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Abstract. This work deals with the Generalized Finite Element Method (GFEM) applied to free vibration of uniform 
straight bars. The variational problem of free vibration is formulated and the main aspects of GFEM are discussed. 
The Composite Element Method (CEM) and the GFEM are presented. The CEM is developed by enrichment of the 
conventional FEM local solution space with non-polynomial functions obtained from closed form solutions of classical 
theory. This approach results in a hierarchical refinement called c-version. The GFEM is developed by enrichment of 
the conventional FEM solution space with characteristics of the solution known a priori applying the partition of unity 
method (PUM). The application of GFEM in vibration analysis of straight bars is investigated. The eigenvalues 
obtained by GFEM are compared with those obtained by analytical solution, by CEM and by h-version of FEM. The 
numerical results show that GFEM presented in this work have higher rates of convergence than those obtained by the 
h-version of FEM and obtained by CEM.  
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1. INTRODUCTION 
 

Engineers involved in the analysis and design of structures subjected to dynamic loading need a precise 
understanding of the dynamical behavior of these structures.  Nowadays many researchers have developed vibration 
analysis methods. 

The Finite Element Method (FEM) is commonly used in vibration analysis. In the FEM, the approximated solution 
can be improved using two refinement techniques: h and p-versions. The h-version consists of the refinement of 
element mesh. Recent works (Ribeiro, 2001) (Campion and Jarvis, 1996) define p-version as the increase in the number 
of form functions in the element without change in the mesh. The conventional p-version of FEM consists of increasing 
the polynomial degree in the solution. Some researchers (Ganesan and Engels, 1991) (Ribeiro, 2001) have used non-
polynomial form functions to refine FEM solutions. 

Zeng (1998a, b) developed the Composite Element Method (CEM). The CEM is obtained by enrichment of the 
conventional FEM local solution space with non-polynomial functions obtained from analytical solutions of simple 
vibration problems. This approach results in a hierarchical refinement called c-version. The CEM have showed rates of 
convergence greater than those obtained by FEM in free vibration problems. 

Another method named Generalized Finite Element Method (GFEM) was developed based on the ideas of the 
partition of unity method (PUM) (Babuska, Banerjee and Osborn, 2004).  In the GFEM, the local solution spaces are 
formed for functions, not necessarily polynomial, that reflect the available information on the unknown solution. This 
procedure ensures good local approximation. The local spaces are grouped in the approximated solution space by the 
partition of unity method that ensures good global approximation. 

This work presents the variational form to the problem of free axial vibration of straight bars and analyses the 
application of GFEM in the solution of these problems.  
  
2. VARIATIONAL FORM OF THE FREE VIBRATION OF BARS 
 

The bar consists of a straight rod with axial strain (Fig. 1). The basic hypotheses are (Craig, 1981): (a) The cross 
sections which are straight and normal to the axis of the bar before deformation remain straight and normal after 
deformation; and (b) The material is elastic, linear and homogeneous. 

The vibration of the bar is a time dependent problem. The movement equation that governs this problem is a partial 
differential equation. The problem consists of find the axial displacement ),( txuu =  which satisfies 
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where  A is the cross section area, E is the Young modulus, ρ is the specific mass, p is the externally applied axial force 
per unit length and t is the time. The solution ),( txuu =  must satisfy boundary and initial conditions defined in the 
problem. 
 

 
 

Figure 1. Straight bar. 
 

According to Carey and Oden (1984),  the most popular form to obtain the variational form of a time dependent 
problem is consider the time t like a real parameter and develop a family of variationals problems in t. This consists in 
select test functions )(xvv = , independent of t, and apply the weighted-residual method. If the finite element method 
is used to represent the spatial behavior of the solution, one obtains a system of ordinary differential equations of the 
degrees of freedom as functions of the parameter t. This approach is called semidiscrete formulation of the problem. 

Using the weighted-residual method, according to Carey and Oden (1984), to develop an integral statement of 
Eq.(1),  the  solution ),( txuu =  must satisfy 
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for admissible test functions  )(xvv =  at any time ]( Tt ,0∈ . 

Integrating Eq. (2) by parts, one obtains: 
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It is necessary to introduce the boundary and initial conditions to complete the problem. The admissible test functions 

)(xvv =  must satisfy the same boundary conditions of the solution ),( txu . To common combination of boundary 
conditions in boundaries 0=x  and Lx = , the second term in Eq. (3) vanishes and it becomes: 
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Particularizing the problem to the case of free vibration of an uniform straight bar, where E, A and ρ are constants 

and 0),( =txp , the Eq. (4) becomes: 
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According to Carey and Oden (1984), in vibration problems, one assumes periodic solutions )(),( . xuetxu tiω= , 

where ω  is the vibration frequency. The free vibration of an uniform bar becomes in an eigenvalue problem with 
variational statement: find a pair ( )u,λ , with ),0(1 LHu∈  and R∈λ ,  so that 
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for admissible test functions ),0(1 LHv∈ , where 2ωλ = .The variational statement of this eigenvalue problem can 

also be written as: find ( )u,λ , with ),0(1 LHu∈  and R∈λ , so that 
 

),.(),( vuvuB λ=               (7) 
 

for all admissible test functions ),0(1 LHv∈ , where ),( vuB  is the bilinear form and ),( vu  is the scalar product 

in 2L space, obtained from 
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3. FINITE ELEMENT METHOD 
  

