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Abstract. The Vortex Method has been used to simulate a large number of external flows around bodies. Despite the 
tremendous improvement achieved during the last decades, this powerful mesh-free technique requires special 
attention to model the vorticity generation process, the lagrangian transport of vorticity by diffusion, and the high 
computational cost of the lagrangian transport of vorticity by convection. This work proposes a new and efficient two-
dimensional algorithm that improves the vorticity generation and the diffusion models. In addition, an Adaptive 
Multipole Expansion code is employed to calculate the induced velocities of the vortices, which promotes an enormous 
decrease in the convective computational effort. Lamb vortices are generated near the wall by diffusion, and the 
Corrected Core-Spreading Method is used to simulate the vorticity diffusion in the boundary layer and wake. The 
convective motion of the vortex cloud is calculated using the Adams-Bashforth second-order time-marching scheme. 
The algorithm is tested for the well-known problem of two-dimensional, incompressible flow over a flat plate. The 
agreement with the flat-plate Blasius solution indicates that the algorithm furnishes a good representation of the 
generation, diffusion and convection processes of vorticity in the flow.  
  
Keywords: Vortex method, corrected core-spreading method, adaptive fast multipole method, flat-plate boundary 
layer, Blasius boundary layer 

  
1. INTRODUCTION  
  

This paper describes a simulation of the flow over a flat plate using the Vortex Method. Some improvements on the 
vortex method proposed by Santiago and Bodstein (2006) are here implemented and applied to the well-known Blasius 
boundary layer flow problem. This benchmark problem is chosen because of the existence of an exact solution that can 
be used for comparison. The flat plate boundary layer flow problem is perfect for the evaluation of the convective-
diffusive vorticity transport mechanisms that are carried out at during the simulation. In addition, we pay special 
attention to the vorticity creation mechanism at the wall and its subsequent shedding into the flow field. This step of the 
algorithm is responsible for the transfer of the exact amount of the vorticity generated at the wall into the fluid by 
diffusion and also for the determination of the adequate position to place the nascent vortices within the fluid, in the 
neighborhood of the plate. The simulation of the Blasius flat plate problem allows for a detailed assessment of the new 
numerical schemes that have been developed within the vortex method framework to simulate high Reynolds number 
flows. 

The basic idea of Vortex Method relies on the discretization of the vorticity field into a cloud of free vortex blobs to 
simulate the convective-diffusive transport of vorticity in the flow. Discrete vortex blobs are generated in the 
neighborhood of the solid wall in order to satisfy the no-slip and the no-penetration boundary conditions, and they move 
in a Lagrangian manner to satisfy the vorticity transport equation. In this process, advantage is taken of the property that 
the boundary condition at infinity is automatically satisfied due to the decay of the basis functions used to model the 
vorticity field of these vortices. In order to determine the evolution of the flow filed, these vortex blobs move according 
to vorticity-velocity relations. The Lamb vortex model is employed to avoid the singular behavior of point vortices at 
the origin, which introduces a core for each discrete vortex.  

The diffusion process of vorticity is simulated employing the Corrected Core-Spreading Method (Rossi, 1996). In 
this methodology, the vortex core radius grows in time from a minimum value up to a maximum pre-determined value. 
At this point, the vortex splits into four new vortices with smaller core radius and strength, replacing the original vortex. 
The newly born vortices are positioned in the neighborhood of the original vortex, such that they maintain overlapping 
of their core radius. This scheme is accurate and converges fast, as long as core overlapping is maintained at all times. 
On the other hand, this procedure imposes an outstanding computational effort because the number of vortices in the 
cloud grows exponentially in time. To deal with this problem, the merging and cut-off algorithms proposed by Rossi 
(1997) are implemented. The first algorithm merges vortices that have their radius in excessive overlapping, but leaving 
sufficient overlapping needed to ensure convergence of the Vortex Method. The second algorithm provides a lower 
bound for the value of the vortex strength that can be reached by the vortices, preventing vortices from splitting during 
the diffusion process when their circulation become smaller than a specified value. 
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A high computational cost is the main problem of the convective vorticity transport modeled by the Lagrangian 
vortex motion, since the velocity field induced by the vortices on each other has to be evaluated at the positions of all 
vortices. This vortex-vortex interaction has an operation count of the order of N 2, where Nv v is the total number of 
vortices. For this reason, the Adaptive Fast Multipole Method, developed by Carrier et al. (1988), is used to accelerate 
the induced velocity calculation. This scheme reduces the operation count down to the order of N . v

