
Proceedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

ISOTHERMAL AND NON-ISOTHERMAL OSCILLATIONS OF A
PSEUDOELASTIC OSCILLATOR: LYAPUNOV EXPONENTS

ESTIMATION
Luciano G. Machado, luciano@tamu.edu
Dimitris C. Lagoudas, lagoudas@tamu.edu
Texas A & M University, Department of Aerospace Engineering.
College Station, TX, 77843-3141, USA

Marcelo A. Savi, savi@mecanica.ufrj.br
Universidade Federal do Rio de Janeiro, COPPE - Department of Mechanical Engineering.
P.O. Box 68.503, 21941-972, Rio de Janeiro, RJ, Brazil

Abstract. Shape memory alloys (SMAs) have been used in different kind of application including those that explore their
dynamical response. The key characteristics of SMAs are associated with adaptive dissipation related to their hysteretic
behavior and changes in their material properties caused by martensitic phase transformations. This work discusses
the dynamical response of one-degree of freedom (1-DOF) oscillator where the restitution force is provided by an SMA
pseudoelastic element described by a smooth constitutive model built upon the Boyd-Lagoudas model. The case of non-
isothermal heat transfer conditions is here investigated and then compared to the isothermal case. Numerical simulations
shows a very intricate dynamic response of the system, with even chaotic responses. Phase Space curves, Poincaré
Maps and Lyapunov exponents are used to determine the nature of the motion of the system, in both isothermal and
non-isothermal cases.
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1. INTRODUCTION

Shape memory alloys (SMAs) have been used in different applications and their highly nonlinear characteristics can
promote a very intricate dynamic behavior. Several applications in different field of engineering are exploring SMAs’
dynamical response, being associated with both adaptive dissipation related to their hysteretic behavior, and changes in
their material properties caused by martensitic phase transformation.

The hysteretic behavior of pseudoelastic SMAs provides them high energy damping capacity, while the phase trans-
formation changes the thermomechanical properties. Hysteretic damping can be used to attenuate undesired vibrations
of a mechanical system or structure, while variable stiffness can alter the resonance frequency and vibration isolation
frequency of the system. Several references, such as Williams et al. (2002), Salich et al. (2001), Saadat et al. (2002), and
Oberaigner et al. (2002), have investigated the use of SMA braces and cables in structures, for the purpose of vibration
isolation and damping control.

The intrinsic energy dissipation (damping) characteristics of SMAs is a very complex phenomenon and can be a
function of several factors, such as loading history of the material, temperature, amplitude and frequency of the response,
strain loading/unloading rates, and heat transfer of the surrounding medium. Since latent heat can be generated/absorbed
during stress-induced martensitic phase transformations, temperature variations can occur on the material, altering its
pseudoelastic response. Therefore, the thermomechanical coupling is a key factor to be considered. Several references
have experimentally investigated the effect of strain rates and the heat transfer of the medium in the pseudoelastic response
of SMAs, such as Leo etal. (1993), Shaw and Kyriakides (1995), and others.

Even though the evolving thermomechanical properties and high damping capacity are very interesting characteristics
to be explored in passive vibration isolation and damping systems, they can also lead to a very complex dynamic response.
SMAs systems can present a very rich class of responses, where even chaotic behavior can take place. Therefore, it is
of fundamental importance to study the nonlinear dynamic response of SMA systems, especially in non-isothermal heat
transfer conditions, if one wants to use them in vibration isolation control systems. Several references have investigated
numerically the complex dynamic response of SMA systems, including the possibility of chaotic responses, such as in
Feng and Li (1996), Savi and Pacheco (2002), Machado et al. (2003), Lacarbonara and Vestroni (2003), Lagoudas et al.
(2004), Machado and Lagoudas (2004), Bernardini and Rega (2005), and Savi et al. (2006).

