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Abstract Autonomous and semi-autonomous vehicles in non-structured and dynamical environments are the aims and
scope of mobile robotics and, in such field , Trajectory tracking control is an important issue. The objective of the
present work is the design and application of a control structure able to cope with the problem of tracking arbitrary
trajectories, which is a fundamental task for the high performance of such autonomous vehicles. The designed strategy was
implemented and evaluated through simulation studies using Matlab. Moreover, kinematical and dynamic models of an
omni-directional mobile robot, called as "Axebot", are presented. This robot has abilities for robot football competitions,
such as those promoted by the RoboCup Federation (category F180). The control structure used for robot trajectory
tracking control is based on the Internal Model Control (IMC). In this sense, an open-loop control scheme is designed,
through inverse kinematical and dynamic models. This open-loop scheme is coupled with a feedback control structure,
based on theoretic models of the robot. This feedback component allows the control strategy to cope with model mismatch
and non-measured or non-modeled disturbances. The presented results shows that, in the absence of disturbances or
modeling errors, the open-loop strategy based on inverse models is enough to accurate set-point tracking of specified
trajectories. In the presence of external disturbances or modeling errors, the feedback block provides the necessary
corrections to maintain the good behavior of the control system.
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1. INTRODUCTION

Mobile robotics is a field in robotic research that deals with the design and control of autonomous and semi-autonomous
vehicles, with the propose of performing in structured, non-structured and dynamic enviroments. The autonomous mobile
robots are generally characterized by the ability of making individual task, or in cooperation with others robots, without
any or almost any human intervention. Autonomy and cooperation are characteristics that demand research in the artificial
intelligence field, specially in the field of autonomous agents and multiagent systems.

Interests in autonomous mobile robots are mainly due to its autonomous moving features. Several researches have been
developed in the area of the mobile robots covering interdisciplinary studies in mechanical and electrical engineering
and computation. Techniques of artificial intelligence, modelling process control, computational algorithm, materials,
nanotechnology and sensors fusion are examples of research that encompass several areas (Veloso, Stone et al. 1997;
Watanabe 1998; Watanabe, Shiraishi et al. 1998; Brian, Matt et al. 2001; Young, Xiaofei et al. 2001; Kodagoda,
Wijesoma et al. 2002; Albagul and Wahyudi 2004).

Mobile robots are tools of great usefulness for industrial and medical services and domestic tasks. Their usage is
clearly growing in tasks that demand ability, safety and precision. Examples of such tasks are inspection of pipes in gas
pipelines, intervention in kettles and oil wells, among others.

In this work an omni-directional mobile robot, called as Axebot, is modeled and controlled. This robot has abilities
to execute autonomous tasks, such as the Robot Soccer Challenge. The Robot football challenge have been used as
laboratory for researches developed in the fields of mobile robotics and artificial intelligence since 1996 (Franco and
Costa 2006). The Robot Soccer demand, among other things, that the robot moves from a point to another as fast and
accurate as possible. One of the necessary requirements to guarantee this ability is the availability of a trajectory tracking
control system.

The control system uses robot sensors to obtain information and uses this information, together with some process
knowledge, to manipulate robot actuators, in order to follow the desired trajectory. This work deals with the design and
application of a control structure able to cope with the problem of tracking arbitrary trajectories for the Axebot robot.
The objective is to make robot capable of following arbitrary trajectory, even in the presence of disturbances, such as
the influence of the static friction, and model mismatch, which is a fundamental task for the high performance of such
autonomous vehicles.

In section 2 we introduce the main characteristics of the mobile Axebot robot, and a brief description about the
kinematical and dynamic models of the robot. Section 3 describes the main characteristics of the control structure used
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in the trajectory control, based on the internal model control. Section 4 presents results and discussions. Conclusions and
perspectives for futures works are presented in the last section.

2. AXEBOT MOBILE ROBOT

A mobile robot is a mechanical device mounted on a mobile base, that acts under the control of a computational
system, equipped with sensors and actuators that allow it to interact with the environment (MarchiI 2001). The robot is
able to move on the room, avoiding collisions against static or dynamic obstacles, in order to carry out their objectives.

