
NUMERICAL INTEGRATION BY GAUSS-LEGENDRE QUADRATURE 
OVER TRIANGULAR DOMAINS 

 
Luís Henrique Gazeta de Souza 
Universidade Estadual Paulista “Júlio de Mesquita Filho” – Faculdade de Engenharia de Ilha Solteira, Av. Brasil Centro nº56 , Ilha 
Solteira, São Paulo, Brasil 
e-mail: lhzeta@dem.feis.unesp.br 
 
João Batista Aparecido 
Universidade Estadual Paulista “Júlio de Mesquita Filho” – Faculdade de Engenharia de Ilha Solteira, Av. Brasil Centro nº56 , Ilha 
Solteira, São Paulo, Brasil 
e-mail: jbaparecido@dem.feis.unesp.br 
 
Abstract. The finite element method has been used as a powerful tool to obtain approximate solution to several 
phenomena common in engineering field. When using the finite element method to discretize a given problem some 
integrals may arise and its computation must be done numerically. For two dimensional domains as in this work it will 
be two dimensional integrals. For triangular finite elements there will be two dimensional integrals over triangular 
domains. For such domains there are not so much methods to accomplish that integration with accuracy. In this work 
it is proposed another algorithm to do numerical integration over two dimensional domains shaped as triangles. To 
accomplish that a first linear transform is done to change the general triangle into a right triangle having unitary 
sides. Afterwards the standard triangle is transformed nonlinearly into a standard rectangle suitable for the two 
dimensional Gauss-Legendre integration. The well known Gauss-Legendre quadrature points and weights for the two 
dimensional integration over a standard rectangle are then mapped back to the standard triangle and then to the 
general triangle. By using a supposed new transformation it was possible to obtain a set of Gauss-Legendre symmetric 
points and weights. 
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1. INTRODUCTION 
 
 The Finite Element Method (FEM) is a main numerical tool used to obtain approximate solution for mathematical 
problems that arise from physical modeling, for example, those ones associated to Fluid Mechanics and Heat Transfer. 
This method, computationally developed and coded, shows good results when applied to solve  problems under steady 
state and unsteady state flow regimes, for linear and non-linear equations, and to one, two and three-dimensional 
domains. 
 An issue, among others, that need attention in the context of FEM is about doing the integrals that appear during the 
discretization process of a given problem. Such integrals must be done for each kind of element being used. Effective 
numerical methods to perform that job are not easily found in literature. The most used types of elements described in 
papers are the triangular and quadrilateral. 
 Hammer (1956), till we know, was the first to accomplish a solution to the problem of doing two-dimensional 
numerical integration of a function defined over a general triangular domain. In the same year Turner et al. (1956) 
presented the first work about the Finite Element Method, followed by Clough (1960) and Argyris (1963). Afterwards, 
many others researchers such as Cowper (1973), Lannoy (1977), Laurie (1977), Reddy and Shippy (1981) were 
elaborating and improving the integration formulae. 
 The purpose of this work is to obtain a method or algorithm to do numerical integration over general triangle shapes 
using and adapting the ideas of the Gauss – Legendre quadrature. 
 
2. NUMERICAL METHOD FORMULATION TO DO INTEGRATION OVER A TRIANGLE 
 
 Initially, to find a suitable integration method to be used with FEM it is necessary to transform a general triangle 
into an intermediate standard right triangle with the following corner coordinates (0,0); (1,0) and  (0,1). To map a 
general triangle into the standard one it is necessary to do:    
 
 
 
 
 
 
 
 
 
 

Figure 1. Coordinate transformation from a general triangular element into a right angle triangular element. 
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Such linear geometric transformation can be written as follows, 
 

     
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⇔

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

b

a
aa
aa

y
x

b

a
y
x

aa
aa

ˆ
ˆ

~
~ 1

2221

1211

2221

1211

λ
µ

λ
µ  

 
    (1a,b)

                                                                        
or 
                                           
     byaxaλandayaxaµ

~~
22211211 ++=++= . (2)

                                                              
It is enough to find the coefficients in equation (1), and for that is used the following constraints: 

 

     

byaxa

ayaxa
byaxa

ayaxa
byaxa

ayaxa

~
1

~0

~
0

~1

~
0

~0

322321

312311

222221

212211

122121

112111

++=

++=
++=

++=
++=

++=

 

 
  

 
 

(3)

