two degree-of-freedom model shown in Fig. 1. This device 
consists of a damped primary system attached to the ground by a suspension that includes either a linear or nonlinear 
spring and a damped secondary mass coupled to the primary system by a spring with nonlinear characteristics (Nissen 
et al.,1985), (Natsiavas, 1992).  

The oscillations are imposed to the primary system through a harmonic disturbance given by eq. (1). The coordinate 

1x  represents de displacement of the primary system with respect to the ground and the coordinate 2x  is the 
displacement of the DVA’s mass with respect to the primary system. 
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Figure 1. Two degree-of-freedom mechanical system (the primary system and the nonlinear DVA 

 
In the model above, the dampers are linear but the springs have nonlinear characteristics.  The constitutive forces of 

the springs are given by:  
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The displacements are normalized with respect to the length of vector cx , then: 
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The time is given by:  
 
     tωτ =                                                                                                                                                                     (4) 
 
Now, the following parameters will be introduced: 
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Using the second Newton’s law and after some algebraic manipulations, the following matrix equations of motion 

are obtained for the system: 
 

     fKyyCyM =++ &&&                                                                                                                                                        (6) 
 
where M, C and K are the mass, damping and stiffness matrices, respectively. 
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The displacement and force vectors are given by: 
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2.1. Steady-State Response of the System 
 

A number of perturbation methods are based on averaging. For this aim the unknown functions of the problem are 
now considered dependent variables, by making a shift of variables from the original dependent variable (Thonsem, 
2003). These methods encompass techniques such as the following: Krylov-Bogoliubov method, Krylov-Bogoliubov-
Mitropolsky method, the method of the generalized average (Nayfeh, 2000).  
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In the present work, the Krylov-Bogoliubov method will be used to integrate the equation of motion, namely Eq. (6). 

This method leads to an approximate solution of nonlinear differential equations. The procedure can be described as 
follows: 

 
( ) ( ) ( ) τττττ sencos vuy +=                                                                                                                                          (9) 

 
where the time dependence of ( )T1 2u u=u and ( )T1 2v v=v  is assumed to be small for high order terms, such as the 
vectors u and v.  

When the transformation of variables is made, an additional and independent equation, Eq. (9), will be necessary to 
guarantee that the transformation is unique. For this additional equation the velocity is similar to that of the linear case 
and is written as: 

 
  ( ) ( ) ( ) τττττ cossen vuy +−=&                                                                                                                                    (10) 
 
The transformation of variables given by Eq. (9) and Eq. (10) is known as the Van der Pol Transformation 

(Thomsem, 2003) and (Hagedorn, 1977). The differentiation of Eq. (9) was performed with respect toτ . 
 
     ( ) ( ) ( ) ( ) ( ) τττττττττ cossensencos vvuu ++−−= &&&y                                                                                               (11) 
 
Substituting Eq. (10) into Eq. (11) results: 
 
     ( ) ( ) 0sencos =+ ττττ vu &&                                                                                                                                         (12) 
 
By differentiating Eq. (10) with respect toτ gives: 
 
     ( ) ( ) ( ) ( ) ( ) τττττττττ sencoscossen vvuu ++−−= &&&&y                                                                                               (13) 
 
Substituting equations (9), (11) and (12) into the equation of motion, Eq. (6), the following equation is obtained:  
 
     ( ) ( ) τ)v,f(u,KvCuMvuMKuCvMuvM =++−−++− ττ sencos &&                                                                  (14) 

 
Next, Eq. (12) is multiplied by ( )cos τM  and Eq. (14) is multiplied by ( )sen− τM . Then, these equations must be 

added up. The resulting equation is then integrated over the period (0 to 2π). It is worth mentioning that u and v are 
taken as constants in this period (it represents a very short time interval) (Natsiavas, 1992). After some algebraic 
manipulations one obtains: 
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Similarly, equations (12) and (14) must be multiplied by ( )senτM  and ( )cos τM , respectively, and then integrated 

over the period (0 to 2π). Then:  
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Equations (15) and (16) represent a first order ordinary differential equation system with four variables. The 

solution originated from the averaging method corresponds to motions of period 2π for the original system given by Eq. 
(6). In the case of steady-state periodic vibrations, the following condition can be used: 
  