Figure 1. Axebot mobile robot

Figure 1 illustrates the mobile Axebot robot, an omni-directional robot with three omni-directional wheels disposed
120◦ among them. The wheels used in this kind of robot possess roller on the contact surface. These rollers reduce the
attrition of lateral sliding of the wheel, resulting in one more degree of freedom to the wheel. This robot has the ability to
move in any direction, without an orientation change.

Their kinematic and dynamic models are shown in the following. In this study, some assumptions were made, standing
out the following: the robot is constituted of rigid material and any type of deformation is considered; there is only one
point of contact of each wheel with the surface, and the velocities of these points are zero (i.e., it was not considered the
sliding of the wheels).

2.1 kinematic Model

The kinematical model describes robot motion equations as a function of wheels velocities.
The AxeBot upper view and their coordinates systems is shown at Figure 2. Five coordinates reference systems were

defined. Four of them are local reference systems, and the last one is an inertial reference system SI . The local reference
system SR has its origin on the robot center of mass. The local reference system SCi is fastened in the wheel i i = 1, 2, 3.
In figure 2, l is the distance between the centers of the coordinate systems SI and SCi, φi is the wheel i inclination angle
in the SR system and θ is the robot orientation angle in the system SI .

The position and the orientation of robot mass center in SI coordinate system can be represented by

ξI =


xI

yI

θ

 (1)

where ξI represents robot posture vector (position and orientation); xI and yI are, respectively, robot position on x and
y axes of SI reference system; and θ is the orientation. The relationship between robot mass center velocity components
on both SI and SR reference systems is:

ξ̇I = R−1(θ) ˙ξR (2)

where ˙ξR are robot mass center velocity components on SR reference system, ξ̇I are robot mass center velocity
components on SI reference system; and R(θ) is an orthogonal rotation matrix from SR to SI reference system given by:

R(θ) =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (3)
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Figure 2. Geometry of Axebot and its coordinates systems

Robot mass center velocity components on SR system are function of velocity components on SCi system. The
relationship between these velocity components is

vxR

vyR

θ̇

 =


cos(φi) − sin(φi) l sin(φi)

sin(φi) cos(φi) −l cos(φi)

0 0 1



vxCi

vyCi

θ̇

 (4)

Considering the kinematical restrictions of the omni-directional wheels used in AxeBot, and their disposition in the
robot, where φ1 = 90◦, φ2 = 210◦ and φ3 = 330◦, it was obtained the direct kinematical model of the robot, as follows:

vxR

vyR

θ̇

 = R
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3
1
3

1
3
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3
− 1√

3
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3l
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˙ϕ1x

˙ϕ2x

˙ϕ3x

 (5)

where ϕix is wheel i angular velocity relative to x axis of SCi system and R is the distance between wheel extremity
and its center. Applying the transformation of SR local coordinate system into inertial one, the relationship of robot
velocity in the inertial system as a function of wheels angular velocities is

vxI

vyI

θ̇

 = R


− 2 cos(θ)

3

√
3 cos(θ)−3 sin(θ)

3
√

3
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3 cos(θ)+3 sin(θ)
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˙ϕ1x

˙ϕ2x

˙ϕ3x

 (6)

2.2 Dynamic Model

The dynamic model describes robot motion equations considering the forces that act itself. Initially this section
presents the dynamic model of AxeBot mobile base, without explicitly considering the torque generated by actuators.
Further actuators dynamic models are presented, taking into account mechanical and electric aspects. Finally, the complete
dynamic model of AxeBot is shown, resulting from the joint equations of mobile base model and actuators models.

Motions of a rigid body are caused by external forces that act at the body. These motions can be classified into
translation and rotation motions. The dynamic model of AxeBot was formulated according to Newton’s laws:∑

F = m.a (7)∑
Mo = Iz.θ̈ (8)
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where F are forces which act on the robot, m is mass, a is acceleration, Mo is angular momentum, Iz is inertia
momentum and θ̈ is angular acceleration.