 
Solving the linear system (3), we get explicit equations for 211211 ,, aaa  and 22a : 
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It is known from analytical geometry that the area, A, of a general triangle can be obtained from the coordinates of 

its corners. Such equation is well-known and is expressed by 
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Using this equation into equations (4a-d) it is possible to rewrite them as: 
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      Using the definition of the Jacobean for the transformation T1 
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we obtain from equations (1a-b) and (6a-d) the following result 
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Then, let us consider the integration over a general triangular domain, Ω, 
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With the previous transformation was possible to change the integration over a general triangle, Ω, into an 

integration over a standard right triangle, Ω~ , however, it is not yet useful to apply directly the Gauss-Legendre 
quadrature, so it is necessary to do another transformation in order to change the standard right triangle domain into a 
standard square domain. To do such transformation, T2, we propose the following formulae  
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 This transformation is an extension of that one proposed by Rathod et al. (2004). The difference is that this one is 
symmetric, while Rathod’s isn’t. In Figure 2 it is shown the transformation from the triangular domain, Ω~ , to the new 
transformed square domain, Ω̂ . 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Coordinate system transformation in order to transform the Standard right triangle domain into one Standard 
square.  

 
The Jacobean of T2 transformation is 
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Then the integral ΩI ~  in equation (9) can be changed as follows 
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In the right side of equation (12) the integrals intervals are [0,1] for both axes u or v. This fact is incompatible with 

the interval definition for Legendre polynomials that is [-1,+1], so we do one last transformation T3 in order to translate 
and scale the interval [0,1] into an interval [-1,+1]. To accomplish that we use the following linear formulae 
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Transformation, T2 
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 As this transformation T3 is linear, see Figure 3, thus the Jacobean is constant and equal to 
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Figure 3. Linear transformation T3  from the standard square element, Ω̂ , into the master element, Ω

(
. 

 
Thus the integral ΩI ˆ  in equation (13) can be modified to 
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If we do the following definition 
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then equation (15) becomes 
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Considering m – Gauss-Legendre integration points for the axis ξ and n – integration points for the axis η, thus the 

integral  ΩI
(  can be approximated as 
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where ξi and wi, i = 1,2,…,m are the Gauss-Legendre integration points and weights for the ξ-axis, and ηj and wj, 
j = 1,2,…,n are the integration points and weights for the η-axis. It is interesting to remember that 
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Once obtained an approximation to the integral ΩI

(  it is possible to obtain through equations (12), (15), (18) to 

obtain an approximation for the integral ΩI  as intended initially 
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Transformation, T3
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For the previous equation (20) the Gauss-Legendre points and weights for integration over a triangular domain were 
tabulated and are shown in Table 1. 

 
Table 1. Gauss-Legendre points and weights for numerical integration. 

 
kµ  kλ  kw  

m = n = 2   
0.1889958E+00 0.1889958E+00 0.1971688E+00 
0.7053418E+00 0.1279915E+00 0.1250000E+00 
0.1279915E+00 0.7053418E+00 0.1250000E+00 
0.4776709E+00 0.4776709E+00 0.5283122E-01 

m = n = 3   
0.1063508E+00 0.1063508E+00 0.6846439E-01 
0.4718246E+00 0.8452624E-01 0.8563571E-01 
0.8372983E+00 0.6270166E-01 0.3858025E-01 
0.8452624E-01 0.4718246E+00 0.8563571E-01 
0.3750000E+00 0.3750000E+00 0.9876543E-01 
0.6654738E+00 0.2781754E+00 0.3782109E-01 
0.6270166E-01 0.8372983E+00 0.3858025E-01 
0.2781754E+00 0.6654738E+00 0.3782109E-01 
0.4936492E+00 0.4936492E+00 0.8696116E-02 

m = n = 4   
0.6702145E-01 0.6702145E-01 0.2815038E-01 
0.3185529E+00 0.5797526E-01 0.4538621E-01 
0.6467312E+00 0.4617250E-01 0.3574555E-01 
0.8982626E+00 0.3712631E-01 0.1512537E-01 
0.5797526E-01 0.3185529E+00 0.4538621E-01 
0.2755563E+00 0.2755563E+00 0.7123562E-01 
0.5594389E+00 0.2194579E+00 0.5316166E-01 
0.7770200E+00 0.1764613E+00 0.2096742E-01 
0.4617250E-01 0.6467312E+00 0.3574555E-01 
0.2194579E+00 0.5594389E+00 0.5316166E-01 
0.4455469E+00 0.4455469E+00 0.3508770E-01 
0.6188322E+00 0.3582546E+00 0.1132675E-01 
0.3712631E-01 0.8982626E+00 0.1512537E-01 
0.1764613E+00 0.7770200E+00 0.2096742E-01 
0.3582546E+00 0.6188322E+00 0.1132675E-01 
0.4975896E+00 0.4975896E+00 0.2100365E-02 

 
Those results were produced using a computational application developed and coded within a FORTRAN95 

compiler. 
 
