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Abstract. The behavior of coupled fluid-structural systems can be modified due to presence of located structural defects.
The study of these modifications allows the engineers, usingnumerical methods of simulation, to foresee the new state
of the system from the evaluation of structural and acoustics responses. The sensitivity analysis of the acoustic and
structural response with respect to structural geometry modification allows to verify the viability of the applicationof
present techniques in fault detention, noise control and optimization procedures. This work presents a formulation for
structural-acoustic sensitivity analysis of an aircraft fuselage model under local structural defects. An efficient sensitivity
analysis technique of acoustic-structural response (Sensitivity of the direct frequency response) with respect to structural
modification is implemented and its precision is tested comparing with results obtained by finite difference technique.
This formulation describes the dependence of acoustic variables (sound pressure, fluid speed), with respect to structure
geometry modification (thickness, length, height). The finite element method is used to acoustic-structural simulation,
with nonsymmetrical formulation adopting structural displacements and fluid pressure as variables. Iterative strategies
are tested to solve the coupled problem. A model of aircraft fuselage will be proposed and its direct frequency response
and sensitivities under structural modifications will be present.
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1. INTRODUCTION

Acoustic-structural coupling has been an important research topic for many years. In particular, for aircraft structures,
the interior sound radiation problems have been an active research area [3]. The vibro-acoustic behavior of cabin-fuselage
systems can be modified due to presence of located structuraldefects. The study of these modifications allows the
engineers, using numerical methods of simulation [1][4], to find the new state of the system. In general, at the low-
frequency range (below approximately 400 Hz) high interioracoustic noise can be generated and transmitted by structural-
borne paths. At these conditions, the structural modifications caused by damages in the structure can modify the dynamic
behavior of acoustic-structural coupled system. In this work, the sensitivity analysis is used to estimate the influence of
the structural damages in the behavior of the whole system. Apartitioned solution technique is implemented to solve the
problem in the frequency domain [4] [7]. The present techniques can be applied in damage detention, noise control and
optimization procedures. In this article, the numerical results in a simplified aircraft fuselage are presented.

2. STRUCTURAL-ACOUSTIC SIMULATION

2.1 Structural domain

We consider a structure domainΩs, fixed onΓ1, subject to surface harmonics forcesFi(x, ω) onΓ2, showed in Figure
1. Assuming harmonics vibrations,ui satisfies the boundary value problem:

σij,j(ui) − ρω2ui = 0 in Ωs (1)

σij,j(ui)nj = Fi on Γ2 ; ui = gsi on Γ1

wereingsi is a know function,σij is Cauchy stress tensor,ρ is structural domain density,nj indicates exterior normal
direction andui point out the structural desplacement.

It is assumed that all field variables behave stationary. Hence, it’s applied a steady-state approach separating time-
dependent variablesFi(x, t) andui(x, t) at field pointx into a frequency-dependt spatial partF̄i(x, ω) and a function
eiωt with ω being the circular frequency:

Fi(x, t) = F̄i(x, ω)eiωt (2)
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Figure 1. Elastic structure domain

ui(x, t) = ūi(x, ω)eiωt

(3)

By using finite-element discretization forn elements; all components̄ui of spatial structural displacement vectorūi

yields ū(x, ω) = [Ns(x)] {us(ω)}. wherein[Ns] represents the matrix of nodal interpolation functions and{us(ω)}
contains the nodal displacements. Using equaton 1 aproxiamtion, the matrix equations are:

[Ks] {u} − ω2[Ms] {u} = {fs} (4)

where,{fs} is the nodal equivalent forces vector.
The discretized expressions involved in the previous formulation yieldnxn matrices of mass[Ms] (symmetric, definite

positive), of stiffnes[Ks] (symmetric, semi-definite positive). For details of the finite elements, used in this work, the
construction of stiffness and mass matrices of structures modelled by beams, plates or shell, see [8],[2].

2.2 Acoustic domain

Keeping the steady-state approach, the basic diferential equations for the harmonic response of an inviscid imcom-
pressivel fluid (air) occupying a bounded domaindΩf , and subject to an prescribed normal displacementun onΓ, is given
by the Helmholtz equation:

∇2p(x, ω) + k2p(x, ω) = 0 Ωf (5)
∂p

∂n
= ω2ρfun Γ

whereink = ω/c is the wave number,c is the speed of sound intoΩf ρf is the fluid density ,ω is the circular frequency
andp(x, ω) is the pressure fluid.

