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Abstract. The present work discusses the application of neural networks for the accurate prediction of aerodynamic 

coefficient of airfoils and aircraft configurations. Meta-models based on neural-network are able to efficiently  handle 

non-linear problems with a large number of variables. A methodology employing neural networks for predicting 

aerodynamic coefficients of generic single-airfoil configuration was developed. Basic aerodynamic coefficients are 

modeled depending on angle of attack, Mach number, Reynolds number, and airfoil geometry. All data are provided 

for a neural network, which is initially trained to learn an overall non-linear model dependent on this large number of 

variables. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model 

consistent with the previous model and the new data. The new model interpolates with high accuracy in the sparse test 

data points and the obtaining of a result for a generic configuration is a relatively easy and quick task. Because of this, 

the methodology is highly suitable to be fitted into a multi-disciplinary design and optimization framework, which 

makes extensive use of aerodynamic parameters to calculate performance and loads, besides other core tasks. A 

Multilayer Perceptrons (MLP) network was designed and employed for predicting drag polar curves of generic airfoils 

for a given Mach and Reynolds number variation. Airfoil geometry is modeled by polynomial functions dependent on 

twelve variables. 
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1. INTRODUCTION  
 
For centuries, the scientific approach for the understanding of physical laws was based on the construction of 
mathematical models. Usually solving a non-linear system of equations, the behavior of physical phenomena could then 
be known or estimated. Mathematical models can be used to describe the behavior of the non-linear systems, provided 
that initial conditions and boundary conditions are furnished. However, new simulation tools, among them neural 
networks, appeared and are providing new ways to predict system behavior. They represent a new computing paradigm 
based on the parallel architecture of the brain. 
 
The present work describes a methodology employing artificial neural networks for the prediction of aerodynamic 
coefficients for any airfoil and transport airplane. There is no precise agreed definition among researchers as to what a 
neural network is, but most would agree that it involves a network of simple processing elements (neurons) which can 
exhibit complex global behavior, determined by the connections between the processing elements and element 
parameters. Neural networks are able to learn a non-linear and complex relationship among a large set of variables and 
for this reason are highly suited to the application under consideration.  
 
In modern software implementations of artificial neural networks the approach inspired by biology has more or less 
been abandoned for a more practical approach based on statistics and signal processing. In some of these systems neural 
networks or parts of neural networks (such as artificial neurons) are used as components in larger systems that combine 
both adaptive and non-adaptive elements. While the more general approach of such adaptive systems is more suitable 
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for real-world problem solving, it has far less to do with the traditional artificial intelligence connectionist models. What 
they do however have in common is the principle of non-linear, distributed, parallel and local processing and 
adaptation. They are composed of node elements operating in parallel (Fig. 1). We can train a neural network to 
perform a specific function by adjusting the values of the connections (weights) between elements (Fig. 2).  
 
The main motive for the development of the present methodology is concerned with its use in multi-disciplinary design 
and optimization (MDO). The aircraft industry is pushing  aircraft efficiency by improving its design capacity through 
the development of sophisticated MDO frameworks [Lyrio et all, 2006]. MDO allows designers to incorporate relevant 
disciplines simultaneously enabling a very efficient aircraft configuration according to prescribed conditions fulfilling a 
set of constraints. In MDO process for aircraft design it is necessary to calculate aerodynamic coefficients several times. 
The information then obtained is used to predict the aircraft performance, stall characteristics, among other similar 
crucial tasks. In the majority of MDO frameworks that have been developed low-fidelity analytical expressions or the 
calling of CFD (Computational Fluid Dynamics) codes are carried out in order to build up polar curves. Low-fidelity 
analyses are conducted only in the early stages of the aircraft design and introduce a great uncertainty concerning the 
performance and true characteristics of the optimal configuration. Otherwise, the calling of CFD codes turns the process 
extremely time-consuming [Lyrio et all, 2006]. In this highlight, metamodels based on artificial neural networks have a 
natural application. Neural networks are able to quickly and accurately estimate the aerodynamic coefficients of any 
airplane configuration after they are trained. The training itself is an optimization problem concerning the minimization 
of the quadratic error from the variables existing in a given databank. Through the training process the synaptic weights 
are obtained (Fig. 3). Thus, the elaboration of the best suited neural network architecture for the prediction of 
aerodynamic coefficients of a generic airfoil is the concern of the present work. This task also involves the creating of a 
huge databank for the training of the network. A mathematical algorithm for the creation of the aerodynamic training 
databank was employed. It dramatically reduces the amount of data and consequently the computational effort required 
for the training process. If additional data is added to the databank, there is no need to retrain the neural networks every 
time a new project begins, since an adaptative learning skill is in practice. Thus, knowledge accumulated in past can 
always be recycled and expanded.  