Figure 1 shows a schematic diagram of the numerical algorithm that we have implemented. The flat plate 
discretization step is responsible for setting up N elements on the plate and for determining the coordinates of the center 
of each element, called control points, where the boundary conditions are imposed. Next, the circulation of each new 
vortex blob to be created is determined. The positions in the neighborhood of the plate where these new vortex blobs are 
placed are then calculated such that the no-slip boundary condition is satisfied. We show that this position has great 
influence on the results of the simulation, since it contributes to impose a zero-velocity value at the wall when 
evaluating the velocity field. Vortices that cross the plate during either the convective step or the vortex splitting 
process of the diffusion step are reflected back into the flow and placed at the corresponding symmetric position. 
Merging of vortices with excessive overlapping and cut-off of the splitting process when the vortex strength decreases 
below a specified value are numerical techniques employed to limit the computational effort. 
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 Figure1. Simplified schematic diagram of the numerical algorithm. 
 
 
2. MATHEMATICAL FORMULATION 

 
The flat plate boundary layer flow develops from an impulsive start of a uniform flow U over a two-dimensional flat 

plate aligned with the flow and discretized into N elements, where the no-slip and the no-penetration boundary 
conditions are satisfied at the control points. The induced velocity field at each control point is the result of the 
superposition of the uniform potential flow U and the cloud of free vortices present in the flow. The reflection method 
(Lewis, 1991) is applied to ensure that the no-penetration boundary condition is satisfied. In other words, if M vortices 
are generated above the plate, then M image vortices with opposite strength are also generated below the plate at the 
corresponding mirror-image position.  

The vortex blobs have a vorticity basis function that is modeled using the Lamb vortex model, and the vorticity-
velocity relation for the induced velocity field q may be written as 
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where Γ is the vortex circulation (or strength), σ is the core radius that desingularizes the blob and r is the distance from 
the vortex location to the point where the induced velocity is calculated. 
 
2.1. No-slip boundary condition 
 

The velocity component in the x-direction evaluated at the ith-control-point of the plate due to the uniform incident 
flow with freestream speed U and all M free vortex blobs in the cloud and their images is given by 
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Equation (2) determines the vorticity per unit length γ(si) of each plate element i of length Δsi to be shed into the 

flow in the form of L nascent vortices with circulation γ(si)ΔSi/L. This amount of vorticity distributed over the L new 
vortices is created in the flow to cancel exactly the velocity at the plate and, therefore, to satisfy the no-slip condition. 
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2.2. Vortex creation 

 
After evaluating the vorticity γi from Eq. (2), the position of new vortices is established such that the no-slip 

condition is satisfied. It is desirable to choose the position of the center of the newly created vortex and its displacement 
ε from the flat plate in such a way that the no-slip condition continues to be valid at the beginning of next step. This is 
an improvement when compared to the classical procedure that sets ε = σ, but the problem leads to an unusual non-
linear system of algebraic equations. It is possible to employ an alternative procedure to calculate εi for control-point i 
such that the no-slip boundary condition remains valid. To avoid the non-linear system of equation, we approximate all 
εj, j ≠ i, by their values at the previous time step. The unknown εi is then calculated explicitly and an iterative procedure 
is implemented for all εj, j ≠ i, until convergence to a specified value is reached. Figure 2 shows the vortex position 
during the vortex creation process. 
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 Figure 2. Creation of L vortices for all N control points.
 
The approximation for εj, j ≠ i, considering the influence of all new M = LN vortices, including their images, leads to 

the following equation 
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jεwhere Eq. (3) is solved for εi; the value of  is obtained from the previous time step and γi is calculated from Eq. (2). 
Figure 3, generated using the results from simulations with and without the use of the model above, shows how the 

use of Eq. (3) can improve the evaluation of velocity field near the wall. The simulation obtained by setting ε = σ is 
very poor compared to the simulation that evaluates εi from Eq. (3). This new model is more accurate to produce both 
good force calculation on the surface and good development of the simulation as a whole. 
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ε =σ 
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Figure 3. Comparison between the velocity field near the 

wall generated with ε =σ and ε calculated for Eq. (3). 
 