The approximation by finite elements of the free vibration problem of a uniform straight bar consists to rewrite the 
variational form of the problem (Eq. (7)) in an approximated subspace ),0(1 LHH h ⊂ . The approximated eigenvalue 

problem in Eq. (7) becomes: find R∈hλ  and ),0( LHu h
h ∈  so that 

 
),.(),( hhhhh vuvuB λ=               h

h Hv ∈∀                         (10) 
 
The approximated solution )(xuh  from finite elements can be written, to discretization in N nodes, in the following 

form: 
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where { }jφ  are the global base functions of the subspace hH and { }ju  are the degrees of freedom. Replacing the Eq. 

(11) in Eq. (10) and taking ihv φ= , Ni ,,2,1 K=  , one obtains: 
 

j

N

j
j

L

ihj

N

j

j
L

i udxAudx
xx

EA ..
1 01 0
∑ ∫∑ ∫
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂ φφρλ

φφ
 ,      Ni ,,2,1 K=      (12) 

 
or, in matrix form, 

 
MuKu hλ=                (13) 

 
where K is the stiffness matrix and M is the mass matrix, and they are defined in Eq. (12). The Equation (12) 
corresponds to a generalized eigenvalue problem where hλ  are the eigenvalues related to the vibration frequencies ω  
and the vectors u are the eigenvectors related to the vibration shape modes of the bar. 



After the discratization of the problem domain Ω  by sub domains eΩ , called elements, it is necessary to 

determinate the contribution of each element to the elementary stiffness matrix coefficients ( e
ijk ) and elementary mass 

matrix coefficients ( e
ijm ), obtained by: 
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where the local form function e

iψ  is the restriction of the base function iφ  in element eΩ . 

The adequated choice of the local form functions e
iψ  determinates different solution methods with distinct features 

and rates of convergence. In general, according to Reddy (1986), the form functions are developed to master elements 
and then they are mapped to the real elements obtained from the finite element mesh. In this work the master element 
domain is eΩ (0,1).  

The conventional FEM uses polynomials form functions. Taking the uniform bar element (Fig. 2) with one degree 
of freedom per each node, the approximated solution in the element domain can be defined as: 

 
( ) ( ) ( ) 2211 .. uuu eee
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or in matrix form: ( ) qNTe
hu =ξ             (17) 

 

where 
L
x

=ξ , [ ]eeT
21 ψψ=N  and [ ]21 uuT =q , L  is the element length, and, u1 and u2  are the nodal 

displacements. 
 

 
 

Figure 2. Bar element. 
 
Using Hermitian polynomials as local form functions, one obtains: 
 

[ ]ξξ−= 1TN             (18) 
 
The next topics present form functions sets that generate the Composite Element Method (CEM) and the 

Generalized Finite Element Method (GFEM). 
  

4. COMPOSITE ELEMENT METHOD (CEM) 
  

A new method can be obtained using a FEM conventional element with local form functions enriched by adding 
non-polynomial functions related to the closed form solutions from classical theory. 

Weaver Junior and Loh (1985) used analytical solution as form functions to lateral displacements in the analysis of 
local vibration mode shapes of trusses. After, this approach was applied by Ganesan and Engels (1991) to obtain a 
hierarchical model of finite elements of Euler-Bernoulli beams. Zeng (1998b) developed elements of trusses, Euler-
Bernoulli beams and frames using this approach to vibration analysis. In the work of Zeng (1998a, b) this technique was 
called Composite Element Method (CEM).  

According to CEM, the approximated solution in the element domain of a bar is obtained by: 
 

cØqN .TTe
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where [ ]21 uuT =q  is the same of Eq. (17), the vector N contains the FEM form functions obtained in Eq. (18) and 
the vectors Ø  and c are obtained by: 
 

( ) [ ]nr FFFF KK21=Τ ξØ              (20) 
 

[ ]n
T ccc L21=c              (21) 

 
( )ξπ ..sin rFr =              (22) 

 
where ci are the coefficients that multiply the analytical solutions Fr obtained from the solution of the free vibration 
problem of a rod with all end displacements constrained, for K,2,1=r . 

The new degrees of freedom related to the enriched form functions do not have direct physical meaning and they 
were called c degrees of freedom by Zeng (1998b). The enrichment proposed by CEM produce hierarchical models and 
better results than those obtained from h-version of FEM (Arndt, Machado and Hecke, 2002 and 2003). The 
hierarchical refinement produced when the number of analytical functions in the approximated solution is increased was 
called c refinement by Zeng (1998a, b). 
 