 
Fig. 1 – An illustration of an artificial neural network with a single intermediate layer. 

 
Figure 2 – Model of a neuron. 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 

Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

 
Figure 3 – The training process schematics of a neural network. 

The most usual networks employed are the multi-layer perceptrons (MLP), the functional-link networks (FLN) [Curvo, 
2001], and the radial basis function networks (RBF). An MLP is a network of simple neurons called perceptrons. The 
basic concept of a single perceptron was introduced by Rosenblatt in 1958. The perceptron computes a single output 
from multiple real-valued inputs by forming a linear combination according to its input weights and then possibly 
putting the output through some nonlinear activation function. Mathematically this can be written as 
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where TW denotes the vector of weights, X is the vector of inputs, B is the bias and ϕ  the activation function (log 
sigmoid, tan sigmoid, etc.). 
 
In the functional link network, the hidden layer performs a functional expansion on the inputs, which gives the 
possibility to attach a physical meaning to the network parameters. The approximation capability of a FLN depends on 
the chosen set of model basis that performs the hidden layer. Provided that the set of model basis is sufficiently rich 
(contains sufficient high-order terms), it can be said that any continuous function can be uniformly approximated to 
certain accuracy. The FNL are also linear in their parameters, which means that these parameters can always be learned 
in the least-square sense [Curvo, 2001]. 
 
A radial basis function network is an artificial neural network which uses radial basis functions as activation functions, 
i.e., functions whose value depends only on the distance from the origin (Gaussian, for example). 
 
Some neural network architectures for predicting the aerodynamic coefficients of a wing planform with considerable 
accuracy were already designed [Wallach, 2006]. In this work all planforms are composed of the same baseline airfoils. 
Therefore, the purpose of this work is to determine a neural network architecture which is able to find Cl, Cd and the 
stall angle for any given airfoil geometry.  

2. DEVELOPMENT 

Sobieczky employs mathematical expressions for the proper representation of generic airfoil geometry (shape 
functions). This is accomplished by the use of polynomial functions for the airfoil thickness ( ty ) and camber ( cy ) lines 
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The upper- and lower-side y-coordinates at a given chord location are given by 

Upper-side: ctu yyy +=  (4) 

Lower-side: ctl yyy −=  (5) 

 
We can determine the required airfoil geometry by applying geometric boundary conditions for the equations (1) and 
(2). Thus, it is possible to link the na , nb  coefficients in Equations (2) and (3) to the geometric variables described in 
Table 1. 



Table 1: Geometric variables for airfoil lofting definition Erro! A origem da referência não foi encontrada.. 
xtle X position for LE control point 
ytle Y position for LE control point 
xtth X position for maximum thickness point 
ytth Airfoil maximum thickness 
atte TE thickness line angle 
ytte TE thickness 
acle LE camber line angle 
ycth Camber at maximum thickness 
xcmc X position for maximum camber 
ycmc Maximum camber 
acte TE camber line angle 
ycte TE camber 

Abbreviations: LE = leading edge and TE = trailing edge. 

Lyrio suggests restricting the geometric variables values according to boundaries listed in Table 2. This eliminates the 
creation of geometries that depart from the airfoil one. 

Table 2: Lyrio’s limits for airfoil geometric variables. 

