
Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

APPLICATION OF THE GENERALIZED EXTREMAL OPTIMIZATION 
(GEO) ALGORITHM IN AN ILLUMINATION INVERSE DESIGN 

 
Anderson Chaves Mossi, mossi@mecanica.ufrgs.br 
Paulo Smith Schneider, pss@mecanica.ufrgs.br 
Francis Henrique Ramos França, frfranca@mecanica.ufrgs.br 
Departamento de Engenharia Mecânica – Universidade Federal do Rio Grande do Sul – UFRGS – Porto Alegre, RS, Brazil 
 
Fabiano Luis de Sousa, fabiano@dem.inpe.br 
Instituto Nacional de Pesquisas Espaciais – INPE – São José dos Campos, SP, Brazil 
 
Antônio José da Silva Neto, ajsneto@iprj.uerj.br 
Instituto Politécnico, IPRJ – Universidade do Estado do Rio de Janeiro – UERJ – Nova Friburgo, RJ, Brazil 
 
Abstract. This work applies a stochastic algorithm, named generalized extremal optimization (GEO) method, for the 
illumination design of a three-dimensional rectangular environment. As will be shown, the illumination design is 
inherently an inverse problem, in which the design surface is subjected to two conditions – the luminous flux and null 
luminous power – while the light sources are left unconstrained. The design requires the determination of the locations 
and of the luminous power inputs of the light sources to satisfy the prescribed uniform luminous flux on the design 
surface. The GEO method is specially advantageous to be applied in complex problems where traditional gradient-
based methods may become inefficient, such as when applied to a nonconvex or disjoint design space, or when there 
are different kinds of design variables in it. The present study presents the solution for the luminous power required in 
the lamps to satisfy the condition of uniform illumination in the design surface. The results are compared with those 
obtained from the Truncated Singular Value Decomposition (TSVD) regularization of the system of equations resulting 
from the radiative exchange analysis. Although the analysis considers a fixed position of the lamps, the methodology 
can be extended to determine the optimal locations of the lamps. 
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1. INTRODUCTION  
 

The first methods for the analysis and design of artificial lighting of environments were established in the beginning 
of the 20th century. Since in this early age, it was already known that the luminous flux on a given working area was not 
only dependent on the power of the light sources, but also on the absorbing and reflecting effect of the remaining 
surfaces of the enclosure. Later advances provided methods for calculation of light radiation exchanges as well as for 
the characterization of the light sources behavior.  

In addition, many studies have been carried out to provide recommending lighting for the many possible 
applications, from human and industrial activities to plants growth (Boast, 1953; Mark, 2000). In general, not only the 
intensity of light (luminous flux intensity) is specified, but also it is required uniformity of the lighting. The major goal 
of the illumination designer is to determine the position and power of the light sources so that a uniform luminous flux, 
at a specified value, is achieved on the working area. 

The first works to deal with the illumination design were presented by Harrison and Anderson (1916 and 1920), 
who proposed an experimental procedure, the now called lumen method, in which the luminous flux on a working plane 
was determined from a combination of a series of proposed assembling of punctual and continuous light sources. In the 
forties, Moon (1941) and Moon and Spencer (1946a, 1946b) proposed the interreflection method for the design of three-
dimensional rectangular enclosures having any aspect ratio and being formed by diffuse surfaces. The method presented 
the advantage of allowing the calculation of the brightness of a surface, accounting for the reflection of light. Due to the 
complexities of the required calculations, the method required the use of tables. The lumen method (Phillips, 1981, 
IESNA, 2000, and OSRAM, 2005) is probably the most widely employed for the design of illumination, for its 
algebraic relations provide a rapid, simple procedure to determine the power of the lamps, although the method lacks on 
precision. A more elaborate solution can be achieved by the WinElux code (EEE, 2002), which contains a database of 
different types of lamps. In spite of their widespread use, both the lumen method and the WinElux code are in general 
not capable of providing solutions that can satisfy uniformity of luminous flux on the design surface (Seewald, 2006). A 
new approach has been proposed in the works of Smith Schneider and França (2004) and Seewald et al. (2006), in 
which the illumination design is treated as an inverse problem. Starting from the radiation exchange relations within an 
enclosure, these two works proposed a methodology based on the regularization of the ill-conditioned system of 
equations that resulted from the numerical treatment of the luminous exchange relations. Both works employed the 
truncated singular value decomposition (TSVD), obtaining a luminous flux on the design that was satisfactory both in 
terms of intensity and uniformity. 