This work discusses the dynamical response of SMA system considering a 1-DOF oscillator, where the restitution
force is provided by a pseudoelastic SMA element. A thermomechanical constitutive model built upon the constitutive
model introduced by Boyd and Lagoudas (1996) is used to simulate the SMA constitutive behavior. The model is devel-
oped under the same thermomechanical framework introduced by Boyd and Lagoudas (1996);but with a new hardening
function. This new hardening function guarantees smooth transitions between elastic and transformation regimes. Since
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SMAs exhibit a strong thermomechanical coupling, caused by the presence of latent heat during phase transformation,
the heat equation is introduced into the constitutive formulation, so that the effect of temperature variations caused by
phase transformation can also be predicted. The introduction of the heat equation also leads to a time-dependent behavior
of the SMA device even though the constitutive model is rate-independent. Numerical simulations of the oscillator are
conducted for the cases forced vibrations in both isothermal and non-isothermal conditions, with special attention to the
chaotic vibrations. Phase space plots and Lyapunov exponents are the tools used to classify the motion of the oscilla-
tor. Lyapunov exponents are estimated by employing the classical algorithm by Wolf et al. (1985) adopting a proper
linearization of the system.

2. 1-DOF SMA PSEUDOELASTIC OSCILLATOR

The SMA system analyzed in this article is a single-degree of freedom oscillator (Fig. 1), which consists of a mass
m attached to a SMA element of length L and cross-section area A. The system is harmonically excited by a force
f(t) = F0 sin (2πft).

Figure 1. 1-DOF SMA Pseudoelastic Oscillator

The equation of motion of the oscillator is given by

mẍ + FSMA = F0 sin (2πft) (1)

where x is the mass displacement, f is the forcing frequency, F0 is the amplitude of exciting force, FSMA is the force
exerted by the SMA element.

An important observation is that since the SMA is rate independent, the dissipation in the system is due to hysteresis
only, which is path dependent. As a consequence, no velocity dependent term due to rate dependent dissipation, such as
in viscoelastic materials, appears in Eq. 1. The time dependence will be later introduced by considering the thermome-
chanical coupling into the formulation of the constitutive model for SMAs.

Next session presents the constitutive model used to describe the SMA behavior. Since the model works with stress
σ, and strain ε, and Eq. 1 is described as a function of forces and displacements, one can correlate stress with forces and
displacement with strains through the following relations: FSMA = σ · A and ε = x/L. In all the numerical simulations
the mass was considered to be m = 1kg, and the area and length of the SMA element were A = 2.0 · 10−7m2, and
L = 0.08m, respectively.

2.1 Smooth Constitutive Model for SMAs

This section presents the constitutive model used in this work to simulate the SMA behavior. The model is developed
under the same thermomechanical framework proposed by Boyd and Lagoudas (1996). The main difference between
the model by Boyd and Lagoudas (1996) and the model presented here is the hardening function utilized to describe the
transformation hardening behavior of SMAs, which allows smooth transitions between elastic and transformation regimes.

Originally, the constitutive model proposed by Boyd and Lagoudas (1996) was formulated using a free energy function
and dissipation potentials as in rate-independent plasticity, where for a given strain and temperature loading/unloading
path input, stress output is provided. The constitutive model considers a total specific Gibbs free energy, G, of a polycrys-
talline SMA, as a function of the independent state variables: stress σ, and temperature T , and also of the internal state
variables: martensitic volume fraction ξ, and transformation strain εt. In this formulation the martensitic volume fraction
is assumed to be a scalar quantity, and it includes the volume fractions of all martensitic variants present in the material.
The total Gibbs free energy (Qidwai and Lagoudas, 2000) is then proposed as:

G
(
σ, T, ξ, εt

)
= − 1

2ρ
σ : S : σ− 1

ρ
σ :

[
α (T − T0) + εt

]
+ C

[
(T − T0)− T ln

(
T

T0

)]
− s0T + u0 + f(ξ) (2)
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where T0 is the reference state temperature. The material constants S,α,ρ ,C ,s0 ,u0 are the effective compliance tensor,
effective thermal expansion coefficient, density, effective specific heat, effective specific entropy at the reference state,
and the effective specific internal energy at the reference state, respectively. The form of the hardening function, f (ξ)
, will be presented later. The effective material properties can be defined in terms of the martensitic volume fraction, ξ,
by the rule of mixtures, as (·) = (·)A + ξ