 
 



The diffusion layer that develops during the vorticity generation process at the wall, shown in Fig. 4, has an area 
equal to the product of the Rayleigh diffusion displacement thickness, 2,76v t Reδ = Δ , to the length of element i, 

. This diffusion area and the number of vortices L created per plate element are used to calculate the radius σ of the 
nascent vortices according to 
Δ iS
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The number of vortices L created per plate element is the integer number obtained from L = INT(ΔSi/δv) +1, where 

ΔSi/δ  is the aspect ratio of the diffusion layer. Since ΔSv i and δv are kept constant during the simulation, L is the same 
for all plate elements during all time steps. The circulation of each new (nascent) vortex is calculated according to 
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Figure 4. The diffusion area originating from the vorticity creation at plate element i.  
 
2.3. Field evaluation 

 
The velocity field is evaluated using the vorticity-velocity relation obtained from the Biot-Savart law and the Lamb 

vortex model described by Eq. (1). Because we use the reflection method (Lewis, 1991) to impose the no-penetration 
boundary condition on the plate, our formulation includes the image vortices as well. Therefore, the x and y components 
of the velocity vector q induced by the ith-vortex at the jth-domain point, summed over all the Nv vortices in the cloud 
and their images, are given by 
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where , ( ) ( ) ( )2 22
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the distance from the vortex core center is . When the jth-point is the ith
maxr -vortex, the first term in curly brackets in 

Eqs. (6) is replaced by the following equations  
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It is necessary to correct the vorticity field when the vortex core crosses the flat plate, as shown in Fig. 5, because 
part of the vorticity is now inside the wall and it does not contribute to the vorticity and velocity fields. This correction 
is implemented by modifying the vortex circulation according to 
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where θ1, θ2 and φ are shown in Fig. 5. Consequently, the vortex core radius is also corrected by the equation 
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Figure 5. Vortex core radius crossing the flat plate. 

 
 
 
 
 
 
 
 
 
 
 

 
 
2.3. Vortex diffusion 
 

In the vortex method the diffusive transport of vorticity is related directly to how the vorticity created at the wall is 
shed and diffused into the flow. The first paper to attack the problem of vorticity diffusion in Lagrangian computational 
fluid dynamics simulations is due to Chorin (1973), who proposes a stochastic method, called the Random Walk 
Method, based on random displacements of the vortices. This method was considered for some time the only way to 
deal with vorticity diffusion in a Lagrangian description of the flow. In the last couple of decades, many deterministic 
models have been developed (Santiago and Bodstein, 2006). One of the most popular is the original Core-Spreading 
Method (Leonard, 1980), which allows the vortex core radius to grow in time according to a diffusion rate that is a 
solution of the vorticity diffusion equation. This method was proved by Greengard (1985) to diverge from the Navier-
Stokes equation. The Corrected Core-Spreading Method (CCSM), due to Rossi (1996), proposes the splitting of the 
vortex into four new vortices as soon as the radius reaches a maximum value. This modification introduced by Rossi 
has turned the method convergent and, therefore, it has become again a usable diffusion technique. This method 
provides accurate deterministic results and it is very simple to implement numerically. 

The basic idea of CCSM is to let the vortex core radius grow in time from a minimum value,σmin, to a maximum 
value, σmax, simulating the vortex diffusion process. This growth is controlled by a numerical parameter α, which has 
values in the range [0,1], where σ  is input to the algorithm and σ  = ασmax min max. The splitting process occurs when the 
vortex reaches a radius greater than σ . So every time σ becomes greater than σmax max, the code splits the vortex in four 
new vortices with circulation Γ/4, uniformly placed at a distance r from the original vortex calculated to conserve the 
vorticity second-order moment. The radius’ growth rate and the distance r are given by 
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where ν is the kinematic viscosity. 
 