Figure 3. Forces acting at the body.

The Figure 3 shows an upper view of AxeBot, with some aspects of its geometry and traction forces f1, f2 and f3
acting on wheels 1, 2 and 3, respectively. Components of robot mass center resultant force, fxR and fyR, are projections
of this force on SR system. δ is the angle formed between SR system x axis and forces f2 and f3. Through eqs. (7) and
(8) and considering the forces acting in the robot, one can observe the following relationships:

fxI = maxI (9)

fyI = mayI (10)∑
Mo = f1l + f2l + f3l = Jr θ̈ (11)

where
∑
Mo is the resultant momentum of forces f1, f2 and f3 on robot mass center, Jr is the inertia moment on z

axis of SR system, fxIand fyI are projections of resultant force components on SI inertial system, m is the robot mass
and axI and ayI are their acceleration components in SI system,

FI = R(θ)−1FR (12)

ξ̈I = R(θ)−1ξ̈R + ˙R(θ)−1 ˙ξR (13)

where FI =
[

fxI fyI
∑

Mo

]T
, FR =

[
fxR fyR

∑
Mo

]T
and ˙R(θ)−1 is the Jacobian of the inverse matrix

R(θ). Substituting eqs. (12) and (13) into eqs. (9) and (10), we obtain

fxR = m(axR − vyRθ̇) (14)

fyR = m(ayR + vxRθ̇) (15)

Writing fxR and fyR as functions of f1, f2 and f3,

fxR = −f1 + f2 cos δ + f3 cos δ (16)

fyR = f2 sin δ + f3 sin δ (17)

Substituting eqs. (16) and (17) into eqs. (14) and (15), and isolating acceleration components, we can obtain the
dynamic model of robot mobile base:

axR =
−f1 + f2 cos δ + f3 cos δ

m
+ vyRθ̇ (18)
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ayR =
f2 sin δ − f3 sin δ

m
− vxRθ̇ (19)

θ̈ =
f1l + f2l + f3l

Jr
(20)

Axebot actuation system is composed by three continuous current motors coupled in a 19:1 reduction box (Franco and
Costa 2006) (see fig.4)).

Figure 4. Maxon Motor, Amax 22 R179-6V model.

The dynamic model of a continuous current motor (DC motor) is formulated considering their mechanical and electric
aspects. The dynamic equations of a DC motor can be expressed by the electric part:

ui = La
diai

dt
+Raiai

+ ei (21)

and by the mechanical one:

τi = Jmω̇mi +Bvisωmi +
Rfi
κn

(22)

where La and Ra are, respectively, motors inductance and resistance, Jm and Bvis are, respectively, inertia moment
and viscous attrition constant of the mechanical part of the actuators, and ui, iai

, τi, ωmi
, fi and n are, respectively,

entrance tension, armor current, torque, velocity of wheel i motor, wheel i traction force and reduction factor of reduction
box and k is coupling efficiency degree. Motor torque is directly proportional to its armor current and contra-electrometric
force is proportional to angular velocity:

τi = kT iai
(23)

ei = kemωmi
(24)

where kT and Kem are torque and contra-electrometric constants, respectively.
Relating ui as a function of τi,

ui = La
τ̇i
kT

+Ra
τi
kT

+ kemωmi
(25)

Substituting the values of τi and τ̇i from eq.(22) into eq. (25) we obtain

ui =
LaJm
kT

ω̈mi + (
RaJm + LaBvis

kT
)ω̇mi + (

RaBvis + kT kem
kT

)ωmi +
RafiR

κnkT
+
LaḟiR

κnkT
(26)

The expression above relates motor angular velocity as a function of its entrance tension. However, motors are ac-
tivated by a pulse width λi that generates the entrance tension ui of the motor i as a function of an average reference
tension Vref . The pulse width is