By using finite-element discretization forn elements, the pressure is discretized at the fluid domain as:p̄(x, ω) =
[Nf (x)] {p(ω)}, introducing the row matrix[Nf ] of the interpolation functions and the vector of nodal soundpressures
{p(ω)}. The matrix equation gotten from equation 5 is:

[Kf ] {p(ω)} − ω2[Mf ] {p(ω)} = {ff} (6)

wherein[Mf ] and[Kf ] are the fluid volumetric and inercial matrix respectively.

2.3 Coupled structural-acoustic system

We consider a coupled structural-acoustic system.Ωs andΩf are separate byΓ. The resulting from the action of
pressure forces exerted by the fluid on the structure is:

σij,j(u)ns
j = −pns

i = −pni (7)

these forces produce adicional forces in the{fs} = [Kfs] {p} + {f} and{ff} = −ω2[Mfs] {ü} + {p} vector forces in
Equations 1 and 5.
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{fs} = [Kfs] {p} + {f} (8)

{ff} = −ω2[Mfs] {ü} + {p}

The finite element equations for treating a coupled acoustic-structural system are:
[

[Ks] − ω2 [Ms] [Kfs]
−ω2 [Msf ] [Kf ] − ω2 [Mf ]

] {

{us}
{p}

}

=

{

{fs}
{ff}

}

(9)

and the compact form of equation 9 is:

[Z] {u} = {f} (10)

Harmonic problem frequency response can solved using direct method [4] by equation 11 or particioned method [4]
to reduce computacional cost to matrix equations calculation.

{u} = [Z]−1 {F} (11)

2.4 Frequency Response Sensitivity

The objective of the sensitivity analysis is to find the frequency response derivatives (sensitivity) with respect to the
structural variable (ek), like a objective function first step toward, defined in equation 12. Although there are various uses
for sensitivity information, the main motivation is to estimate the influence of the structural damages in the behavior of
structural-acoustic coupled system.

dI

dek

=
∂I

∂ek

+
∂I

∂ {u}i

d {u}i

dek

(12)

There are a several different methods for sensitivity analysis like finites differences methods and analytical methods.
Factors that affect the choice of method include: the ratio of the number of outputs to the number of inputs, the importance
of computational efficiency and the amount of human effort that is required in the implementation.

Finite-difference formulate are commonly used to estimatesensitivities. Although these approximations are neither
particularly accurate nor computationally efficient, the greatest advantage of this method resides in the ease of implemen-
tation. A common estimate for the first derivative is the forward difference which is given by:

d {u}i

dek

≈
{u}i (ek + δ) − {u}i (ek)

δ
(13)

whereind{u}
i

dek

is the frequency response sensitivity,ek is thekth structural variable or defect. In the limiting caseδ → 0

the frequency response will reach the analytical derived sensitivity. This aproximation requiresk + 1 calculatios of{u}i

to gain all sensitivities.
Analytic approaches such as adjoint and direct methods [4],[1] are the most accurate and efficient for sensitivity

analysis. They are, however, more involved than the other approaches presented so far because they require knowledge
of the governing equations and the algorithm that is used to solve them, in order to derive and implement a program that
solves the corresponding sensitivity equations. Adjoint methods are particularly attractive since the cost of computing the
gradient of a given function is independent of the number of design variables.

Performing a partial derivative operation on equation 9 with respect to the number to independent variables (ek),
results in:

[Z′]k {u}i + [Z]k
d {u}i

dek

=0 (14)

where[Z′] is the first derivative of impedance matrix, with respect toek variables, given by:

[Z′]k =

[

[K′
s] − ω2[M′

s] [K′
fs]

−ω2[M′
fs] [K′

f ] − ω2[M′
f ]

]

(15)
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wherein, [K’] and [M’] are the derivatives of stiffness and mass matrix, with respect toek.
In order to calculate objective function sensitivity of theequation 12, following expression is obtained from equation

14:

d {u}i

dek

= −[Z]−1

k [Z′]k {u}i (16)

and replacing this result into the total derivative equation 12 to obtain:

dI

dek

=
∂I

∂ek

+
∂I

∂ui

− [Z]−1

k [Z′]k {u}i (17)

The approach using Equation 17 is called direct methods. Note that solving ford{u}i

dek

requires the solution of the
matrix equation 16 for each variableek.