Boundary → 

Variable ↓ 
Lower  Upper 

xtle 0.015 0.015 

ytle 0.028 0.060 

xtth 0.300 0.450 

ytth 0.100 0.170 

atte -10.000 -4.500 

ytte 0.006 0.006 

acle -7.500 5.000 

ycth -0.008 0.005 

xcmc 0.700 0.800 

ycmc -0.010 0.020 

acte -15 0 

ycte 0 0 

The aerodynamic databank was created by using the panel code XFOIL [Drela, 1989]. XFOIL is an open source code 
available on the Internet. The inviscid formulation of XFOIL is a simple linear-vorticity stream function panel method. 
A finite trailing edge base thickness is modeled with a source panel. The equations are closed with an explicit Kutta 
condition. A Karman-Tsien compressibility correction was incorporated in order to enable the calculation of 
compressible subcritical flow. The boundary layers and wake are described with a two-equation lagged dissipation 
integral boundary-layer formulation and an envelope en transition criterion. The entire viscous solution (boundary layers 
and wake) is strongly interacted with the incompressible potential flow via the surface transpiration model. This permits 
proper calculation of limited separation regions. The drag is calculated from the wake momentum thickness far 
downstream. A special treatment is used for a blunt trailing edge which fairly accurately accounts for base drag. A high-
resolution inviscid calculation with the default 160 panels requires seconds to execute on a Pentium IV computer. 
Subsequent operating points for the same airfoil but different angles of attack are obtained nearly instantaneously. Fig. 4 
presents a typical graphical output of a viscous flow analysis performed with the XFOIL code [Drela, 1989]. 
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Figure 4 – Typical graph output resulted of a flow analysis performed with XFOIL.  

The present methodology was implemented in Matlab® language and the MLP non-linear neural network architecture 
was selected as a more suited for the problem under consideration. Wallach et al. make use of this MLP architecture for 
predicting polar curves for the NACA 23012 airfoil with great success. In addition, Matlab®

 
[Matlab User’s Guide] 

furnishes a neural network toolbox that contains powerful algorithms for MLPs design and training, allowing greater 
flexibility and easy of use.  

For the construction of the databank that is employed for the network’s training, a design of experiments (DOE) 
technique was chosen. The fundament of this strategy was the generation of fewer data points than using passive 
instrumentation. In addition, the quality of the set of data is considerably higher. Latin hypercube patterns, for example, 
obey DOE laws and are useful when a random data sample is employed. Additionally, it is guaranteed to be relatively 
uniformly distributed over each dimension. As a result, the author generated Sobieczky’s profile parameters through the 
Latin hypercube design function [Doebelin].  

Provided the parameterized geometries databank is elaborated, the aerodynamic data must be furnished someway. In the 
present work, the airfoil aerodynamic coefficients are linked to the angle of attack. Either the data could come from 
wind-tunnel test or from numerical calculations or even from a combination of both sources. Here, the panel code 
XFOIL [Drela, 1989] with free laminar-turbulent boundary layer transition was employed for providing the 
aerodynamic data. The flow was set to be incompressible and the Reynolds number for all calculated coefficients is 1.0 
x 107.  

Initially, the lift (Cl) and drag (Cd) coefficients are obtained for airfoils generated with Sobieczky’s profile parameters 
and for angle of attack ranging from -4

o 

up to close after stall. However, neural networks are trained inside some input 
intervals and are able to compute the output only if the asking was between these intervals. Thus, the greatest challenge 
in determining drag polars is where stall takes place at different angles according to the airfoil geometry. In other 
words, the upper limits for the angle of attack varied for the airfoils in the training set. In order to avoid a varying input 
set for the angle of attack, it was parameterized as described bellow  

)/()( STALLiSTALLP ααααα ++=  

where 

Pα  = parameterized angle of attack; α  = actual angle of attack; STALLα  = stall angle; iα  = lowest angle of attack (in  

A MLP network architecture can be characterized by three features as follow 
• number of layers,  
• number of neurons in each layer, 
• activation functions.  