3. RESULTS 
 
3.1. Doing integration numerically 
 
 Here are presented some examples of function integration over triangular domains by using equation (20), 
developed in this work. It is done integration over two right triangles, one equilateral triangle, one isosceles triangle and 
one scalene triangle, respectively.  All following results converged to the exact value, obtained by analytical integration, 
for all decimal places shown, and using up to four Gauss-Legendre integration points for each axis or up to sixteen 
points for the two directions. 
 

• Right triangles with corners at (0,0), (1,0) and (0,1) 
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• Equilateral triangle with corners at (0,0), (0,2) and ( 3,1) 
 

     ∫ ∫
+

−

+ ==
3

0

2
3

3

3
3

763139379.9

x

x

yx dydxeI  

 
   (23)

 
• Isosceles triangle with corners at (-4,1), (-1,1) and (-2,5 ,-3) 
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• Scalene triangle with corners at (-3,-2), (-2,1) and (5,-1) 
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3.2. Integrating over meshes with triangular elements 
 
 Numerical integration of function over meshes is a crucial part of the spatial discretization process of a given 
problem by using the Finite Element Method. Such division of a problem domain into sub domains, generally, is done 
using triangular or quadrilateral finite elements. Now we show that the methodology developed in this paper works well 
to integrate function over triangular meshes.  
 Meshes used in this paper were produce using software developed and coded by Aparecido (2006).  
 
3.2.1. Mesh 1 – Unitary Square 
 
 Next is presented the mesh data and drawing. In the mesh data it is shown: total number of elements; total number of 
nodes; node number; x-coordinate value; y-coordinate value; element number; element type; and element nodes. 
 
Table 2. Triangular mesh data. 
 
Mesh=2D - GerMal2D v1.0.1 
(Mesh number of elements; Mesh number of nodes) 
8                                           9 
(Node number; Node x-coordinate; Node y-coordinate) 
1   0,000000000000000E+000   0,000000000000000E+000 
2   5,000000000000000E-001    0,000000000000000E+000 
3   1,000000000000000E+000   0,000000000000000E+000 
4   0,000000000000000E+000   5,000000000000000E-001 
5   5,000000000000000E-001    5,000000000000000E-001 
6   1,000000000000000E+000   5,000000000000000E-001 
7   0,000000000000000E+000   1,000000000000000E+000 
8   5,000000000000000E-001    1,000000000000000E+000 
9   1,000000000000000E+000   1,000000000000000E+000 
(Element number; Element type; Element nodes) 
1                            TRG01            1   5   4 
2                            TRG01            1   2   5 
3                            TRG01            2   6   5                                                                                                                                                       
4                            TRG01            2   3   6 
5                            TRG01            4   8   7 
6                            TRG01            4   5   8 
7                            TRG01            5   9   8 
8                            TRG01            5   6   9 
 

Figure 4. Triangular mesh drawing with 8 
elements and 9 nodes. 



 
Table 3. Results for integration over the elements of the Mesh 1. 

 
 yxeyxf +=),(  
 Number of Gauss-Legendre points 
Elements m = n = 1 m = n = 3 m = n = 5 m = n = 10 m = n = 80 

1 0,219381832 0,210419759 0,210419643 0,210419643 0,210419643 
2 0,219381832 0,210419759 0,210419643 0,210419643 0,210419643 
3 0,361699493 0,346923532 0,346923342 0,346923342 0,346923342 
4 0,361699493 0,346923532 0,346923342 0,346923342 0,346923342 
5 0,361699493 0,346923532 0,346923342 0,346923342 0,346923342 
6 0,361699493 0,346923532 0,346923342 0,346923342 0,346923342 
7 0,596341647 0,571980207 0,571979893 0,571979893 0,571979893 
8 0,596341647 0,571980207 0,571979893 0,571979893 0,571979893 

 
 

3.2.2. Mesh 2 – Annular  Sector 
 

This mesh has an annular sector shape with center at (2,2), inner radius equal to 10, outer radius equal to 20, 
anti-clock starting angle equal to 30º, and finishing angle equal to 120º, with 30 triangular elements and 24 nodes. 
Figure 5 show mesh aspect and some data. Global mesh data were omitted due to lack of space. 

