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Abstract. The well-known Lagrangian points that appear in the planar restricted three-body problem are very 
important points for astronautical applications. They are five points of equilibrium in the equations of motion, what 
means that a particle located at one of those points with zero velocity will remain there indefinitely. The collinear 
points (L1, L2 and L3) are always unstable and the triangular points (L4 and L5) are stable in the case studied in this 
paper (Earth-Sun system). They are all very good points to locate a space-station, since they require a small amount of 
∆V (and fuel) for station-keeping. The triangular points are especially good for this purpose, since they are stable 
equilibrium points. In this paper, the elliptic planar restricted three-body problem is combined with numeric integration 
and the conjugate gradient method to solve the two point boundary value problem, that can be formulated as: ”Find an 
orbit (in the elliptic three-body problem context) that makes a spacecraft to leave a given point A and goes to another 
given point B, arriving there after a specified time of flight". Then, by varying the specified time of flight it is possible to 
find a whole family of transfer orbits and study them in terms of the ∆V required, energy, initial flight path angle, etc. 
To solve this problem the following steps are used: i) Guess a initial velocity iV

r
, so together with the initial prescribed 

position ir
r

 the complete initial state is known; ii) Integrate the equations of motion from t0 = 0 until tf; iii) Check the 
final position fr

r
 obtained from the numerical integration with the prescribed final position and the final time with the 

specified time of flight. If there is an agreement (difference less than a specified error allowed) the solution is found and 
the process can stop here. If there is no agreement, an increment in the initial guessed velocity iV

r
 is made and the 

process goes back to step i). The method used to find the increment in the guessed variables ithe conjugate gradient 
method. This combination is applied to the search of families of transfer orbits between the Lagrangian points and the 
two primaries of the Earth-Sun system, with the minimum possible energy. 
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1. INTRODUCTION 
 

This paper has the goal of studying models and methods used for the calculation of optimal orbital trajectories, in 
the sense of using a small amount of fuel. It considers the transfer of the space vehicle between the Earth and 
Lagrangian Points in the Sun-Earth system. The Lagrangian Points are determined using the model of the circular 
restricted three-body problem, but the trajectories are studied with two options for the modeling of the dynamics: the 
three-dimensional circular restricted problem and the elliptic restricted three-body problem. 

So, the problem is to transfer a space vehicle between two given points with the minimal possible amount of fuel. 
There are several important factors in a transfer of this type, like for example, the time used with the transfer, state of 
the vehicle, etc. Therefore, in this work, the amount of fuel is the critical element of the maneuvers, although the time 
required by the maneuver it is also verified.  

 
2. THE PLANAR CIRCULAR RESTRICTED THREE-BODY PROBLEM 
 

The circular planar restricted problem of three-bodies is defined as follows: two bodies revolve around their center 
of mass under the influence of their mutual gravitational attraction and a third body moves in the plane defined by the 
two revolving bodies. Therefore, the model assumes that two point masses (M1 and M2), called primaries, are orbiting 
their center of mass in circular orbits and a third body with negligible mass M3  (not influencing the motion of the M1 
and M2) is orbiting the primaries. The objective is to find the behavior of the third body M3. 

Being x,y a system of fixed coordinates (inertial) and y,x  a system that rotates with angular velocity n , the same of 
the motion of M1 and M2 and  t* is the time (M1 and M2 stay fixed in this system).  

The equations of motion of the third particle M3 are given by (Szebehely, 1967):  
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The canonical system of units is used, and it implies that: 
1) The unit of distance is the distance between M1 and M2; 
2) The unit of mass is M = m1 + m2; 
3) The angular velocity of the motion of M1 and M2 is assumed to be one; 
4) The gravitational constant G is one; 
5) The period of the angular motion (M1, M2) is π2 . 

 
The Jacobian integral may be obtained by multiplying the equations of motion Eqs. (1) by (the first one) and  

(the second one), adding the results and integrating with respect to the time. The result is: 
x& y&

 
C)y,x(2yx 22 −=+ Ω&&                                                                                                                                          (4) 

 
2.1. The Lagrangian Points 
 

The Lagrangian points that appear in this system are very important points for astronautical applications. They are 
five points of equilibrium in the equations of motion, what means that a particle located at one of those points with zero 
velocity will remain there indefinitely (Szebehely, 1967). Therefore, they are also called stationary points. Making the 
derivatives to obtain the positions of these points, we obtain: 
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There are five solutions for this system of equations. The collinear points (L1, L2 and L3) are always unstable and the 

triangular points (L4 and L5) are stable in the case studied in this paper (Earth-Sun system).  
 