5. GENERALIZED FINITE ELEMENT METHOD (GFEM) 
  

The Generalized Finite Element Method (GFEM) is a Galerkin method which main goal is the construction of an 
approximation using local knowledge of the solution that ensures good local and global results.  The GFEM was 
initially named Partition of Unity Finite Element Method (PUFEM) by Melenk and Babuska (1996). The local 
enrichment in the approximated space is incorporated by the partition of unity approach. The classical FEM is a special 
case of the GFEM (Babuska, Banerjee and Osborn, 2004). 

The approximated solution )(xuh  from GFEM can be written, with N nodes, in the following form: 
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where { }iη  are the partition of unity functions, { }jγ  are the functions of enrichment, { }iu  and { }ija  are the degrees of 
freedom, Ne is the number of enriched degrees of freedom and nf  is the number of functions of enrichment. 

The partition of unity functions iη  defined on the supports iw , when { }N
iiw 1==Ω , present the following properties 

(Duarte et al, 2001): 
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The first property implies that the functions iη , Ni ,,1K=  are non-zero only over the supports iw . It is easy to 

verify that the form functions of conventional FEM in Eq. (18) represent a partition of unity. 
In this work, the approximated solution by GFEM in the element domain is: 
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where e

iψ  are the FEM form functions in Eq. (18), jF are the enrichment functions used by CEM in Eq. (22), ne is the 
number of functions of enrichment, ui are the nodal displacements and aij are the degrees of freedom related to the 
functions of enrichment. Figure 3 shows the form functions of GFEM in Eq. (26). This approach allows a hierarchical p 
refinement of GFEM. 



 
 

Figure 3. GFEM form functions. 
  
6. APPLICATION 
 

For the numerical verification of the presented methods, the free vibration of a uniform fixed-free bar in axial 
motion (Fig. 4), with length L, elasticity modulus E, mass density ρ and cross section area A, is analyzed.  

 

 
 

Figure 4. Uniform fixed-free bar. 
 
The exact natural frequencies ( rω ) of the uniform fixed-free bar in axial motion are (Craig, 1981): 
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A parameter β  is used to compare the exact solution with the approximated solutions. The parameter is given by: 
 

E
L 22ωρβ =                    (28) 

 
The results were also compared to those obtained from the h-version of FEM taking a regular subdivision of the 

mesh. In the analyses by CEM and GFEM, the bar was described geometrically by just one element and the successive 
refinements were obtained increasing the number of enriched form functions.  

Figures 5, 6 and 7 present the evolution of relative error for the six earliest eigenvalues of the proposed problem as 
function of the total number of degrees of freedom used in each method. The relative error is presented in logarithmic 
scale and calculated by: 
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where βh  is the approximated eigenvalue (parameter β ) and βe  is the exact eigenvalue obtained by Eq. (27) and 
Eq.(28). 

Analyzing the results obtained for the fixed-free bar, one observes that the proposed GFEM have convergence rates 
greater than those obtained by CEM and h refinement of FEM.  
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To obtain higher eigenvalues with good precision by GFEM, it is necessary a refinement with total number of 
degrees of freedom greater than those necessary for the first eigenvalues with same precision. But for all eigenvalues 
the error decreases very quickly when new enrichment functions are incorporated in GFEM. 

 
 

 
 

Figure 5. Relative error (%) for the 1st and 2nd bar eigenvalues. 
 
 

 
 

Figure 6. Relative error (%) for the 3rd and 4th bar eigenvalues. 
 
 

 
 

Figure 7. Relative error (%) for the 5th and 6th bar eigenvalues. 
 



7. CONCLUSION 
 
This work presents the variational form to the free vibration problem of the uniform straight bar with common 

boundary conditions. The presented procedure allows obtaining the variational form for the free vibration of non 
uniform bars and for the forced vibration of rods. 

Two different methods of enrichment of the FEM were presented.  
In the Composite Element Method (CEM), the local form functions of a FEM conventional element are enriched by 

adding non-polynomial functions obtained from closed form solutions (exact) of the classical theory. This approach 
produces a hierarchical refinement called c refinement. 

 In the proposed Generalized Finite Element Method (GFEM), the same enrichment functions of the CEM are added 
to the FEM form functions by the partition of unity approach. This technique produces a hierarchical p refinement. 

To compare these methods, some eigenvalues of free vibration of a fixed-free bar were calculated. The analytical 
solution of this problem is well-known. The CEM and GFEM were also compared to h refinement of FEM. 

The results have shown that the GFEM presents convergence rates greater than those obtained from CEM and h 
refinement of FEM. However the latest eigenvalues obtained by GFEM in each analysis have poor precision, worst than 
those obtained by CEM. This disadvantage of the proposed GFEM is compensated by the raised rate of convergence of 
the hierarchical p refinement developed. 

The application of GFEM in vibration analysis of trusses and beams and the use of others enriched functions will be 
investigated in future works. 
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