     0vu == &&                                                                                                                                                                      (17) 
 

By substituting Eq. (17) into equations (15) and (16), a nonlinear algebraic system with four equations and four 
variables 2121 ,,, vvuu  is obtained: 
 



     

( ) ( )

( ) ( )

( ) ( )

( ) ( )
0

4
3

2

0
4

3
21

0
4

3
2

0
4

3
21

2
2
2

2
22

2
2

22
22

1

1
2
1

2
11

11121
2

2
2
2

2
22

2
2

22
22

1

2
1

1
2
1

2
11

11121
2

11

1

11

1

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−−−+−

=
+

+−−−−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
+−−+

=+
+

−−+−+

vvu
uvv

vvu
uvv

uvu
vuu

uvu
vuu

ε
ρωζµµωµρµ

ε
ωζµµω

ε
ρωζµωµρµµ

βω
ε

ωζµωµ

                                                                             (18) 

 
2.2 Simulation Results 
 
     The system represented by Eq. (18) is numerically solved by using the function “fsolve” from MATLAB® toolbox 
(Coleman, 1996). Then, the values of 2121 ,,, vvuu  can be calculated and the vibration amplitude of the primary and 
secondary masses of the nonlinear DVA obtained. The amplitude values are given by r1 and r2 in Eq. (19), respectively: 
 

     .2,1,22 =+= ivur iii                                                                                                                                               (19) 
 
With the intention of graphically observing and analyzing the results previously obtained some case-studies involving 
different situations of interest will be studied, particularly with respect to parameters that introduce some type of 
nonlinearity to the system. 
 
2.2.1. Nonlinear DVA 
 
Initially, for illustrating the effect of the non-linear coefficient associated to the stiffness of the absorber, the frequency 
response of the system for different values of the nonlinear coefficient ( )21 andεε  is shown in Fig. 2. 
 

 
 

Figure 2 – Effect of 1ε and 2ε  on the system response (other parameters .1;05.0;01.0;1.0 21 ===== ρµζζβ ) 
 
In the following cases, the primary mass and the absorber mass are assembled through hardening springs. In Fig. 3, the 
steady-state frequency response diagram of the main mass amplitude versus the normalized frequencyΩ is shown. It is 
considered in this case that the spring that connects the main mass to the absorber mass (k2) has non-linear 
characteristics. For comparison purposes, Fig. 3 presents the case for which spring (k1) exhibits linear behavior. The 
absorber was then assembled in conjunction with a spring with non-linear characteristics ( )02 ≠ε and the other 
parameters are given by 1;05.0;01.0;1.0;01.0;0 2121 ======= ρµζζβεε . In the same figure, the case for 
which both springs have linear characteristics (classical linear two degree-of-freedom system, 021 == εε ) is also 
presented (the same system parameters of the non-linear case were used). It can be observed that the nonlinear absorber 
case leads to a significant change in the response for 1>Ω .  
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Figure 3: Response diagram of the main mass displacement for 
.1;05.0;01.0;1.0;01.0;0 2121 ======= ρµζζβεε  

 
Figure 4 shows the response diagram of the main mass displacement using the same parameters as those of the previous 
case. However, different values for 2ε , namely 01.02 =ε , 01.02 =ε  and 02.02 =ε  were considered. 
 

 
 

Figure 4. Response diagram of the main mass displacement for various values of 2ε  and 
.1;05.0;01.0;1.0 21 ===== ρµζζβ . 

