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Abstract.Rapid and accurate evaluation of thermodynamic properties as well as their derivatives is essential for the safety
analysis of light water nuclear reactors (LWRs). In this work, we present a software package for accelerated calculation
of light water thermodynamic properties and derivatures with automatic error control by using the discontinuous finite
element method. The software packege is based on the ASME Steam Table software that calculates thermodynamic
properties of light water with high-degree polynomials. Although the ASME Steam Table provides industry standard
water properties, it is not suitable for the safety analysis of light water nuclear reactors as real-time thermal-hydraulic
simulation is required. Aiming at simulation in real time, the development of a software which has the same capacities
of ASME Steam Table with the results being obtained in reduzed time became necessary. Moreover, the derivatives of the
thermodynamic properties can also be calculated by the present software, which however are not provided by the ASME
Steam Table software. Numerical results showed that the calculation time of most thermodynamic proprieties has been
much reduzed compared with the ASME software while with automatically controled errors.
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1. Introduction

The American Society of Mechanical Engineers (ASME) has feasible software, which calculates thermodynamic and
transport properties, allowing the users to have properties with high order precision. Although this package provides
industry standard water properties, it is not suitable for safety analysis when real-time simulation is required, because of
the high order of the approximation polynomials that this package has. So that, an algorithm that propose a rapid way
to calculate thermodynamics properties was developed. However, it is important to mention that there are other papers
proposing what this paper proposes. Rodriguez et al. (2003) had proposed a similar algorithm, with the limitation that
it only works to a previously specified thermodynamic phase. Pereira and Carmo (1997) have also proposed a method
with the same goal, but it uses the continuous finite elements method, which also limits the algorithm. In this paper, we
showed a method based on, due the computational performance and a great flexibility, the discontinuous finite elements
(Discontinuous Galerkin Method, as is described in Carmo and Duarte, 2000, Duarte, Carmo and Rochinha, 2000 and
Duarte, Rochinha and Carmo, 2000). It is used to generate steam tables to be used in a thermohydraulic simulator. An
important feature of this method is that it uses ASME’s software to calculate thermodynamics properties in a fewer time
than this software, as is showed in this paper, and to get the derivatives of these properties, which are not provide by the
ASME Steam Table software. For any specified domain, a structured and uniform grid is generated. To get more accurate
values close to the curve, each element crossed by the water saturation curve will be treated like a new mesh, as will be
showed in section ’Mesh Generation’. However, these meshes (called ’sub-meshes’) will not be structured, because of
some triangular and quadrangular sub-elements that will be defined by the saturation curve, as will be showed in section
’Sub-Elements Crossed by The Saturation Curve’. Then, we showed the procedure used to obtain, for a specific element,
the coefficients of the polynomials that approach a hypothetic property, in section ’Mathematic Algorithm Description’.
After that, in section ’Execution Time Algorithm Details’, a rapid way to find the element that a point (T,P) is located is
showed. Finally, some results comparing precision and elapsed time between ASME’s package and the proposed method
are analyzed.

2. Mesh Generation

It is known, from the thermodynamics, that in a saturation region, temperature (T ) can be expressed as a function of
pressure (P ), and vice versa (T = f(P ), P = f(T ) ).

Looking to a ’Pressure x Temperature’ diagram, a uniform bi-dimensional mesh will be generated, as well as a smaller
bi-dimensional mesh inside each element that the saturation curve crosses (called ’sub-mesh’, made to guarantee a better
precision close to this curve), as figure 1 shows. To generate these meshes, some arguments will be used to specity
the domain, such as: minimum and maximum temperatures of the domain (Tmin andTmax, respectively); minimum
and maximum pressures of the domain (Pmin andPmax, respectively). The parameters that indicates the quality of the
generated grid are: number of divisions in theT andP axis (NT andNP , respectively); and the number of subdivisions
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in the T andP axis (NTsub andNPsub, respectively). These parameters are especially important in ’Execution Time
Algorithm Details’ section.

Figure 1. Mesh and Sub-mesh Generated to the specified domain

Once generated the meshes, the next step is to define, to each element and sub-element, the respective thermodynamic
phase. The elements and sub-elements that the saturation curve does not cross are already to the calculation of the
approximation polynomials. However, the sub-elements that are crossed by the saturation curve (there is no elements in
this situation) will suffer a new sub-division, as shown in section ’Sub-Elements Crossed by The Saturation Curve’.