2.4. Vortex Reflection 
 

As a result of the refinement of the vorticity field due to diffusion and of the time discretization of the convective 
step, a vortex may end up at a position below the flat plate. This may occur after the diffusion step, when a new vortex 
is created below the plate from the splitting process, or after the vortex convection, when the vortex displacement 
calculated with the Adams-Bashforth second-order time-marching scheme places the vortex below the wall. Hence, it is 
necessary to call the reflection subroutine after these both steps, as it can be seen in the Fig. 1. 
 



2.5. Merging and cut-off 
 
Compared with the Random Walk Method (Chorin, 1973), CCSM increases the accuracy because it is a 

deterministic method that discretizes the vorticity field by splitting the vortices in the cloud. However, this 
characteristic increases the computational cost of CCSM unboundedly, since the number of vortices increases 
exponentially. This problem can be dealt with using Rossi’s (1997) merging and a cut-off schemes. 

Merging vortices is the action that substitutes a set of overlapping vortices by one only. This procedure 
approximates the field generated by this vortex but it keeps the approximation error under control. In this paper, we use 
the algorithm proposed by Rossi (1997), where the vorticity field is approximated by a linear combination of N basic 
functions, as follows 
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where each basic function is defined by three parameters (Γi, xi, σi), corresponding to the vorticity, the position and 
radius of the vortex i, respectively.  

A maximum and minimum discretization resolution must be established to start the algorithm. This is done choosing 
l  ≤ σm i ≤ lM  to obtain good vortex radius overlapping and avoid regions with insufficient discretization. In our 
algorithm, we set l  and l = σ  = σ . M mmax min

After merging n vortices, the merging error is 
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The substitution of a set of vortices by one vortex is carried out such that the zeroth, first and second moments of 

vorticity are maintained according to the following equations 
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Rossi’s (1997) algorithm is written to identify a set of n vortices according to Eqs. (14a, b, c), bounding the error by 

Eq. (13). With this methodology, the error is bounded in space and the computational vorticity field only experiences 
controllably small instantaneous perturbations. Thus, the largest error in the entire simulation is similar to the largest 
local error.  

The cut-off scheme is another way to control the problem size, i.e., the total number of vortices in the cloud. The 
cut-off scheme interrupts the splitting process of vortices with sufficiently small circulation. This is a mechanism that 
limits the discretization of the vorticity field and helps to prevent the exponential growth of the number of vortices. 
More details can be seen in Rossi (1997). In the simulation presented in this work the cut-off value was chosen to be 
1.0×10-6. 

 
2.6. Vortex convection 

 
The direct evaluation of the convective velocity of all Nv vortices is a pair-wise vortex-vortex interaction, which has 

computational cost of the order of N 2
v . Alternatively to the direct vortex-vortex calculation, this work uses the Adaptive 

Fast Multipole Method (AFMM), developed by Carrier et al. (1988), to calculate the velocity of each vortex. This 
acceleration procedure has the ability to reduce the computational effort down to order Nv, dividing the vortex cloud 
into boxes that are considered far enough apart by a numerical parameter. The velocity induced by one box at the others 
is calculated expanding the Biot Savart law into a Laurent series. The number of terms in the Laurent series expansion 
is determined for a desired accuracy, and the domain is divided into smaller and smaller boxes until each box contain a 
maximum number of vortices per box; at this point, the spatial refinement stops. The interactions are carried out from 
one box to all other boxes, and vortices inside the same box are subject to direct vortex-vortex calculation.  

Santiago et al. (2006) have performed a series of tests with the algorithm of the AFMM and observed that, when the 
vortex density in the wake becomes very high, the smallest boxes become of the order of the vortex core radius. In this 
case, the algorithm loses performance instantaneously and the maximum number of vortices per box must be increased. 
As soon as the maximum number of vortices per box is increased, the algorithm performance returns to its original 
computational cost of order N . v
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Another particular aspect of the AFMM of Carrier’s et al. (1988) is that the near approach distance for 
desingularization can be implemented to work together with the main routine. This is equivalent to saying that the 
algorithm can use the Lamb vortex model, but the size of the smallest box has to be greater than the radius of the 
vortices, because all vortices inside the same box has to undergo direct calculation, as explained above. 

The Adaptive Fast Multipole Algorithm is a very useful tool that allows longer simulations to be executed with 
better discretization of the vorticity field, since it makes possible to work with larger wakes (larger problem sizes). Too 
big problem sizes are prohibitive if using the direct calculation method based on the Biot-Savart law. 