2.2. Extension to the Three-dimensional Problem 
 

The equations of motion for the three-dimensional circular restricted problem can be obtained by adding the 
component out of the plane in the equations obtained above. All the hypotheses are the same. There are many reference 
systems that can be used in this problem (Szebehely, 1967). In the present research it is used the rotating system, similar 
to the plane case (Prado, 1996). In these conditions the equations of motion are given by: 
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where r1 and r2 are the distances of  M1 and M2, respectively.  

 
2.3. Extension to the Elliptic Problem 
 

In this situation the motion assumed for the two primaries are elliptic and not circular. The canonical system of units 
is maintained. Among the several systems of reference existent to describe that problem, we used in this research the 
inertial system and the pulsating-rotating system. In the fixed system the origin is placed in the mass center of the two 
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massive bodies M1 and M2. The horizontal axis x  is the line that connects M1 and M2 (in the initial instant) and the 
vertical axis y  is perpendicular to the x .  

In this system M1 and M2 follow elliptic trajectories: 
 

νµ cosrx1 −= ,                                                                                                                                                           (9)  
νµ sinry1 −= ,                                                                                                                                                         (10) 

( ) νµ cosr1x2 −= ,                                                                                                                                                   (11) 
( ) νµ sinr1y2 −= ,                                                                                                                                                    (12)  

 
where r is the distance between the primaries, given by: 
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 and ν  is the true anomaly of M

2
. The equations of motion of the particle in this system are: 

 
( )( ) ( )

3
2

2
3

1

1

r
xx

r
xx1x −

−
−−−

=
µµ&&                                                                                                                               (14) 

( )( ) ( )
3
2

2
3

1

1

r
yy

r
yy1y −

−
−−−

=
µµ&&                                                                                                                     (15) 

where the two points present the second derivative with respect to the time, r
1
 e r

2 are the distances between the space 
vehicle and M

1
 and M

2
, respectively, given by expressions:  
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In the rotating-pulsating system, the origin is placed in the mass center of the two massive primaries. The horizontal 

axis (x) is the line that connects the two primaries all time. It rotates with variable angular velocity to follow the 
trajectories of M1 and M2, so that the two massive primaries are always on this axis. The vertical axis (y) rotates with the 
same angular velocity to remain perpendicular to the horizontal axis. Besides this rotation, the system also pulses, so 
that, the positions of the massive primaries remain fixed. For this reason, it is necessary to multiply the unit of distance 
by the value of the instantaneous distance between the primaries (r). Then, the positions of the primaries are given by: 
 

µ−=1x , µ−= 1x2 ,  0yy 21 == .                                                                                                                        (18)                       
 
Therefore, the unit of distance is not constant, but it changes with the distance between the primaries. In this 

reference system, the equations of motion of the particle are given by: 
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and there is also an equation that relates the time with the true anomaly of the primaries, given by: 
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p
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where the point present the derivative with respect the true anomaly of the primaries and: 

p =                                                                                                                                                               (22) ( 2e1a − )
 
is the semi-lactus rectum of the ellipse. 
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The equations that relate the two systems are: 
 

νν sinrycosrxx −=                                                                                                                                                 (23) 
νν cosrysinrxy +=                                                                                 (24) 

( ) r/sinycosxx νν +=                                                                                (25) 
( ) r/sinxcosyy νν −=                                                                                                                      (26)  

      
for the positions and: 
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for the velocities. 
 
3. The Two Point Boundary Value Problem  
 

The problem that is considered in the present paper can be formulated as: 
”Find an orbit (in the three-body problem context) that makes a spacecraft to leave a given point A and goes to 

another given point B, arriving there after a specified time of flight".  
To solve this problem the following steps are used: 
 i) Guess a initial velocity iV

r
, so together with the initial prescribed position ir

r
 the complete initial state is known;  

ii) Integrate the equations of motion from t0 = 0 until tf;  
iii) Check the final position fr

r
 obtained from the numerical integration with the prescribed final position. If there is 

an agreement (difference less than a specified error allowed) the solution is found and the process can stop here. If there 
is no agreement, an increment in the initial guessed velocity iV

r
 is made and the process goes back to step i).  