3. Sub-Elements Crossed by The Saturation Curve

It is possible to show that, in this case, the sub-elements will be always divided in two polygons, each with three, four
or five sides, when the saturation curve inside the sub-element is approximated by a straight line. However, this paper will
not work with five sides polygons. So, when a pentagon appears, it will be divided in two quadrilaterals, as showed by
dotted straight line in Fig.2.

There are nine different situations that the saturation curve may cross a sub-element. Figure 2 shows these situations,
with numbers indicating the sub-divisions that will be made.

Figure 2. The nine different ways to the curve cross a sub-element

In each region of these sub-elements, approximation polynomials will be generated. Some details of how these poly-
nomials are obtained are showed in ’Mathematic Algorithm Description’ section.
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4. Mathematic Algorithm Description

To get the approximation polynomials, first of all,it is necessary to change the global coordinates into local coordinates
(subsection ’Obtaining Local Coordinates’). Then, these coordinates are used to obtain coefficients of the approximation
polynomials (subsections ’Obtaining the approximation polynomials to local coordinates’ and ’Obtaining the approxima-
tion polynomials to global coordinates’). There are two different polynomials shown in this paper that approximates a
hypothetic property. One of them based on local coordinates (shown in ’obtaining the approximates polynomials to local
coordinates’ subsection) and the other based on global coordinates (shown in ’obtaining the approaches polynomials to
global coordinates’ subsection). The second one uses the coefficients of the firth one polynomial to calculateits own co-
efficients, and it has the advantage that a coordinates transformation is not necessary, so that properties can be calculated
more quickly than the polynomials of the first method.

4.1 Obtaining Local Coordinates

As in this paper, the elements will always be a rectangle, a quadrilateral or a triangle, a brief explanation about how
the local coordinates(ξ1, ξ2) are obtained, is given.

• Rectangles (Fig.3) :ξ1 = 2(T−TM )
∆T , ξ2 = 2(P−PM )

∆P , whereTM , PM are the midpoint element coordinates, and

∆T = (Tmax−Tmin)
NT , ∆P = (Pmax−Pmin)

NP
Obs :−1.0 ≤ ξ1, ξ2 ≤ 1.0

Figure 3. coordinates changingT − P −→ ξ1 − ξ2 to rectangles

• Triangles (Fig.4): considerL1 = areaBGC
areaABC , L2 = areaAGC

areaABC e L3 = areaAGB
areaABC ⇒ L1 + L2 + L3 = 1. The local

coordinate given to an hypothetic point G will beG(L1, L2, L3) (called area coordinates).

Figure 4. coordinates changingT − P −→ L1 − L2 − L3 to triangles

Obs :0.0 ≤ L1, L2, L3 ≤ 1.0

• Quadrilaterals (Fig.5): consider an hypothetic quadrilateral element defined inT −P , the approximationFh(T, P )
written in terms of the local coordinates(ξ1, ξ2) is given by
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Fh(ξ1, ξ2) =
NPinteg∑

i=1

xi ∗ η(ξ1, i) ∗ η(ξ2, i) (1)

And local coordinates

T (ξ1, ξ2) =
NPinteg∑

i=1

T (i) ∗ η(ξ1, i) ∗ η(ξ2, i) (2)

P (ξ1, ξ2) =
NPinteg∑

i=1

P (i) ∗ η(ξ1, i) ∗ η(ξ2, i) (3)

where(T (i), P (i)) are the nodes coordinates of the element′i′.

Figure 5. coordinates changingT − P −→ ξ1 − ξ2 to quadrilaterals

Obs :−1.0 ≤ ξ1, ξ2 ≥ 1.0

4.2 Obtaining Approaches Polynomials to Local Coordinates

ConsiderF an hypothetic thermodynamic property (F (T, P ) = F (T (ξ1, ξ2), P (ξ1, ξ2)) = F (ξ1, ξ2) ). The ap-
proximated function that will be obtained is :

Fh
1 (T, P ) =

npel∑
i=1

x(i, 1) ∗ η(npel, i, ξ1, ξ2) (4)

Where the coefficientsx will be given by a linear-system solutionA x = b1 , WhereA and b are given by :

Ai,j =
∫

Ωe

ηi ∗ ηjdΩ =
NPinteg∑

l=1

w(l) ∗ det(l) ∗ ηi(l) ∗ ηj(l) (5)

b1(j) =
NPinteg∑

l=1

ηi ∗ F (T (ξ1, ξ2), P (ξ1, ξ2)) (6)

The same way to obtain the coefficients of the functionF will be used in derivatives cases ofF . The only necessary
change that has to be made is the independent terms vector, which will be obtained by:

b2(j) =
NPinteg∑

l=1

ηi ∗
∂F (T (ξ1, ξ2), P (ξ1, ξ2))