This paper considers an inverse illumination design of a three-dimensional rectangular enclosure. The objective is 
to find the luminous fluxes on the light sources located on the top surfaces that satisfy the specified uniform luminous 
flux on the design surface, located on the bottom of the enclosure. All the surfaces that form the enclosure are assumed 
diffuse and having spectral hemispherical emissivities that are wavelength independent in the visible region of the 
spectrum. The work considers first a thermal energy balance in the visible light region, which is then converted into 
luminous quantities. A zonal type formulation is applied for the discretization of the radiation exchanges. The results are 
obtained from the coupling between the forward solution radiation exchanges heat transfer and the Generalized 
Extremal Optimization (GEO) algorithm (Sousa et al., 2003). The proposed methodology is capable of providing 
satisfactory solutions for the required luminous power in the lamps. As in the works of Smith Schneider and França 
(2004) and Seewald et al. (2006), the locations of the lamps are fixed, although the present optimization technique could 
be used to determine the optimum locations of the lamps in the analysis.  
 
2. PHISYCAL AND MATHEMATICAL MODELING 
 
2.1. Luminous flux and thermal radiation 
 

Incandescent lamps are a common source of light. Their main component is a resistance device that reaches very 
high temperatures (typically around 2900 K) under the passage of electric current. At such temperatures, a considerable 
amount of thermal radiation is dissipated in the visible region of the wavelength spectrum, 0.4 µm ≤ λ ≤ 0.7 µm. The 
luminous flux, in units of lumens/m2 or lux, can be related to the thermal radiation flux, in units of W/m2, by means of 
the following relation: 
 
 )()( wl qCVq λ=            (1) 
 
where )(lq  and )(wq  correspond respectively to the luminous flux (lumens/m2) and to the thermal radiation flux (W/m2) 
for a specific wavelength λ, C is a conversion factor constant, equal to 683 lumens/W, and Vλ is the so called photopic 
spectral luminous efficacy of the human eye, which takes into account the human eye sensitivity to the thermal radiation 
comprehended in the visible region of the spectrum. As shown in Fig. 1, the spectral luminous efficacy peaks with a 
value of 1.0 for a thermal radiation in the wavelength of 0.555 µm, and then decay monotonically to zero as the lower 
and upper limits of the visible region, 0.4 µm and 0.7 µm, are approached. In general, a source of light is composed by 
radiation covering the entire range of the visible region. In such a case, Eq. (1) must be applied to each infinitesimal 
amount of the spectral energy and then be integrated in the visible spectrum. Such procedure will be demonstrated in 
the next section. 
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Figure 1. Photopic luminous efficacy of the human eye. 
 
2.2. Radiation exchanges in an enclosure 
 

A procedure for the evaluation of radiation exchanges in an enclosure is well established in the modern literature 
(Siegel and Howell, 2002). In this work, this will be accomplished by first subdividing the enclosure into sufficiently 
small elements, so that all thermal quantities can be assumed uniform. Next, the energy balance will be applied to each 
element j of the enclosure. Depending whether the temperature or the net radiative heat flux are known, the energy 
balance can take the following forms, respectively: 
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where )(

,
w
oqλ  is the spectral outgoing radiative heat flux, in W/(m2µm), which takes into account both emission and 

reflection; )(
,
w
rqλ  is the spectral net radiative heat flux, in W/(m2µm) , which takes into account emission minus 

absorption; )(
,
w
beλ  is the spectral blackbody emissive power, in W/(m2µm), which is solely dependent on the temperature 

of the surface element; λε is the spectral emissivity; and j kF −  is the view factor between surface elements j and k. In 
the above equations the superscript (w) was maintained in all energy terms to indicate thermal energy quantities. In a 
next step, such terms will be converted into luminous quantities. To accomplish this, it should be first noted that the 
thermal energy flux (W/m2) in the wavelength λ centered in the interval dλ can be related to the spectral energy flux by: 
 