 
It can be noticed that by increasing the value of 2ε , the advantages in using a nonlinear DVA also increases because the 
amplitude response in the region that corresponds to Ω>1 decreases significantly. However, if the nonlinearities 
increase to critical levels unstable responses may occur. For example, in the case where ε2 = 0.02, a new instable 
solution appears in the resonance area (near Ω=1). In many cases, the instabilities can be avoided without losing the 
advantages gained by the presence of non-linearities. In order to achieve this, the system parameters have to be 
changed. Optimization techniques should be used to obtain the best possible results. Next, the case for which the 
absorber is assembled with springs of the softening type will be addressed. In Fig. 5 the same parameters used to obtain 
the results shown in Fig.3 were used, except for ε2 = -0.01. 
 



 
 

Figure 5 – Response diagram of the main mass displacement for 
.1;05.0;01.0;01.0;1.0;01.0;0 2121 =====−== ρµζζβεε  

 
It can be noticed, by analyzing the case presented above as compared to the linear absorber, that the non-linear case 
becomes more efficient (from the vibration absorbing view point) for frequencies that correspond to Ω<1. 
 
2.2.2. DVA mass assembled using a linear spring  
 
Now, the case where only the main mass is connected to the ground through a nonlinear spring, i.e. ε2=0, is addressed. 
Figure 6(a) illustrates the frequency response diagram for ε1 = 0.01. Figure 6(b) shows the same diagram for ε1= -0.01. 
                 

                  
 

Figure 6: Frequency response diagram of the main mass displacement: 
.1;05.0;01.0;01.0;1.0;0 212 ====== ρµζζβε . 

 
For both cases shown by fig. 6(a) and (b) it is possible to see that the effect of the nonlinear spring is not relevant, i.e., 
no vibration reduction is achieved. This is due to the small vibration amplitude that the main mass is submitted with 
respect to the absorber amplitude leading to a small deformation of the non-linear spring. As a consequence, the 
difference between the response of the linear and nonlinear systems in the neighborhood of Ω=1 is small. This 
conclusion remains true for different values of the force parameter β.  
 
2.2.3. DVA mounted on springs with non-linear characteristics 
 
First of all, in Fig. 7 (a), it is admitted that both the main mass and the absorber mass are mounted on a “hard spring” 
type of suspension. The non-linearity coefficients for both springs are equal to 0.01 ( 01.021 == εε ). The other 
parameters are the same as those given in Fig.5 previously presented. In Fig. 7 (b) a “soft spring” replaced the hard 
spring that connects the absorber mass to the primary mass and it was observed that better results are obtained for Ω<1. 
 

(a) (b) 
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Figure 7 – (a) Response diagram of the main mass displacement for 
.1;05.0;01.0;01.0;1.0;01.0;01.0 2121 ======= ρµζζβεε (b) Response diagram of the main mass 

displacement for .1;05.0;01.0;01.0;1.0;01.0;01.0 2121 =====−== ρµζζβεε  
 

 In Fig. 7(a), by comparing with the linear case, it is seen that the results obtained for Ω>1 are very satisfactory 
since the amplitude values decrease significantly. The response shown in Fig. 7(b) was obtained for the non-linear 
coefficients 01.01 =ε  and 01.02 −=ε . However, if the main mass is mounted on a “softening” type of a spring, the 
results obtained are similar to those obtained in the previous cases as illustrated in Fig. 8 for 01.01 −=ε  and 01.02 −=ε .  

 

 
 

Figure 8 – Response diagram of the main mass displacement for 
.1;05.0;01.0;01.0;1.0;01.0;01.0 2121 =====−=−= ρµζζβεε  

 
Figure 8, provides a good example regarding a difficulty situation that appears when using a DVA with non-linear 
characteristics. This is represented by the bending of the resonance branch (the second resonance peak) above the stable 
solution branch characterized by small amplitudes. This results in the coexistence of stable solutions with low and high 
amplitudes that depend on the initial conditions. The risk just mentioned does not occur in the system corresponding to 
the Fig. 3, from which it can be seen that the resonance peaks tilt outside of the interest area. If the non-linearities are 
increased, they can result in unwanted instabilities. 
 
2.2.4. Optimal design for the damped nonlinear DVA 
 
The optimal design for the damped nonlinear DVA is obtained by using Genetic Algorithms (Holland, 1975). The goal 
is to obtain a larger "suppression band”, namely, the frequency range over which the ratio of main mass displacement 
amplitude to the amplitude of the forcing function is less than unity (Hunt and Nissen 1982), (Rice, 1986) as depicted in 
Fig. 9. 