Since it is impossible to deterministically obtain all these characteristics, a trial and error procedure was employed to 
find them. The chosen network architecture was the best suited for the minimization of the mean square error with a 
normal distribution of resulting errors.  



The Levenberg-Marquardt algorithm [Hagan, 1994] was employed for training the neural network. This algorithm 
provides a numerical solution to the mathematical problem of minimizing a function, generally nonlinear, over a space 
of parameters of the function. This minimization problem arises especially in least squares curve fitting. Typically an 
epoch of training is defined as a single presentation of all input vectors to the network. The network weights and bias 
are then updated according to the results of all those presentations. Training with Matlab® 

occurs when a previously set 
number of epochs is reached, or the performance goal is achieved, or even if one of the remained convergence condition 
occurs. 

3. RESULTS 

Two networks were employed for the evaluation of the present methodology: the first one was thought to predict stall 
characteristics of airfoils; the remained was better suited for the prediction of Clα curves. The training database of the 
first network is comprised of 10,000 airfoil geometries for a fixed Mach and Reynolds numbers. The second network 
was trained with 2,000 geometries and its related aerodynamic data. The chosen number of Mach and Reynolds number 
for all data samples are 0.30 and 1.0x10

7

, respectively. The minimum and maximum values for each Sobieczky’s profile 
parameters are the same as in Table 2. Figure 5 shows the networks training process convergence until the error 
between the network and the training set is below 4.0x10-4.  

 
Figure 5a – Stall Training process. 

 
Figure 5b – Cl x parameterized angle of attack network 

training process. 

The best suited neural network architecture for the prediction of the αmax is described in Table 3.  

Table 3 - Neural Network Architecture for prediction of αmax. 

Layer 1 Layer 2 Layer 3 

50 neurons 50 neurons One neuron 

Radbas Tan sigmoid Pure linear 

The statistical errors of the neural network for αmax prediction are displayed in Table 4.  

Table 4 - Stall network error levels. 

Average error 0.13 
Standard deviation 0.96 

Maximum Error 2.42 
Maximum error 

percentage 14.25% 

Minimum Error 0.02 
Minimum Error 

Percentage 0.20% 
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The standard deviation of 0.96 for the αmax (angle of attack at stall) can be considered to be small. The figures in Table 4 
can still considerably be improved if to the airfoil database new aerodynamic data is added.  For the network handling 
Cl  vs. parameterized angle of attack (Clα) its architecture is as follow (Table 5)  

Table 5 - CL x parameterized angle of attack Neural Network Architecture. 

Layer 1 Layer 2 Layer 3 

40 neurons 40 neurons One neuron 

Tan sigmoid Radbas Pure linear 

The statistical characteristics of this neural network during validation were: 

Table 6 - CL x parameterized angle of attack network error levels. 

Average error 0.0085 

Standard deviation 0.0980 

Maximum Error 0.3733 

Maximum error percentage 110.5% 

Minimum Error 0.0002 

Minimum Error Percentage 0.01% 

 

At first glance, the error levels listed in Table 6 seems to be high, the maximum error percentage reaching more than 
100%. However, it corresponds to a point were the Cl is very small, close to zero. Regarding the maximum lift 
coefficient, typically the Clmax for an aft cambered transonic airfoil is close to 2.00. For this value the standard deviation 
of 0.098 corresponds to an error of 4.9%. It is high due to its impact on the aircraft performance as will be demonstrated 
in the following paragraphs. It is very reasonable but as mentioned before all error in predicting the aerodynamic 
coefficients can be lowered by increasing the airfoil database. The limit in the present work was imposed by hardware 
(desktop computer memory, mainly) constraints.  

Figure 6 shows a linear fit between expected target outputs and the results obtained by the Clα neural network. Figure 7 
shows the histogram of residuals. There is a motivating correlation between them. As presented in Table 6, the average 
of the errors is very close to zero and the standard deviation is small. The points with high error percentage are isolated 
cases.  

Figure 6 – Comparison between expected and predicted 
outputs for CL x parameterized angle of attack. Figure 7 – Histogram of residuals – CL x parameterized 

angle of attack. 
When both networks are computed at once the results for CL x angle of attack are displayed in Table 7. 