 λ= λ dqdq ww )()(            (4) 
 
The corresponding luminous flux (lumens) in the wavelength λ centered in the interval dλ follows from Eq. (1): 
 
 λ= λλ dqCVdq wl )()(           (5) 
 
Finally the total luminous flux is obtained through the integration of the above equation in the entire visible region: 
 

 ∫
=λ

λλ λ=
µm7.0

µm4.0

)()( dqCVq wl           (6) 

 
Applying steps (4) to (6) to all the spectral thermal energy fluxes of Eqs. (2) and (3), one obtains the energy balance in 
terms of the luminous fluxes: 
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or 
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where )(l

oq  is the outgoing luminous flux, in lumens/m2 or lux, which takes into account both emission and reflection; 
)(l

rq  is the net luminous flux, in lumens/m2, which takes into account emission minus absorption; )(l
be  is the blackbody 

luminous power, in lumens/m2, which is solely dependent on the temperature. To obtain Eqs. (7) and (8), it was 
assumed that the spectral emissivity jε  was independent of the wavelength in the visible region of the spectrum. 
 
3. THE GENERALIZED EXTREMAL OPTIMIZATION ALGORITHM 
 

The generalized extremal optimization (GEO) algorithm (Sousa et al., 2003) is a new evolutionary algorithm 
devised to improve the Extremal Optimization method (Boettcher and Percus, 2001) so that it could be easly applicable 
to virtually any kind of optimization problem. Both algorithms were inspired by the evolutionary model of  Bak and 
Sneppen (1993). Following the Bak and Sneppen (1993) model, in GEO L species are aligned and for each species it is 
assigned a fitness value that will determine the species that are more prone to mutate. One can think of these species as 
bits that can assume the values of 0 or 1. Hence, the entire population would consist of a single binary string. The 
design variables of the optimization problem are encoded in this string that is similar to a chromosome in a genetic 
algorithm (GA) with binary representation (see Fig. 2).  



For each species (bit) is assigned a fitness number that is proportional to the gain (or loss) the objective function 
value has in mutating (flipping) the bit. All bits are then ranked from rank 1, for the least adapted bit, to rank N for the 
best adapted. A bit is then mutated (flipped) according to the probability distribution (1). This process is repeated until a 
given stopping criterion is reached and the best configuration of bits (the one that gives the best value for the objective 
function) found through the process is returned. 

The practical implementation of the canonical GEO algorithm to a function optimization problem is as follows: 
1. Initialize randomly a binary string of length L that encodes N design variables of bit length lj (j = 1, N). For 

the initial configuration C of bits, calculate the objective function value V and set Cbest = C and Vbest = V. 
2. For each bit i of the string, at a given iteration: 

a) flip the bit (from 0 to 1 or 1 to 0) and calculate the objective function value Vi of the string 
configuration Ci; 

b) set the bit fitness as ∆Vi = (Vi - Vbest). It indicates the relative gain (or loss) that one has in mutating 
the bit, compared to the best objective function value found so far; 

c) return the bit to its original value.  
3. Rank the bits according to their fitness values, from k = 1 for the least adapted bit to k = L for the best 

adapted. In a minimization problem, higher values of ∆Vi will have higher ranking, and otherwise for 
maximization problems. If two or more bits have the same fitness, rank them randomly with uniform 
distribution.  

4. Choose with uniform probability a candidate bit i to mutate (flip from 0 to 1 or from 1 to 0).  Generate a 
random number RAN with uniform distribution in the range [0,1]. If Pi(k) = k τ−  is equal or greater than 
RAN the bit is confirmed to mutate. Otherwise, choose a new candidate bit and repeat the process until a 
bit is confirmed to mutate. 

5. Set C = Ci and V = Vi,  with i the bit confirmed to mutate in step 4.  
6. Repeat steps 2 to 6 until a given stopping criterion is reached. 
7. Return Cbest and Vbest found during the search. 

 

 
 

Figure 2: Design variables encoded in a binary string. 
 