λi =
ωmi

Vref
(27)
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Substituting eq. (27) into eq. (26), actuator dynamics will have the following pulse width as input:

λi =
LaJm
kTVref

ω̈mi
+ (

RaJm + LaBvis
kTVref

)ω̇mi
+ (

RaBvis + kT kem
kTVref

)ωmi
+

RafiR

nκkTVref
+

LaḟiR

nκkTVref
(28)

Isolating fi forces from eqs. (18), (19) and (20) and substituting into eq. (28), using eq.(5) and its derivatives, we
obtain the equations of robot mobile base inverse dynamics, including also actuator eqs. (29 - 31),

λ1 = βi2ω̈m1 + βi3ω̈m2 + βi3ω̈m3 + (βi4 + βi5ωm2 − βi5ωm3)ω̇m1 + (βi6 + 2βi5ωm2 + βi5ωm1)ω̇m2

+(βi6 − βi5ωm1 − 2βi5ωm3)ω̇m3 + (βi7 + βi8ωm2 − βi8ωm3)ωm1 + (βi8ωm2)ωm2 + (−βi8ωm3)ωm3 (29)

λ2 = βi3ω̈m1 + βi2ω̈m2 + βi3ω̈m3 + (βi6 − 2βi5ωm1 + βi5ωm2)ω̇m1 + (βi4 − βi5ωm1+βi5ωm2 )ω̇m2

+(βi6 + βi5ωm2 + 2βi5ωm3)ω̇m3 + (−βi8ωm1 − βi8ωm2)ωm1 + (βi7 + βi8ωm3)ωm2 + (βi8ωm3)ωm3 (30)

λ3 = βi3ω̈m1 + βi3ω̈m2 + βi2ω̈m3 + (βi6 − 2βi5ωm1 + βi5ωm3)ω̇m1 + (βi6 − 2βi5ωm2 − βi5ωm3)ω̇m2

+(βi4 + βi5ωm1 − βi5ωm2)ω̇m3 + (βi8ωm1 + βi8ωm3)ωm1 + (−βi8ωm2 − βi8ωm3)ωm2 + βi7ωm3 (31)

where

βi1 = 1/(27n3l2κkTVref )
βi2 = (3LaR2Jrn+ 12LaR2ml2n+ 27LaJml2κn3)βi1
βi3 = (−6LaR2ml2n+ 3LaR2Jrn)βi1
βi4 = (12RaR2ml2n+ 27l2κn3LaBvis + 27l2κn3RaJm + 3RaR2Jrn)βi1
βi5 = (2LaR3

√
3ml)βi1

βi6 = (−6RaR2ml2n+ 3RaR2Jrn)βi1
βi7 = (27l2κn3kem + 27l2κn3RaBvis)βi1
βi8 = (2RaR3

√
3ml)βi1

Getting motor angular acceleration derivative components from eqs. (29 - 31), we obtain the final equations of the
dynamics of robot mobile base :

ω̈m1 = βd2λ1 + βd3λ2 + βd3λ3 + (βd4 + βd5ωm2 − βd5ωm3)ω̇m1 + (βd6 + 2βd5ωm2

+βd5ωm1)ω̇m2 + (βd6 − βd5ωm1 − 2βd5ωm3)ω̇m3 + (βd7 + βd8ωm2 − βd8ωm3)ωm1

+(βd9 + βd8ωm2)ωm2 + (βd9 − βd8ωm3)ωm3 (32)

ω̈m2 = βd3λ1 + βd2λ2 + βd3λ3 + (βd6 − 2βd5ωm1 + βd5ωm2)ω̇m1 + (βd4 − βd5ωm1

+βd5ωm2)ω̇m2 + (βd6 + βd5ωm2 + 2βd5ωm3)ω̇m3 + (βd9 − βd8ωm1 − βd8ωm2)ωm1

+(βd7 + βd8ωm3)ωm2 + (βd9 + βd8ωm3)ωm3 (33)