 
Table 4. Results for numerical integration over triangular elements of an annular sector shaped mesh. 

 
 3)2(),( yxyxf +=  
 Number of Gauss-Legendre points 

Elements m = n = 1 m = n = 3 m = n = 5 m = n = 10 m = n = 80 
1   98140,094587567 100088,120971646 100088,120971645 100088,120971645 100088,120971645 
2 162348,062491771 159890,165718841 159890,165718840 159890,165718840 159890,165718840 
3 176848,248156279 181009,320656773 181009,320656771 181009,320656771 181009,320656771 
4 280283,380905540 277337,484854510 277337,484854508 277337,484854508 277337,484854508 
5 295135,595971858 302995,483935827 302955,483935824 302955,483935824 302955,483935824 
6 453007,308014356 449932,534730965 449932,534730961 449932,534730961 449932,534730960 
7 464405,062915799 477842,602239938 477842,602239933 477842,602239933 477842,602239933 
8 695299,773725571 692705,873971134 692705,873971127 692705,873971128 692705,873971127 
9 697499,790018244 719103,854480729 719103,854480722 719103,854480723 719103,854480725 
10 1023705,62175699 1022500,78093151 1022500,78093150 1022500,78093150 1022500,78093150 
11 33837,1218891009 38399,0255259639 38399,0255259635 38399,0255259635 38399,0255259635 
12 78486,9654792743 81666,0569996588 81666,0569996580 81666,0569996581 81666,0569996582 
13 58375,0793615302 67085,772428400 67085,772428400 67085,772428400 67085,772428399 
14 132413,118174273 138912,061702864 138912,061702863 138912,061702863 138912,061702863 
15 94144,130780128 109308,550012289 109308,550012288 109308,550012288 109308,550012288 
16 210161,816564474 221948,927176831 221948,927176828 221948,927176829 221948,927176830 
17 144110,266967487 168753,017885327 168753,017885325 168753,017885325 168753,017885325 
18 317871,938205747 337551,530994278 337551,530994275 337551,530994275 337551,530994277 
19 211585,134961503 249547,583298554 249547,583298551 249547,583298551 249547,583298551 
20 462385,326004949 493285,187546262 493285,187546257 493285,187546257 493285,187546256 
21 2021,777556002 3884,188185626 3884,188185626 3884,188185626 3884,188185626 
22 11431,7592114370 44563,9188452999 44563,9188452997 44563,9188452997 44563,9188452997 
23 2732,530823015 5928,060465467 5928,060465467 5928,060465467 5928,060465467 
24 17401,719793995 22889,544900026 22889,544900026 22889,544900026 22889,544900026 
25 3574,312846116 8681,747469442 8681,747469442 8681,747469442 8681,747469442 
26 25392,235070887 34332,682164398 34332,682164398 34332,682164398 34332,682164398 
27 4560,791272289 12298,259689498 12298,259689498 12298,259689498 12298,259689498 
28 35807,537228552 49587,319776376 49587,319776376 49587,319776376 49587,319776376 
29 5706,275535407 16945,512182855 16945,512182855 16945,512182855 16945,512182855 
30 49088,313676790 69417,173015240 69417,173015240 69417,173015240 69417,173015240 

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2.3. Mesh 3 – Quadrilateral Polygon 
 

Mesh 3 is quadrilateral polygon with corners at (-5,6); (5,-6); (-8,12) and (2,9). Such domain was divided into 24 
elements having 20 nodes. Mesh data were also omitted due to its big extension. Following we show the mesh 
drawing in Figure 6. 
 

Table 5. Numerical values for integration over the triangular elements with the quadrilateral mesh. 
 