Note that in step 4 any bit can be chosen to mutate, but the probability of a given chosen bit be confirmed to mutate 
is dependent on its rank position. The ones more adapted (with higher rank values) are less prone to have its mutation 
confirmed and only the least adapted bit (rank = 1) is always confirmed to mutate, if chosen. The probability of 
mutating the chosen bit is regulated by the adjustable parameter τ . The higher the value of τ , the smaller the chance 
of a bit (with rank greater than 1) be mutated. The possibility of making moves that do not improve the value of the 
objective function is what allows the algorithm to escape from local optima.  

In a practical application of the GEO algorithm, the first decision to be made is on the definition of the number of 
bits that will represent each design variable. This can be done by simply setting for each variable the number of bits 
necessary to assure a given desirable precision for each of them. For continuous variables the minimum number (m) of 
bits necessary to achieve a certain precision is given by: 

 

( )
2 1

u l
j jm

x x

p

 −
 ≥ +
 
 

          (9) 

 
where l

jx  and u
jx  are the lower and upper bounds, respectively, of the variable j (with j = 1, N), and p is the desired 

precision. The physical value of each design variable is obtained through the equation: 
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where jI  is the integer number obtained in the transformation of the variable j from its binary form to a decimal 
representation. 

 
3.1. Taking into account discrete and integer variables 
 

As we have seen above, continuous variables are represented in the GEO in binary form, with precision p. Integer 
variables have precision p = 1 and may be treated such as presented in Lin and Hajela (1992) for a binary coded GA. If 
the relation ( ) 2 1u l N

j jx x− = −  is satisfied, there is a string of bits that will encode all variables biunivocaly. If there is 

not a direct correspondence between one sequence of bits and the variables, the smallest number m that satisfies 

( )2 1m u l
j jx x> − +  is calculated and for each of the N variables it is associated one sequence of bits. To the remaining 

2m N−  strings, integers out of the range of the variables are attributed, which are treated as unfeasible solutions. (How 
GEO deals with constraints is described in the next sub-section). Integers within the feasible interval may also be used. 
In this case, one or more variables will be associated with more than one sequence of bits. Although this last option 
avoids the need of imposing additional constraints to the problem, it implies, in the case of the GEO, a non-uniform 
probability for the selection process of the bit to be mutated in step 4. 

Discrete variables may be treated in the same way as the integer variables. The process is carried out in two steps: 
first, to each discrete variable an integer number is associated and, second, one of the approaches described before is 
used to code them into binary form. 

 
3.2. How GEO deals with constraints 
 

Constraints in design optimization can be handled by many different ways. A simple, and probably the most 
common, way to deal with constraints in algorithms such as the GA and the simulated annealing (SA) is to incorporate 
them into the objective function via penalties. In evolutionary algorithms the penalty function approach have been 
extensively used in different types of implementations. Methods that deal directly with the constraints have also been 
proposed in order to avoid the process of setting the penalty parameters, since their values are highly problem 
dependent and if not properly set can lead to sub-optimal designs. Alternatively, adaptive penalty schemes have been 
proposed in such a way that the parameters are set automatically, without the need of fine tuning them for a particular 
application.    

For GEO, side constraints (the bounds on the design variables) are directly incorporated when the design variables 
are encoded in binary form. Equality and inequality constraints are easily incorporated into the algorithms by simply 
setting a high (for a minimization problem) or low (for a maximization problem) fitness value to the bit that, when 
flipped, leads the configuration to an unfeasible region of the design space. For example, in a minimization problem, 
when the fitness values are attributed to the bits in step 2, the ones that when flipped result in a non-feasible 
configuration receive a high value for ∆Vi (the same value is attributed to all bits in which this occurs). This means that 
those bits will be considered well adapted and will have a low probability to be flipped in step 4. However, they are not 
forbidden to be flipped, what makes the algorithm able to walk through infeasible regions of the design space. This 
gives a great flexibility to the algorithm that can, for example, be applied to design spaces that present disconnected 
feasible regions. In fact, the GEO can even start from an infeasible solution. In this case a dummy value is attributed to 
Vbest in the initialization of the algorithm, which is replaced by the first feasible value of V found during the search.  