ω̈m3 = βd3λ1 + βd3λ2 + βd2λ3 + (βd6 − 2βd5ωm1 + βd5ωm3)ω̇m1 + (βd6 − 2βd5ωm2

−βd5ωm3)ω̇m2 + (βd4 + βd5ωm1 − βd5ωm2)ω̇m3 + (βd9 + βd8ωm1 + βd8ωm3)ωm1

+(βd9 − βd8ωm2 − βd8ωm3)ωm2 + βd7ωm3 (34)

where

βd1 = −1/9/l/n/(9J2
ml

2κ2n4 + 3R2JrJmκn
2 + 6R2ml2Jmκn

2 + 2R4Jrm)/La
βd2 = −81VrefkTκ2n5l3Jm − 18VrefkTκn3R2l3m− 18VrefkTκn3R2lJr

βd3 = 9VrefkTκn3lR2Jr − 18VrefkTκn3l3R2m

βd4 = 27Jmlκn3RaR
2Jr + 54Jml3κn3RaR

2m+ 81Jml3κ2n5LaBvis + 81J2
ml

3κ2n5Ra

+18R4JrRamln+ 18R2ml3κn3LaBvis + 18R2Jrlκn
3LaBvis

βd5 = 2R5JrLa
√

3m+ 6Jml2κn2LaR
3
√

3m
βd6 = +18R2ml3κn3LaBvis − 9R2Jrlκn

3LaBvis



Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

βd7 = 81Jml3κ2n5RaBvis + 81Jml3κ2n5kemkT + 18R2Jrlκn
3kemkT

+18R2Jrlκn
3RaBvis + 18R2ml3κn3kemkT + 18R2ml3κn3RaBvis

βd8 = 2R5JrRa
√

3m+ 6Jml2κn2RaR
3
√

3m
βd9 = +18R2ml3κn3RaBvis + 18R2ml3κn3kemkT − 9R2Jrlκn

3kemkT

−9R2Jrlκn
3RaBvis

In eqs. (29 - 31) values of wheels angular velocity, ˙ϕix , were substituted by motors angular velocity values,ωmi
,

using ˙ϕix = ωmi

n .
The Axebot parameters and their values are given in Tab. 1.

Table 1. Axebot parameters.

Parameter Value Unit
m 3, 4 [kg]
Jr 2, 125 [kgm2]
l 0, 09 [m]
R 0, 024 [m]
La 0, 00011 [H]
Ra 1, 71 [Ohm]
n 19:1 -
Jm 3, 88× 10−7 [kgm2]
Kem 0, 0059 [V olts/rad]
Kt 0, 0059 [Nm/A]
Bvis 2, 4× 10−6 [Nms/rad]
Vd 6 [V olt]

3. Trajectory Controller

The trajectory control objective is to position the robot on a previously defined track, characterizing a servo problem
control with variable set-point. The mobile robots trajectory control can be split in three types: control considering
only the kinematical model, control considering only the dynamic model and control using both the kinematical and
dynamic models (Sousa and Hemerly 2003). This work presents a control scheme in closed-loop, composed of a cascade
controller, where the master controller is based on the kinematical control, to track the reference posture, generating
reference velocities to the internal control-loop which determines the reference pulse width through the knowledge of
robot theoretical model. This structure is called Internal Model Control(IMC).

The IMC controller is capable of estimate and correct robot model mismatch and unmeasured disturbances. The block
diagram of the control system proposed in this work is presented in fig.5.

Figure 5. Blocks diagram of the control system.

In figure 5, C e D are AxeBot kinematical and dynamic models, respectively. ξr, ξ̇r, ϕir, λir, ϕix, ξ, ξ̂, ξ̃ are,
respectively, the set-point posture of the robot, the set-point velocity of the robot, the set-point angular velocity of the
wheels, the set-point pulse width, the measured angular velocity of the wheels, the posture of the robot, and the inferred
and calculated posture from the theoretical model. G, G̃ and G−1 are, respectively, the real robot, the theoretical model
of the robot and the inverse theoretical model.
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3.1 Control based on the Kinematic

The control based on the kinematical model generates the components of robot set-point velocity (ξ̇r), relative to local
reference coordinates system, as a function of posture error (∆ξr). The control law for the kinematical controller can be
represented by

ξ̇Rr
= (ξIr

− ξI)R(θ)K (35)

where ξ̇Rr is robot set-point velocity relative to local reference coordinates system, ξIr is posture set-point, ξI is robot
posture, R(θ) is the transformation matrix from the inertial reference system to local one, represented by eq. (3), and K
is a diagonal matrix of positive constants.