[
(·)M − (·)A

]
, where the superscript A stands for austenitic phase, while the

superscript M stands for the martensitic phase.
Constitutive relations are obtained by following a standard thermodynamic procedure, where the Gibbs free energy

and the internal energy, which are related through the Legendre transformation (Table. 1), are substituted into the first
law and second law of thermodynamics as expressed in the Clausius-Duhem inequality (Coleman and Gurtin, 1967). The
total infinitesimal strain tensor and entropy are derived as follows:

ε = −ρ
∂G

∂σ
= S : σ + α (T − T0) + εt (3)

s = −∂G

∂T
= σ : α + C ln

(
T

T0

)
+ s0 (4)

Table 1 presents a summary of the equations of Boyd and Lagoudas (1996) model.

Table 1. Summary of the Boyd and Lagoudas model equations for polycrystalline SMAs.

Legendre Transformation:

u = G + Ts + 1
ρσ : ε

Evolution Equation of the Transformation Strain (Flow Rule):

ε̇t = Λξ̇, where Λ is the transformation tensor

Dissipation Inequality:(
σ : Λ− ρ∂G

∂ξ

)
ξ̇ = πξ̇ ≥ 0

Thermodynamic Force (π) Conjugated to ξ:

π = σ : Λ + 1
2σ : ∆S : σ + σ : ∆α (T − T0) + ρ∆C

[
(T − T0)− T ln

(
T
T0

)]
+ ρ∆s0T + ρ∆u0 − ∂f(ξ)

∂ξ

Transformation Function Φ:

Φ = π − Y ∗; ξ̇ > 0 or Φ = −π − Y ∗; ξ̇ < 0

where Y ∗ is a measure of dissipation due to microstructural arrangements.

Kuhn-Tucker Conditions:

ξ̇ > 0 or ξ̇ < 0 ; Φ (σ, T, ξ) ≤ 0; Φξ̇ = 0

Consistency Condition:

Φ̇ = 0

The transformation function Φ and the Kuhn-Tucker conditions (Tab. 1) are utilize to define the elastic regime and
conditions for the onset of phase transformation (Boyd and Lagoudas, 1996, and Qidwai and Lagoudas, 2000). Whenever
the transformation function π reaches the threshold value of Y, or in other words, whenever Φ = 0, the martensitic
phase transformation takes place. Moreover, the rate-independent formulation assumes that π is constant during phase
transformation (Boyd and Lagoudas, 1996), and that the consistency condition (as in classical plasticity) can be written
as Φ̇ = 0.

The hardening function f(ξ) is used to describe the interaction between the austenitic and martensitic phases and
martensitic variant themselves. The new hardening function proposed in this work is a general polynomial hardening
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function, which allows a smooth transition between the elastic and transformation regimes. The new hardening function
is not only a continuous function, but also has continuous derivatives. This way, the experimental results can be better
described, specially polycrystalline trained SMA wires that shows smooth transition between elastic and transformation
regimes (Lagoudas et al., 2005, and Machado and Lagoudas, 2006). The new hardening function is of the form:

f (ξ) =


1
2a1

(
ξ + ξn1+1

(n1+1) + (1−ξ)n2+1

(n2+1)

)
; ξ̇ > 0

1
2a2

(
ξ + ξn3+1

(n3+1) + (1−ξ)n4+1

(n4+1)

)
; ξ̇ < 0

(5)

where a1 and a2 are model parameters that are defined as functions of the material parameters. n1, n2, n3 and n4 are the
polynomial exponents that can assume values as either integers or rational numbers.