 3)2(),( yxyxf +=  
 Number of Gauss-Legendre points 

Elements m = n = 1 m = n = 3 m = n = 5 m = n = 10 m = n = 80 
1 -9,740950584 -41,533852358 -41,533852358 -41,533852358 -41,533852358 
2 -1,098930358 -29398480902 -29398480902 -29398480902 -29398480902 
3 390,429317368 546,383751085 546,383751085 546,383751085 546,383751085 
4 400,082270869 669,701620370 669,701620370 669,701620370 669,701620370 
5 8956,551444124 8854,747137225 8854,747137225 8854,747137225 8854,747137225 
6 5922,472035443 7196,984736689 7196,984736689 7196,984736689 7196,984736689 
7 -0,02513122558 -11,329832175 -11,329832175 -11,329832175 -11,329832175 
8 72,703402519 142,965695529 142,965695529 142,965695529 142,965695529 
9 5959,573825412 6436,834516059 6436,834516059 6436,834516059 6436,834516059 
10 11043,146947790 10928,773804615 10928,773804615 10928,773804615 10928,773804615 
11 75096,779265792 71315,516261574 71315,516261574 71315,516261574 71315,516261574 
12 86411,279197092 83060,203079789 83060,203079788 83060,203079788 83060,203079788 
13 9,447358131 213,178387225 213,178387225 213,178387225 213,178387225 
14 1026,827333450 1287,180457899 1287,180457899 1287,180457899 1287,180457899 
15 27099,827008459 28003,457156033 28003,457156032 28003,457156032 28003,457156033 
16 56363,440552322 52748,995891204 52748,995891203 52748,995891203 52748,995891203 
17 275374,093240490 261721,678452331 261721,678452329 261721,678452329 261721,678452329 
18 370522,000745491 346592,230016641 346592,230016637 346592,230016637 346592,230016638 
19 119,832275390 966,194907407 966,194907407 966,194907407 966,194907407 
20 4569,449475288 5070,311235894 5070,311235894 5070,311235894 5070,311235894 
21 78841,103722466 80279,503624133 80279,503624132 80279,503624132 80279,503624132 
22 170570,998408566 157316,158895763 157316,158895762 157316,158895762 157316,158895762 
23 710583,852502895 677803,214178248 677803,214178241 677803,214178241 677803,214178243 
24 1024583,82502750 952341,698359746 952341,698359737 952341,698359738 952341,698359740 

 
 Integration over mesh elements was accurate and the results shown in Tables 3-5 have very good convergence. So, 
the methodology developed here has a great potential as an integration tool to be applied to several kind of problems in 
which is necessary integration over triangular domains. Meshes presented in this work are small just for example 
purpose, but this methodology is scalable up to meshes with millions of elements. The mesh generator developed by 
Aparecido (2006) and used in this work has a friendly graphic interface that allows a comprehensive visualization of the 
mesh and an easy understanding of elements and nodes relationship.  
 
 
 

Figure 5. Annular sector mesh with 30 elements and 24 nodes.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. CONCLUSIONS 
 

Numerical solution of integrals is an issue that is necessary in several applications. When the integrand function do 
not allow an analytic integration; when the domain geometry has great complexity, and so son, a way to accomplish 
such task is numerical integration.  There are in the related literature some integration methods that were developed 
aiming to solve a variety of different kinds of integration. In this work we tried to develop a methodology that has a 
strong theoretical basis and is suitable algorithm to computational implementation. 

Integrands that appear in Section 3.1 were chosen in order to let know the reader about the analytic solution of each 
integral as well to verify that the numerical solution obtained using the formulation (20) developed in this paper 
provides results that agreed very well with the analytic ones. For that agreement it was necessary just to use up to four 
Gauss-Legendre integration points for each direction or up to sixteen points for the two-dimensional domain. 

Integrals applied over meshes and presented in Section 3.2 also presented very good results when done using the 
Gauss-Legendre Quadrature methodology developed in this work for integration over triangular domains. Several 
others cases were tested and our experience show that is possible to obtain convergence with up to eight decimal places 
using just three Gauss-Legendre integration points for each direction or nine integration points for two axes. Using 
eighty Gauss-Legendre points is not necessary we showed it just for testing and documenting. High degree of 
Gauss-Legendre integration is necessary just for very complex function defined over big domains. For simple function 
or for small domains integration degrees of 3, 4 or 5, generally, are enough.  This fact is enough to set viable this 
methodology in applications to solve Fluid Mechanics and Heat Transfer, among others problems, by the Method of 
Finite Elements. Also, this methodology can be used in any method in which is needed integration over triangular 
domains. Gauss-Legendre points and weights here developed and shown were derived directly from the classic and 
well-posed Gauss-Legendre points and weights for one dimensional integration problems, thus avoiding other 
techniques that may need new ones weights and integration points for integration over two dimensional domains. We 
believe that this technique can be successfully extended to three or higher dimensionality integrations. 

Jiang (1992), Tang, Cheng and Tsang (1995), Winterscheidt and Surana (1993), Codina (1998) and several others 
authors validated the Finite Element Method obtaining good results when solving Fluid Mechanics and Heat Transfer 
problems. Finally, this methodology developed here has shown to be simples, robust and reliable to accomplish 
integrations over two dimensional triangular domain with accuracy and, relative, low computational costs. Also, this 
technique is very useful working together the Finite Element Method, providing a tool to compute several integrations 
that appear during application of such method. 
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