The method used to find the increment in the guessed variables is the conjugate gradient method (Prado, 1996; Press 
et alli, 1989). This combination is applied to the search of families of transfer orbits between the Lagrangian points and 
the two primaries of the Earth-Sun system, with the minimum possible energy.  

 
 4. Numerical Results 
 
 The results are organized in graphs of the energy and the velocity increment ( V )∆  in the rotating system 
against the time of flight. To obtain the minimum values for the transfers, the maneuvers were parameterized in terms of 
the time of flight and then the minimum energy transfers for each time of flight were computed by the minimization 
method and compared, to obtain the global minimum. 
 
- Trajectories to the L1   
 
 The point equilibrium L1 is the collinear Lagrangian point that exists between the Sun and the Earth, it is 
located about 1,496,867 km from the Earth. The results presented below shows the transfer to the Lagrangian point L1 
that was found in this research. For the circular problem, the local minimum for a transfer to the L1 occurs for a time of 
flight close to 23 days, requires an energy E = -0.50929. For the elliptic problem (eccentricity e = 0.3), the local 
minimum for a transfer to the L1 occurs for a time of flight close to 12 days, requires an energy E = -0.76098.  
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- Trajectories to the L2 
 
 The point equilibrium L2 is the collinear Lagrangian point that exists behind the Earth, it is located about 
1,506,915 km from the Earth. The results presented below shows the transfer to the Lagrangian point L2 that was found 
in this research. For the circular problem, the local minimum for a transfer to the L2 occurs for a time of flight close to 
105 days, requires an energy E = -0.49459. For the elliptic problem (eccentricity e = 0.3), the local minimum for a 
transfer to the L2 occurs for a time of flight close to 6 days, requires an energy E = -0.745.  
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- Trajectories to the L3 
 
 The point equilibrium L3 is the collinear Lagrangian point that exists on the opposite side of the Sun (when 
compared to the position of the Earth), it is located about 149,595,740 km from the Sun. The results presented below 
shows the transfer to the Lagrangian point L3 that was found in this research. For the circular problem, the local 
minimum for a transfer to the L3 occurs for a time of flight close to 105 days, requires an energy E = -0.56587. For the 
elliptic problem (eccentricity e = 0.3), the local minimum for a transfer to the L3 occurs for a time of flight close to 105 
days, requires an energy E = -0.69794.  
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- Trajectories to the L4 
 
 The point equilibrium L4 is one of the triangular Lagrangian points. It is located on the third vertice of the 
equilateral triangle formed with the Sun and the Earth, in the semi-plane of positive y. It has the stability property 
makes the fuel required for station-keeping almost zero, therefore, it is an excellent location for a space station. The 
results presented below shows the transfer to the Lagrangian point L4 that was found in this research. For the circular 
problem, the local minimum for a transfer to the L4 occurs for a time of flight close to 52 days, requires an energy         
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E = -0.90708. For the elliptic problem (eccentricity e = 0.3), the local minimum for a transfer to the L4 occurs for a time 
of flight close to 58 days, requires an energy E = -0.96855.  
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- Trajectories to the L5 
 
 The point equilibrium L5 is the other triangular Lagrangian point. It is located on the point symmetric to L4, in 
the semi-plane of negative y. It is also stable and an important point for the same reasons that L4.  The results presented 
below shows the transfer to the Lagrangian point L5 that was found in this research For the circular problem, the local 
minimum for a transfer to the L5 occurs for a time of flight close to 105 days, requires an energy E = -0.35012. For the 
elliptic problem (eccentricity e = 0.3), the local minimum for a transfer to the L4 occurs for a time of flight close to 105 
days, requires an energy E = -0.43628.  
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5. Conclusions 
 
 In this paper, the restricted three-body problem is used to find families of transfer orbits between the Earth and 
all the five Lagrangian points that exist in the Earth-Sun system.  

Two models were used, considering or not the eccentricity of the primaries. From the results, it is clear that the 
inclusion of the eccentricity can help mission designers to save fuel. The differences are large enough to be used in 
favor of the mission. 
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