Table 7 - CL x angle of attack error levels. 

Average error 0.0026 

Standard deviation 0.11 

Maximum Error 0.34 

Maximum error percentage 1649% 

Minimum Error 9.2 x10-5 

Minimum Error Percentage 0.008% 

 

 
Figure 8 – Comparison between expected and predicted 
outputs for CL x angle of attack. 

 
Figure 9 – Normal probability plot of residuals - CL x angle 
of attack. 

 
Figure 10 – Histogram of residuals – CL x angle of attack. 

Again, the maximum error level corresponds to a point where Cl is small, very close to zero. Thus, this kind of error it is 
not being properly filtered by the network. This error can probably be lowered by introducing symmetric airfoils into 
the database. Now, the standard deviation is 0.11, i.e., 5.5% for an airfoil presenting Clmax of 2, which could apparently 
be a satisfactory value. However, a more accurate evaluation of this error can be given by an application in aircraft 
design. Thus, in order to evaluate the impact of this error on the design of an airliner comparable to the Fokker 100 or 
Embraer 190, it is computed the take-off distance of such an airplane (a low-fidelity calculation) [Kohrt, 2001]. 

 

    (7) 

Where 

kto is related to sea-level air density and the friction coefficient of the take-off runway, mto is aircraft maximum take-off 
mass, Sw is the wing reference area σ is density ratio ( 1 at sea level), CLmaxto is the maximum lift coefficient at takeoff, 
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T/W is the thrust-to-weight ratio @ take-off,  
 
CLmax= CLmax clean + ΔCLmax flap  

 
Typical values for this class of airplane are 

kto = 2.34 m
3

/kg, mto/Sw = 500 kg/m
2

, CL max flap = 0.70, and T/W = 0.28. Thus expression (7) can be then rewritten as  

   (8) 
This considering a typical value of 1.5 to CLmax clean the takeoff distance is then computed as 1899.35 m. If the error of 
the two-dimensional maximum lift coefficient prediction (4.9%) could be transferred to the three-dimensional 
maximum lift coefficient, the takeoff distance will vary between 1966.39 and 1836.73 m. This corresponds to an 
uncertainty of 130 m in the take-off distance, a considerable figure. Thus, the error level of the network must be 
lowered.  

Figures 11 and 12 show comparisons of Clα curves predicted by the present methodology and actual ones calculated 
with XFOIL. The airfoil geometries used in the comparison were obtained in a random way. The A geometry presents 
15.5 % maximum thickness and the B profile is 13 % thick. The predicted curve for the A case presented the greater 
discrepancy regarding the curve calculated by XFOIL, noticeably for Cl values below zero. In general there is a very 
good agreement between the predicted and calculated curves for both cases. Indeed, the Clmax for both airfoils could be 
accurately predicted by the neural network with a very small error.  
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Figure 11 - Comparison between expected and predicted outputs for CL x angle of attack (Profile A). 
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Figure 12 - Comparison between expected and predicted outputs for CL x angle of attack (Profile B). 

4. CONCLUDING REMARKS 
A methodology based on artificial MLP neural network for the prediction of airfoil aerodynamic coefficients was 
developed and successfully applied to the subsonic regime. 

The airfoil parameters limits as set up by Lyrio do not enable the proper representation of NACA airfoils. The values 
listed in Table 2 will be revised in order to account a broader range of airfoils to be taken into account as well as a 
larger number of airfoils. Symmetrical airfoils will be added to the databank in order to considerably lower the 
maximum error, which occur for lift coefficients close o zero.  

Future work will be directed to  

• Prediction of the drag coefficient (Cd) using a transonic code encompassing this way the transonic regime as 
well.  

• Expand the prediction capabilities considering Mach and Reynolds number as input variables for the airfoil 
case.  

• Apply the methodology for a wing-body configuration. Initially for a fixed planform and afterwards for an 
aircraft configuration of any wing lofting.  
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