It must be pointed out here, that other ways to take into account constraints in GEO may also be easily implemented, 
including the penalty function approach. However, the approach described above is very simple to apply and does not 
introduce any new adjustable parameter in the algorithm.  
 
4. PROBLEM DEFINITION 
 

Figure 3 presents a schematic view of a three-dimensional enclosure, which is formed by surfaces that are diffuse 
and have spectral hemispherical emissivities that are wavelength independent in the visible region of the spectrum. The 
design surface, where a luminous flux is to be specified, is located at the bottom of the enclosure; the incandescent 
lamps, the light sources, are located on the top surface. The remaining of the enclosure is formed by walls that do not 
emit but reflect incident light. The length, width and height of the enclosure are designated by L, W and H, respectively. 

As depicted in Fig. 4, the enclosure is divided into finite-sized square elements, ∆x = ∆y = ∆z, in which the 
luminous energy balance will be applied. For designation of elements in the design surface, lamps and wall, indices jd,  
jl and jw will be used throughout this analysis. 



In this analysis, it is considered that a uniform luminous flux (in lumens/m2 or lux), designated by )(l
specifiedq , is 

specified on the design surface. The problem consists of finding the luminous power on each light source element 
located on the top surface so that this requirement is achieved. The luminous exchanges in the enclosure are governed 
by Eqs. (7) and (8). 
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Figure 3. Three-dimensional rectangular enclosure. 
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Figure 4. Division of the bottom and two side surfaces of the enclosure into finite size elements. 
 

For the elements on the side walls, one single condition is known, 0)( =l
be , since they do not emit light. On the 

other hand, no condition is known for the light source elements. In fact, the conditions on the light sources are to be 
found from the two required conditions ( )()( l

specified
l qq =  and 0)( =l

be ) on the design surface. 
The use of an optimization technique such as GEO allows the adoption of the conventional forward solution 

technique. In this approach, the net luminous fluxes )(
,
l

jrq  (alternatively, it could be the blackbody luminous power, 
)(

,
l

jbe ) are imposed on the light sources, and the condition of null luminous powers, 0)( =l
be , are imposed on the 

remaining elements on the design surface and walls. This leads to a system of equations on the unknown outgoing 
luminous flux of each surface j, )(

,
l

joq , formed by Eqs. (7) and (8). This system is in general well-conditioned and can be 
solved by any standard matrix inversion technique, such as Gaussian elimination, or by iterative techniques, such as  the 
Gauss-Seidel method. Once the system is solved for the outgoing luminous fluxes, Eqs. (7) and (8) can be again applied 
to find the unknown conditions (the net luminous flux or the blackbody luminous power) of each surface element. At 
this point in the solution, the net luminous fluxes on the design surface elements are compared with the imposed value, 

)(l
specifiedq . Different solutions can then be chosen with the aid of GEO, and the designer can select the solutions that 

better satisfy the illumination specifications on the design surface. It is important to stress that in inverse design, 
contrarily to inverse determination of parameters, the availability of more than one solution for the problem is a positive 
aspect rather than a difficulty. 

 
 
5. SOLUTION PROCEDURE 
 

The problem consists in minimizing the error function F, which is a measure of the difference between the specified 
luminous flux on the design surface, ( )l

specifiedq , and the luminous fluxes on the design surface that are obtained from a 

given choice of net luminous flux on the light sources, ( )
,
l

r jdq , that is: 
 

2( ) ( )
,

l l
specified r jd

jd
F q q= −∑           (11) 
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To minimize the above relation, the following procedure is followed: 
1. Define the positions of the light sources; 
2. Define the required precision, p, to find minimum number of bits, m, using Eq. (9); 
3. Start with a given set of luminous powers on the light sources; 
4. Solve the system of equations described in Section 3 to find the net luminous fluxes on the design surface 

elements, ( )
,
l

r jdq ; 
5. Choose a new set of luminous powers on the light sources according to the GEO algorithm; 
6. Repeat from step 4 until satisfactory solutions for the luminous powers on the light sources are found. 