It is important to mention that the cases of isothermal and adiabatic heat transfer conditions are still rate independent,
but extreme cases. Therefore, heat transfer cases that are neither isothermal nor adiabatic can be modeled by including
the heat equation into the constitutive model. The fully thermomechanical coupled heat equation can be derived, by
combining the total strain (Eq. 3), the entropy (Eq. 4) and the first law of thermodynamics, with the time derivative of
Eq. 4, where the dissipation inequality (Table 1) should not be violated at anytime. Therefore, after some manipulation,
the three-dimensional form of the heat equation is given as follows:

Tα : σ̇ + ρcṪ +
(

Tσ : ∆α− ρ∆cT ln
T

T0
+ ρ∆s0T

)
ξ̇ = −∇ · q + ρr (6)

where the first term on the left-hand side, which is related to the thermoelastic coupling, expresses how the temperature
changes due to a variation of the stress level. The second term is related to the thermal energy, while the third term of the
left-hand side expresses how the temperature of the SMA changes due to phase transformation. The first and second terms
of the right-hand side are related to the heat transfer conditions, where the cases of convection, conduction or resistive
heating can be considered depending on the choice of the heat flux vector q, and the internal heat source ρr.

2.2 One-dimensional reduction of the model

Since the SMA element of the oscillator is considered here to be one-dimensional, it is important to reduced the model
from its three dimensional form to a one-dimensional one. The thermomechanical constitutive model for SMAs can be
reduced for the one-dimensional case by assuming a uniaxial loading of an SMA wire in the x1-direction. The stress
tensor has only one non-zero component, that is

σ11 = σ 6= 0 (7)

where σ is the applied uniaxial stress.
The transformation strain components are given by

εt
11 = εt; εt

22 = εt
33 = −1

2
εt; εij = 0; i, j = 1, ..., 3 (8)

where εt is the uniaxial transformation strain assuming that it results in isochoric deformations.
The double dot product between two 2nd order tensors and between a 2nd order tensor and a 4th order tensor, as well

as the dot product between two vectors that appear in Eq. 2, Eq. 3,Eq. 4, in Tab. 1, and in Eq. 6 can be reduced to a simple
scalar multiplication in the one-dimensional case, where the scalars are the 11- (or 1111-) components of the 2nd (4th)
order tensors, and 1-component of the vectors. For the sake of simplicity, the scalar components will be written without
indices. For example, σ11 will be written as σ and S1111 as S, without boldface. It is also important to mention that the
component Λ11 is defined as Hsgn(σ), where H is the maximum transformation strain for the one-dimensional case and
sgn(σ) gives the direction of the transformation for the cases of tensile or compressive loadings.

The evolution equation of the transformation strain becomes

ε̇t = Hsgn(σ)ξ̇ (9)

The 1D form of the total strain and the entropy are given by

ε = Sσ + α (T − T0) + εt (10)

Now some assumptions related to the heat transfer on the boundary of the SMA element need to be made. The
first assumption is that there is no heat flux leaving or entering the SMA element through their ends. Moreover, radial
heat conduction is disregarded since the SMA element are of small diameters. Therefore, no gradient of temperature is
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assumed inside the material. As a result, the first term of the right-hand side of Eq. 6 is dropped, and the only heat transfer
considered is due to convection. The heat convection is then considered in this formulation as part of the heat input supply,
and it is described by Newton’s law of cooling given by Eq. 11. Also, other forms of heat transfer could be added in the
heat input supply, such as resistive heating, for example.

ρr = h (T − T∞) (11)

where h is the heat convection coefficient, T∞ is the surrounding environment temperature.
The heat equation (Eq. 6) can also be written in a one-dimensional form. Moreover, assuming no temperature gradient

throughout the SMA element, one can have

Tασ̇ + ρcṪ +
(

Tσ∆α− ρ∆cT ln
T

T0
+ ρ∆s0T

)
ξ̇ = h (T − T∞) (12)

2.3 Material Parameters, Model Calibration and Numerical Implementation

At this point it is necessary to define the SMA parameters in order to calibrate the model. The material parameters
that will be used throughout the numerical simulation is given by Tab. 2.