∂T
(7)
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b3(j) =
NPinteg∑

l=1

ηi ∗
∂F (T (ξ1, ξ2), P (ξ1, ξ2))

∂P
(8)

These linear-systems appears from quadratic residual errors, showed below:

J1 =
∫

Ωe

[
Fh

1 − F
]2

dΩ (9)

J2 =
∫

Ωe

[
Fh

2 −
∂F

∂T

]2

dΩ (10)

J3 =
∫

Ωe

[
Fh

3 −
∂F

∂P

]2

dΩ (11)

Looking for the minimum errors, is imposed that:

∂J1

∂x(i, 1)
= 0 (12)

∂J2

∂x(i, 2)
= 0 (13)

∂J3

∂x(i, 3)
= 0 (14)

From this derivatives, the previously mentioned linear-systems appear.

4.3 Obtaining Approaches Polynomials to Global Coordinates

Although the properties polynomials can be calculated as showed above, the function that we obtained depends on
the local coordinates, and it spends a considerable time to be calculated. Looking for the fastest way to calculated the
properties in execution time, it is interesting to have these properties as a direct function of the Temperature and Pressure
(T, P ), and this method is showed in the explanations below.

1. Quadrilaterals
ConsiderF (T, P ) an hypothetic thermodynamic property, andx1, x2, x3, x4 the coefficients of the local coordinate
polynomial. The new coefficientsC1, C2, C3, C4 will be generated in such a way that we can approximateF (T, P )
by the following function:

F (T, P ) = C1 + C2T + C3P + C4TP (15)

Once the four points of the quadrilateral are
(T1, P1); (T2, P2); (T3, P3); (T4, P4),
five<4 vectors can be made
V1 = (1; 1; 1; 1), V2 = (T1;T2;T3;T4), V3 = (P1;P2;P3;P4), V4 = (T1.P1;T2.P2;T3.P3;T4.P4) and b =
(x1;x2;x3;x4)

The coefficientsP1, C2, C3, C4 will be the solution of the linear system
4∑

i=1

Mij .Cj = Bi, where

M11 = V1 • V1, M12 = V1 • V2, M13 = V1 • V3, M14 = V1 • V4,
M21 = M12, M22 = V2 • V2, M23 = V2 • V3, M24 = V2 • V4,
M31 = M13, M32 = M23, M33 = V3 • V3, M34 = V3 • V4,
M41 = M14, M42 = M24, M43 = M34, M44 = V4 • V4

andB1 = b • V1, B2 = b • V2, B3 = b • V3, B4 = b • V4, where′•′ means scalar product.

2. Triangles
ConsiderF (T, P ) an hypothetic thermodynamic property, andx1, x2, x3 the coefficients of the local coordinate
polynomial. The new coefficientsC1, C2, C3 will be generated in such a way that we can approximateF (T, P ) by
the following function:

F (T, P ) = C1 + C2T + C3P (16)
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Once the three points of the triangle are
(T1, P1); (T2, P2); (T3, P3),
four<3 vectors can be made
V1 = (1; 1; 1), V2 = (T1;T2;T3), V3 = (P1;P2;P3) andb = (x1;x2;x3)

The coefficientsC1, C2, C3 will be the solution of the linear system
3∑

i=1

Mij .Cj = Bi, where

M11 = V1 • V1, M12 = V1 • V2, M13 = V1 • V3,
M21 = M12, M22 = V2 • V2, M23 = V2 • V3,
M31 = M13, M32 = M23, M33 = V3 • V3,
andB1 = b • V1, B2 = b • V2, B3 = b • V3, where′•′ means scalar product.

5. Execution Time and Algorithm Details

In execution time, a hypothetic point(T, P ) localized in domain will be chosen by the user, and the thermodynamics
properties, and the respective derivatives will be given. However, with the goal to have a efficient algorithm, is extremely
necessary to find rapidly the element that the point is localized. Therefore, considering the elements numbered from down
to up, and from the left to the right, the element where an hypothetic point(T, P ) must be found is′ie′, which can be
found by the following expression:

ie = NP ∗ (j − 1) + i (17)

where

i = int(
T − Tmin

∆T
) + 1 (18)

j = int(
P − Pmin

∆P
) + 1 (19)

∆T =
Tmax − Tmin

NT
(20)

∆P =
Pmax − Pmin

NP
(21)

whereint is a function that returns the integer portion of a real number. It is important to emphasize that the parameters
∆T and∆P are not calculated in execution time. In the case of the point is localized in a rectangular sub-element,
similarly expressions will be utilized. If the point is localized in a sub-element which the saturation curve crosses, some
simples verifying should be made, in order to find the region in the sub-element that the point is.