 
6. RESULTS AND DISCUSSION 
 

The case considered in this work consists of a three-dimensional enclosure as shown in the schematic representation 
in Fig. 3. The aspect ratio of the enclosure base is W/L = 0.8; the dimensionless height is H/L = 0.2. The selection of the 
other dimensions of the enclosure will require a few considerations. First, the design surface ought not to cover the 
entire extension of the base, since the portions close to the corners would be mainly affected by the reflections from the 
side walls, not from the luminous radiation from the light source elements on the top surface. Therefore, the design 
surface dimensions are taken as Ld/L = 0.8 and Wd/L = 0.6. The amount and positions of the light sources will be 
proposed later on. 

The boundary conditions are: for the design surface elements, no boundary condition was prescribed but the 
expected dimensionless net luminous flux (defined as ( ) ( )

, , /l l
r jd r jd specifiedQ q q= ) is 0.1, −=jdrQ ; for the wall elements, the 

luminous emissive power is zero; the light source elements are left unconstrained to be found by application of the GEO 
algorithm. The hemispherical emissivities in the visible light region of the design surface, of the light sources and of the 
walls are εd = 0.9, εl = 0.9 and εw = 0.5, respectively. The problem is at this point completely defined except for the 
location of the light source elements, which will be discussed next. 

To illustrate the proposed methodology, it is considered that the light source elements are distributed on the top 
surface according to the schematic of Fig. 5. The light sources are indicated by circular dots. The shaded area represents 
the design surface at the bottom surface. This configuration, proposed in the works of Smith Schneider and França 
(2004) and Seewald et al. (2006), has proved an interesting choice in the sense that it allowed the determination of 
luminous powers of the light sources that satisfied the prescribed luminous flux on the design surface with acceptable 
accuracy. For this reason, this same configuration is adopted in the present work, although the methodology can be 
applied to any other light sources locations. Due to the problem symmetry, indicated by the dashed lines, only a quarter 
of the domain needs to be solved: 0 ≤ x/L ≤ 0.5, 0 ≤ y/L ≤ 0.4). 

 
 

x 

y 

W/2

L/2

 
 

Figure 5. Locations of the design surface (shaded area) and light source elements (circular dots) in one quarter of  the 
bottom and top surfaces for case 1: light sources covering the entire top surface. Dashed lines indicate symmetry. 

 
The procedure presented in Section 4 was then applied to find the required net luminous flux on the light source 

elements. The interval specified in the GEO algorithm was [0, 50] for each light source shown in Fig. 5, with a 
precision of 0.2. These results were compared with a previous work (Smith Schneider and França, 2004), in which the 
same case was solved with the TSVD regularization method. Table 1 shows the required dimensionless net luminous 
flux on the light sources for the best four cases found by GEO and the result found in Smith Schneider and França 
(2004). With exception of cases 1 and 4, the solutions are considerably different, showing a typical characteristic of this 
type of problem, that is, different solutions can satisfy the specified conditions on the design surface. Another typical 
aspect was the oscillatory behavior of the results for the luminous power. In the case of the solutions via the 



regularization of the matrices that describe the inverse relations (as in Smith Schneider and França, 2004, and Seewald 
et al., 2006), it is often found negative values for the luminous power of the light sources, which is not a physically 
acceptable solution. On the other hand, treating the inverse design as an optimization problem using the GEO algorithm, 
since the interval for the values of each luminous power of the light sources are defined by the designer, reaching 
undesirable, non-physically meaningful results is naturally avoided. This is an important advantage of the optimization 
approach. 

Figure 6 presents the resulting net luminous flux distribution on the design surface for the four solutions obtained 
from the application of the GEO algorithm. Figure 7 presents the same result with the use of the TSVD solution (Smith 
Schneider and França, 2004). All the solutions are capable of satisfying the net luminous on the design surface 
(specified as 0.1, −=jdrQ ) with an error of 3.0% or less, which would be very difficult to obtain using a trial-and-error 
approach. This indicates the usefulness of the inverse analysis as a design tool for illumination systems. 