Table 2. Material Constants

EA = 28.0 · 109Pa EM = 21.0 · 109Pa

αA = 22.0 · 10−6K αM = 22.0 · 10−6K

CA = 400 CM = 400

H = 0.03

T0 = 293K ρ∆s0 = −15 · 104

M0f = 213K M0s = 269K

A0s = 233K A0f = 293K

The model parameters can be defined as a function of the material parameters presented in Tab. 2, such as, transfor-
mation temperatures and the entropy difference per unit volume between the phases. Table 3 presents the expressions
describing these model parameters.

Table 3. Model Parameters

Y = 1
2ρ∆s0 (M0s −A0s) + 1

2ρ∆C
[
M0s

(
1− ln

(
M0s

T0

))
−A0f

(
1− ln

(
A0f
T0

))]
a1 = 1

2ρ∆s0 (M0f −M0s) + 1
2ρ∆C

[
M0f

(
1− ln

(
M0f

T0

))
−M0s

(
1− ln

(
M0s
T0

))]
a2 = 1

2ρ∆s0 (A0s −A0f ) + 1
2ρ∆C

[
A0s

(
1− ln

(
A0s

T0

))
−A0f

(
1− ln

(
A0f
T0

))]
ρ∆u0 = 1

2ρ∆s0 (A0f + M0s) + 1
2ρ∆C

[
A0f

(
1− ln

(
A0f

T0

))
+ M0s

(
1− ln

(
M0s
T0

))
+ T0

]
n1 = 0.21, n2 = 0.25, n3 = 0.11, n4 = 0.13

The implementation of the constitutive model follows the same procedure described in Qidwai and Lagoudas (2000).
Basically, given an increment of strain, the incremental form of the SMA constitutive model provides an increment of
stress and temperature as an output. The increment of stress and temperature are calculated by implementing the Return
Mapping Algorithm. The main difference from this work to Qidwai and Lagoudas (2000) is that the heat equation also
needs to be integrated for every increment of stress, whenever the phase transformation is taking place.

The return mapping algorithm solves the thermoelastic-transformation problem defined by the total strain relation,
the flow rule, and the thermodynamic driving force π , by dividing it into two problems using an additive split (Qidwai
and Lagoudas, 2000). At first, a thermoelastic prediction problem assuming that the increment of the transformation
strain is zero is tried. If the predicted thermoelastic state violates the consistency condition, in other words, if it lies
outside the transformation surface (Φ > 0), a transformation correction problem takes place to restore the consistency
condition. This work uses the Cutting Plane Return Mapping Algorithm as the corrector algorithm. The main idea of
the Cutting Plane algorithm is that it relies on integrating the transformation correction equations in an explicit manner
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and on linearizing the consistency condition (Qidwai and Lagoudas, 2000). The Newton’s iteration method is applied to
calculate the increment of martensitic volume fraction. It is important to mention that both return mapping algorithms
utilize the same thermoelastic prediction step.

3. NUMERICAL SIMULATIONS

This section presents the numerical simulations of the 1-DOF pseudoelastic oscillator. The cases of forced vibration are
going to be presented, for non-isothermal heat convection conditions. Later, the isothermal results, previously published
in Machado et al. (2007), will be revisited and compared with the non-isothermal case.

3.1 Forced Vibrations - Non-Isothermal Conditions

The case of forced vibration is now considered, where the SMA oscillator 1 is subjected to a sinusoidal excitation.
For a given fixed amplitude of the exciting force of F0 = 45N, two single frequency excitation cases will be considered
for different excitation frequencies, namely, f = 15Hz and f = 16.7Hz. The heat transfer coefficient was assumed to be
h = −2.25 · 105W/m3K, while the temperature of the surrounding environment was chosen to be T∞ = 293K.