(a) (b) 



 
Figure 9. Suppression bandwidth characterization 

 
We can define the problem of nonlinear optimal design as the determination of the values of the design variables xi, 

(i=1,…,n) such that the objective function attains an extreme value while simultaneously all constraints are satisfied 
(Steffen and Inman, 2002). The problem above is formulated as 
 

( ) ( ) ( ){ } nRxxgxhxfMin ∈≤= ,0,0/                                                                                                                     (20) 
 
where Rn is n-dimensional set of real numbers,  x is the vector containing the n design variables,  f(x)  is objective 
function, g(x) is vector of p inequality constraints and h(x)  is the vector of q equality constraints.  The corresponding 
feasible domain is defined as 
 
     { }0)(,0)(/ ≤=∈= xgxhRxX n                                                                                                           (21) 
 

Side constraints were imposed for delimitation of the design space (Borges and Steffen, 2003).  
 

The optimization problem was written such as the design variables are the following: the mass ratio (µ ), the 

nonlinearity coefficient of the spring that fixes the main mass to the absorber ( 2ε ) and the damping factor related to 
primary mass suspension ( 2ζ ). The goal is to reduce the vibration amplitude and to increase the suppression bandwidth 
simultaneously. In the present contribution only the suppression band was used in the objective function.   

As an initial configuration of the system, the case illustrated in Fig. 3 is taken into account ( 01 =ε  and 01.02 =ε ). 
For this initial configuration the design variables correspond to: 
 
     050;01.0;01.0 22 .=== µζε                                                                                                                                (23) 
 
The other parameters of the system remain fixed. After the optimization run with Genetic Algorithms, the following 
optimal values were obtained: 
 

                                                                                                           (24) 
 

 
The dynamic responses of the system for both system configurations (initial and optimal cases) are shown in Fig. 10. 
 
 
 
 
 
 
 
 
 
 
 

14560;0931.0;0261.0 **
2

*
2 .=== µζε
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Figure. 10 – Optimal configuration for the nonlinear dynamic vibration absorber 
 

     It can be observed that the optimal configuration provides an important improvement in the behavior of the system. 
The objective function (the suppression band) was increased with respect to the initial configuration of the system. 
Besides, it was possible to obtain smaller vibration amplitudes as a side benefit. Obviously, it would be interesting to 
build a multi-objective problem dedicated to simultaneously increase the suppression bandwidth and to decrease the 
vibrations. 
 
2.3. Conclusion 
 

In this paper, a DVA that may exhibit nonlinear characteristics in the spring that connects the main mass to the base 
and in the spring that connects the absorber mass to the absorber mass was presented. The equations of motion of the 
nonlinear two degree-of-freedom system were integrated by using the so-called “method of the average” that provides 
an approximate solution to the problem. From this point, the nonlinear algebraic equation system was numerically 
solved by using the “fsolve” function of MATLAB® toolbox and the roots of the equations were determined. Several 
configurations were taken into account aiming at demonstrating the dynamic behavior of the system. It is worth 
mentioning that the magnitude of the non-linearity of the system stiffness can lead to conflicting situations: a) the 
vibration amplitude of the system is reduced, and b) dynamic instabilities may appear. Consequently, the necessity of 
determining the optimal non-linearity coefficient that guarantees the best solution for a given system was described. 
Finally, optimal design for the system was determined. The most important objective in the present contribution was to 
increase the suppression bandwidth. However, in performing optimization good results were obtained in the sense that 
both the “suppression band” was increased and the vibration amplitude was decreased satisfactorily. The optimal design 
was obtained by Genetic Algorithms, since classical optimization techniques failed due to various local minima found 
in the design space. Further research work will be dedicated to writing a multi-objective function in such a way that 
vibration attenuation and suppression bandwidth increase are both contemplated in the optimization scheme. 
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