 
Table 1: Required dimensionless net luminous flux on the light source elements 

 
jl i j ,r jlQ  (case 1) ,r jlQ  (case 2) ,r jlQ  (case 3) ,r jlQ  (case 4) ,r jlQ  (TSVD) 

1 2 2 50.0000 26.6667 0.9804 50.0000 17.4009 
2 2 8 10.0000 12.5490 43.9217 9.8039 11.7953 
3 4 4 12.3529 25.4902 31.5686 12.3529 31.1068 
4 4 10 37.4510 37.6471 24.1176 37.2549 36.6861 
5 8 2 31.3725 33.3333 47.6471 31.3725 35.6220 
6 8 8 21.7647 19.0196 12.1569 21.5686 20.8525 
7 12 4 18.8235 23.9216 4.1176 20.7843 15.7124 
8 12 10 31.1765 34.5098 25.0980 34.3137 31.2191 
9 14 2 25.0980 18.4314 21.3725 25.0980 24.5422 
10 14 8 7.4510 4.7059 25.0980 2.9412 9.1672 

 
 

(a) (b)

(c) (d)

-Qr,jd-Qr,jd

-Qr,jd -Qr,jd

(a) (b)

(c) (d)

-Qr,jd-Qr,jd

-Qr,jd -Qr,jd

 
 

Figure 6: Dimensionless net luminous flux on the design surface 
(results obtained with GEO) 
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Figure 7: Dimensionless net luminous flux on design surface 
(result obtained with TSVD (Smith Schneider et. al. 2004)) 

 
Table 2: Minimized error function (in dimensionless form) with GEO 

 
 2

,required r jd
jd

F Q Q= −∑  

Case 1 0.1408 
Case 2 0.1553 
Case 3 0.1600 
Case 4 0.1653 
TSVD 0.1325 

 
Table 2 presents the value of the error function defined by Eq. (11), but computed with the dimensionless net 

luminous fluxes, for all the net luminous flux distributions on the design surface that are shown in Figs. 6 and 7. Note 
that the result obtained with the TSVD regularization method was the one with the smallest error. For a given level of 
regularization of the system of equations, or alternatively for a given level of perturbation of the original problem, the 
TSVD method selects the smallest-norm solution that leads to the smallest value for the error function. However, 
depending of the level of regularization, the solution via an optimization method can present a smaller error. Table 2 
indicates that the solutions obtained from the GEO algorithm also presented small errors, and can be considered 
satisfactory, as already illustrated in Figs. 6(a) to 6(d). In terms of computational time, the TSVD solution, based on the 
direct regularization of an inverted system of equations, required only a few minutes while, for the same computer 
machine, the GEO algorithm, based on the solution of a forward system of equations a large number of times, required a 
few days. However, this computation time can be reduced with an increased experience in the selection of optimum 
parameters in the GEO algorithm. Another attractive aspect of an optimization technique such as the GEO algorithm is 
that it allows the choice of a variety of solutions (as shown in Table 1), and can be extended to find the optimum 
position of the light sources, contrarily to the regularization techniques, for which it would be very difficult to 
incorporate the geometry parameters as unknowns of the problem. 
 
7. CONCLUSIONS 

 
In this paper, the optimization algorithm named Generalized Extremal Optimization was applied to an illumination 

design. Its application to a real design problem highlighted its characteristic of being easy to implement and effective to 
find satisfactory solutions for complex design problems. This method was applied to an inverse design problem in 
which the net luminous fluxes on the light source elements were determined to satisfy a specified uniform luminous 
flux on the design surface. The GEO algorithm presented results that compared well with the result obtained previously 
using the TSVD regularization of the system of equations formed from an inverse analysis of the problem. Despite the 
GEO algorithm requiring a larger computational effort, as typical of stochastic methods, it allowed finding a larger 
amount of satisfactory solutions, and in general can be extended more easily to non-linear problems than it would be 
possible with direct regularization methods. As possible next steps, the proposed inverse design analysis can be applied 
to consider the effect of external illumination, to include surfaces that present both specular and diffuse reflection 
characteristics, to take into account the directional and/or wavelength dependency of the surface emissivities, and to 
consider the problem of finding the optimum location of the light sources. 
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