Figure 2 shows the dynamic response of the oscillator during steady state, for the case of F0 = 45N and f = 15.0Hz.
Figure 2a shows the stress vs. strain curve, while Fig. 2b presents the phase space curve. Figure 2c presents the Poincaré
map and the time histories of the Lyapunov exponents are presented in Fig. 2d. It can be notice that the Poincaré map
of Fig. 2c presents a cloud of points, that in principle, could be related to the chaotic motion. However, the analyze of
the Lyapunov exponents spectrum shows that converged values for this simulation are (λ1, λ2) = (−3.38,−4.95). Since
both exponents are negative, the motion of the oscillator for this simulation cannot be classified as a chaotic motion, but
in this case, periodic.

Figure 2e presents the temperature variation of the SMA element for this simulation, after it has reached its steady
state.

Next, we analyze the oscillator’s motion when the excitation frequency is of f = 21 Hz, still for the non-isothermal
case. Figure 3a presents stress vs. strain curve, while Fig. 3b shows the phase-space curve. Figure 3c shows Poincaré
section, and the time history of the Lyapunov exponents are presented in Fig. 3d. It can be noticed that the Poincaré map
presented in 3c appear as a periodic motion of Period-11, since there are apparently 11 points in the Poincaré map. This
periodic motion is confirmed by the analysis of the converged values of the Lyapunov exponents, where both of them
present negative values (λ1, λ2) = (−0.21,−2.63). Figure 3e presents the temperature variation of the SMA element due
to the thermomechanical coupling.

3.2 Forced Vibration - Isothermal Conditions

The forthcoming analyzes is related to the isothermal oscillations. For the purpose of comparison with the non-
isothermal cases, the results presented in Machado et al. (2007) for the simulation of an equivalent 1-DOF pseudoelastic
oscillator will be revisited.

Figure 4 shows the dynamic response of the oscillator during steady state, for the case of F0 = 45N and f = 15.0Hz.
Figure 4a shows the stress vs. strain curve. Phase space curves, Poincaré map and the time series of the Lyapunov
exponents are presented in Fig. 4b, Fig. 4c, and Fig. 4d respectively. Figure 4e shows the temperature variation of the
SMA element during the oscillator vibration. This time, instead of a cloud of points as was observed in the case of
f = 15.0Hz for the non-isothermal case, the Poincaré map of Fig. 4c presents three points, that are related to a period-3
motion. This periodic motion is then confirmed by the analyzes of the spectrum of the Lyapunov exponents, that shows
the converged values for this simulation as being (λ1, λ2) = (−4.74,−4.72).

Next, we analyze the oscillator’s motion when the excitation frequency is of f = 21.0 Hz. Figure 5a presents stress
vs. strain curve, while Fig. 5b shows the phase space curves and while Fig. 5c the Poincaré map. Figure 5d presents
the time history of the Lyapunov exponents, while Fig. 5e shows the temperature change of the SMA element during the
simulation. This time, the Poincaré map presents a cloud of points (strange attractor) that can be confirmed to be of a
chaotic type by the analyzes of the converged values of the Lyapunov exponents. For this simulation there is of a positive
exponent in the spectrum of the Lyapunov exponents (λ1, λ2) = (3.01,−6.34), indicating chaotic response.

4. CONCLUSIONS

This article discussed the nonlinear dynamics and chaos in a pseudoelastic single degree of freedom oscillator. The
restitution force was provided by a SMA element described by a constitutive model built upon the Boyd-Lagoudas model,
that simulates smooth transitions between the elastic and transformation regimes. Numerical simulations have shown
a complex behavior of the oscillator, due to evolving thermomechanical properties and hysteresis. The case of non-
isothermal heat convection oscillations was investigated for two different excitation frequencies, and later compared to
the isothermal case. As one of the tools to analyze the dynamic response of the oscillator, Lyapunov exponents were



Proceedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

(a) Stress vs. Strain (b) Phase Space Plot

(c) Poincaré Map (d) Lyapunov Exponents

(e) Temperature

Figure 2. Forced response of the SMA oscillator for F0 = 45N and f = 15.0Hz

estimated, by employing the classical algorithm proposed by Wolf et al. (1985) using a proper system linearization. The
Lyapunov exponents confirmed the presence of chaotic motion of the oscillator for certain excitation frequency values.
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