Because we use the reflection method to impose the no-penetration boundary condition, it becomes necessary to 
input the image cloud into the AFMM routine together with the physical vortex cloud. Although the convective step 
works with 2N  vortices, it is still advantageous, since the reduction in the CPU time offered by Nv v–computational cost 
overcomes the increase in the problem size.  
 
2.7. Vortex Position Update 
 

The step that updates the position of each vortex in the cloud is also responsible for the determination of their total 
displacement. This calculation is performed at the end of time step because it is necessary to know beforehand the 
convective velocity calculated with the algorithm of the AFMM. Knowing the velocity of all vortices in the cloud, we 
employ the Adams-Bashforth second-order time-marching scheme to update the position of the vortex cloud, which 
requires the information of the velocity field calculated at the current and the previous time steps. So, we use the first-
order Euler scheme in the first step of the simulation and for all the nascent vortices, and a second-order Adams-
Bashforth scheme for the remaining vortices of the cloud at any time step. The x and y components of the displacements 
calculated by the first-order Euler scheme and the second-order Adams-Bashforth scheme, respectively, are given by 
 

( )Cx u t tΔ = Δ      and     ,   (15a, b) ( )Cy v tΔ = Δt
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3. RESULTS AND DISCUSSION 
 

A good simulation using the vortex method is essentially related to a good representation of the vorticity field 
everywhere in the rotational flow region. In particular, the vorticity and its flux at the solid surface calculated to satisfy 
the boundary conditions are very important to determine the entire flow field and the surface forces. 

The models proposed in this paper generate a velocity field in good agreement with the Blasius solution for the 
boundary layer flow over a flat plate, as one can see in the Figs. 6. These figures show converged solution at time t = 
2.5 for the u-velocity profile as a function of 1 2( / )y U xη ν≡ , evaluated at three different x stations and compared to the 
Blasius solution, for Re = 1000, , 0.01tΔ = , 0.9α = =0.010σ . The velocity profile present better agreement as x 
approaches the trailing edge of the plate, as expected. Our results also present better agreement to the Blasius solution 
when compared to the numerical solution obtained by Lewis (1999) for Re = 500, as shown in Fig. 7. The initial 
convergence evolution of the simulation as time progresses can be seen in Fig. 8. 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 
 

(b) x = 0.50; (c) x = 0.75; (a) x = 0.25; 

Figure 6. Velocity profiles at three x stations along the plate; for Re = 1000, 0.01tΔ = , , . =0.9α =0.010σ
 
 



 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 Figure 7. The u-velocity profile at x = 0,5 obtained by Lewis (1991) for Re = 500.  

 
 Figure 8. Time convergence for Re =1000. 

 
The wake represented by the cloud of vortices at t = 2.5 is shown in Fig. 9, for Re = 1000. This figure illustrates the 

growth of the boundary layer along the plate and the high vorticity resolution obtained with our vortex method. Our 
simulation ends up with N  = 259,837 vortices at t = 2.5. v

 
Figure 9. Position of the vortices in the wake at t = 2.5 for Re =1000. 
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4. CONCLUSIONS 

 
This work introduces several modifications and improvements on previous models for the vortex method to study 

the complex physical phenomenon associated with convective-diffusive problems such as the boundary layer 
development over a flat plate. One of the main improvements is the use of the multipole expansion technique through 
the use of the AFMM, which allows high-resolution simulations to be carried out for longer times. The implementation 
of this method was necessary in order to replace the stochastic Random Walk Method by the deterministic and more 
accurate Corrected Core-Spreading Method (Rossi, 1996), which increases the number of vortices in the cloud every 
time step. The CCSM has proved to give better representation of the vorticity field. Finally, the new vortex generation 
scheme described in this paper adds an important correction procedure to calculate the vorticity and velocity fields near 
solid boundaries. As the results for the Blasius flat plate simulation show, the vortex method presented here is very 
encouraging to describe in detail the high Reynolds-number flows around bodies. 

Regardless of the good results shown here, work still needs to be done. The slope of the velocity field near the wall 
still requires some improvement to be obtained. This information is key to determine the skin friction factor and, 
consequently, the friction force on the surface of the plate. 
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