Returning to the total sensitivity equation 12, there is an alternative option when computing total sensitivitydI
dek

, given
by:

dI

dek

=
∂I

∂ek

+
∂I

∂ui

Ψk[Z′]k (18)

The auxiliary vectorΨk can be obtained by solving the adjoint equations, given by:

[Z]kΨk = −
∂I

∂ {u}i

(19)

The vectorΨk is usually called the adjoint vector and is substituted intoequation 18 to find the total sensitivity. In
contrast with the direct method, the adjoint vector does notdepend on the design variables,ek, but instead depends on the
function of interest,I.

Therefore, if the number of design variables is greater thanthe number of functions for which we seek sensitivity in-
formation, the adjoint method is computationally more efficient. Otherwise, if the number of functions to be differentiated
is greater than the number of design variables, the direct method would be a better choice.

3. APLICATION EXAMPLE

The structural response of the fuselage section and associated interior noise were calculated using BEAM elements for
solid domain and QUAD4 elements for fluid domain. It is considered approximated dimensions and materials properties
of a full scale aircraft fuselage section. The pre and post-processing of the numerical model were made using the GID
program. The fuselage Frequency Response Function (FRF) and operational modes shapes of the coupled system are
obtained using a finite element system called MEFLAB. In Figure 2. a2m of diameter fuselage model is represented, and
its dimensions and properties are given.

Structure                      

156 elements            

E=70 Gpa         

A=0.01 m 2   

I=8.33e -8 m4  

dens=2700 kg/m 3   

Poisson=0.3

Fluid                   
528 elements     
density=1225 kg/m 3         

c=343 m/s

Figure 2. Bi-dimensional model of aircraft fuselage

In Figure 3. and figure 4. the system frequency response to a point excitation force and three first vibration modes
and the pressure field of coupled system are represented. Thethree firsth mode take place in8.3Hz, 16.5 and20Hz
respectively, and they are structural predominant.
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Figure 3. Acoustic frequency response and pressure field.
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Figure 4. Structural frequency response and shape mode deformation.

Structural modifications, like beam thickness reduction for example, cause changes in acoustic harmonic response.
Figure 5. shows frequency response and pressure field changes with a beam element, located in the circle, has 50%
thickness reduction.

In the same manner, preceding structural modifications cause changes in frequency structural response and deforma-
tion of shape, showed in Figure 6.

The Figure 7. shows the comparison between analytical and finite differences method to calculate the fluid pressure
sensitivity of fuselage model, is represented. The Figure 7. shows the frequency response sensitivity of fuselage model
for a local defect in one beam element.

In Figure 8. the rate of change in the sound presure is presented for different local defects. Each defect consists
in to change the cross-sectional height of each element of beam. For damping coupled system, it is possible to see the
defect that produces greater sensitivity in a given acoustic point. Figure 8. shows acoustic Sensitivity for differentdefect
locations in the fuselage structure for each operational frequency and sensitivity field of fluid pressure with respect to
local defect in the circulated beam element.

4. CONCLUSIONS

Using sensitivity analysis procedure is possible to know the response variations produced by structural defects of an
acoustic-structural system. For the particular bi-dimensional fuselage simplified model and excitation frequency con-
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Figure 5. FRF and interior pressure field to a point force excitation without and whit local defect
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Figure 6. FRF and deformation shape to a point force excitation without and with local defect
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Figure 7. Validity of analytical sensitivity analysis of fluid pressure

sidered, sensitivity of the acoustic response with respectto defect locations and beam section sizes, was found. This
procedure can be applied in structural damage detention. This work is in progress to extend it to use of faster and com-
putational cheaper methods to acoustic-structural resolution procedure and sensitivity analysis. Likewise the study of
three-dimensional fuselage model under structural defect, like cracks.
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Figure 8. Acoustic Sensitivity for diferent local defects for each operational frequency
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