6. Results and Discussion

The analysis was made in a specific domain (Tmin = 300 F;Tmax = 480 F;Pmin = 100 psia;Pmax = 500 psia),
considering two different properties, specific volume and viscosity.
Analysis of the medium error in the mesh as a whole, as well as an analysis looking to a specific point was made. To give
an idea of the time spent by the ASME’s software, and the efficiency of this algorithm, a comparison of the spent time by
these two methods is also showed. It is important to say that in the proposed method, to spend less time as possible, the
higher polynomial order is four (quadrilateral and rectangular cases).

6.1 Error Analysis to a Specific Point

In this analysis, the medium error and the elapsed time were analyzed for two chosen points, for specific volume and
viscosity, as well as the corresponding derivatives. The two analyzed points was(T = 350 F ; P = 350 psia) and
(T = 404 F ; P = 247.5 psia). The first point was chosen because it belongs to an element that the saturation curve
does not cross. The second point was chosen because it is near from the saturation curve. The tables below shows these
analysis.
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Table 1. errors to(T = 350 F ; P = 350 psia)

Properties Medium Error elapsed time (ASME) (s) elapsed time (Program) (s) elapsedtime(ASME)
elapsedtime(Program)

υ 1.6424× 10−4 0.4041× 10−6 0.1017× 10−6 3.973
∂υ
∂T 9.7720× 10−4 0.8833× 10−6 0.1033× 10−6 8.551
∂υ
∂P 1.1299× 10−4 0.7813× 10−6 0.1567× 10−6 4.986
µ 8.3957× 10−4 0.833× 10−6 0.1021× 10−6 8.159
∂υ
∂T 1.6807× 10−3 2.4467× 10−6 0.1067× 10−6 22.931
∂υ
∂P 4.7860× 10−5 2.5101× 10−6 0.1567× 10−6 16.019

Table 2. errors to(T = 404 F ; P = 247, 5 psia)

Properties Medium Error elapsed time (ASME) (s) elapsed time (Program) (s) elapsedtime(ASME)
elapsedtime(Program)

υ 2.9828× 10−3 0.6431× 10−6 0.1241× 10−6 3.973
∂υ
∂T 2.3594× 10−3 0.8742× 10−6 0.1561× 10−6 5.600
∂υ
∂P 5.7344× 10−3 0.6243× 10−6 0.1565× 10−6 3.989
µ 2.9692× 10−4 0.8763× 10−6 0.1271× 10−6 6.895
∂υ
∂T 2.8192× 10−4 2.5302× 10−6 0.1563× 10−6 16.188
∂υ
∂P 1.3769× 10−3 2.2501× 10−6 0.1264× 10−6 17.801

6.2 Error Analysis to the Domain as a Whole

In this analysis, the medium error and the elapsed time were analyzed in a domain as a whole, for specific volume and
viscosity, as well as the corresponding derivatives. The number of points analyzed was 10000, and it was one point in
each element of the mesh.

Table 3. errors to the domain

Properties Medium Error elapsed time (ASME) (s) elapsed time (Program) (s) elapsedtime(ASME)
elapsedtime(Program)

υ 2.6078× 10−5 0.6305× 10−6 0.1628× 10−6 3.9375
∂υ
∂T 6.3434× 10−5 0.9325× 10−6 0.1613× 10−6 5.8123
∂υ
∂P 7.7239× 10−5 0.9416× 10−6 0.3106× 10−6 3.0316
µ 6.1289× 10−6 1.4103× 10−6 0.3204× 10−6 4.4063
∂υ
∂T 2.1386× 10−5 2.6632× 10−6 0.3120× 10−6 8.536
∂υ
∂P 1.9206× 10−5 2.6612× 10−6 0.3113× 10−6 8.549

7. Conclusions

The proposed algorithm is shown to be efficient in calculating thermodynamic properties and their respective deriva-
tives. While the calculated results are within acceptable accurary compared with the ASME’s values (values industrially
accepted), the time spent in calculation are significantly less than the ASME’s software. The present method can be used
in safety analysis of light water nuclear reactors (LWRs). The precision can be as higher as the user specifies, and it is
always significantly faster than ASME’s software. More analysis will be made in specific situations that can generate
problems with the errors when the elements magnitude are very different than the sub-elements magnitude.
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