3.2 CONTROLLER IMC

The IMC (Internal Model Control) control structure was introduced by Garcia and Morari in 1982 (Lee, T. et al. 1993).
The controller equation is developed from the knowledge of a model of the robot. This control structure was used in an
open-loop scheme coupled with a feedback control structure in cascade with the kinematical controller.

For this controller robot kinematical and dynamic models, and also their inverse models, are used.
The equation of the inverse kinematical model is found getting wheels angular speed components from eq.(6). There-

fore, we can generate the equation which determine wheel angular speed from robot mobile base speed,
˙ϕ1x

˙ϕ2x

˙ϕ3x

 =
1
R


− cos(θ) − sin(θ) l

cos(θ)−
√

3 sin(θ)
2

sin(θ)+
√

3 cos(θ)
2 l

cos(θ)+
√

3 sin(θ)
2

sin(θ)−
√

3 cos(θ)
2 l




vxI

vyI

θ̇

 (36)

Dynamic inverse model equation, represented by eqs.(29) through (31) determines the pulse width that should be
applied in wheel motors, using wheels angular speed set-point supplied by inverse kinematical model.

In a first approach a controller was developed in an open-loop scheme. This approach may present satisfactory results
in the absence of disturbances and model mismatch. When coping with modeling errors, a current feature of real systems
, performance may deteriorate, and robot behavior may even gets unstable.

In a second approach the open-loop scheme was coupled with the feedback control structure. This feedback component
allows the whole control scheme to be able to cope with model mismatch and non-measured or non-modeled disturbances.
This configuration can be interpreted as a combination of open-loop and closed-loop configurations, and provides the
advantages of both structures.

4. RESULTS AND DISCUSSION

The analysis of the controller performance was accomplished in two stages. In the first one, control system was
analyzed in an open-loop scheme in the absence of model mismatch or non-measured or non-modeled disturbances. For
this situation, the controller without feedback performs very well as shown in fig. 6. This figure shows a good behavior
of the control system in tracking the desired robot trajectory.

Figure 6. System response with open-loop control scheme.
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In the second stage, errors on model parameters was included and a dead zone non-linearity. For instance, this
disturbance may represent static attrition3. In this situation, the open-loop scheme has its performance greatly degraded.
On the other hand, adding the feedback structure allows a significant improvement and an effective control of robot
trajectory, which can be verified in fig. 7.

Figure 7. Response with with open-loop (left) and closed-loop (right) schemes, under non-modeled disturbances.

For comparison of controllers performance, ISE (Integral of Squared Error) performance index was used eq. (37).

I =

T∫
t=0

eT edt (37)

where I is the ISE performance index, T is the integration time and e is the error vector.
The ISE value obtained in the open-loop scheme was 0.61 for position and 20.6928 for speed. With the inclusion of

feedback there was a substantial reduction of these values: for the position ISE was 0.0706 and for speed ISE was 1.7745.

5. CONCLUSIONS

This work presents a study on the trajectory control of an omni-directional mobile robot. We have presented the
physical, mechanical and electric characteristics of the robot, through their kinematical and dynamic models. In the first
stage of the work a controller was implemented in an open-loop scheme, presenting satisfactory results in the absence of
noises and disturbances. In order to improve the controller performance in the presence of noises and modeling errors,
a feedback structure was added with the objective of estimating and compensating for the effects of such disturbances.
The evaluation of controllers performances may be observed both through graphical inspection of robot trajectory as well
as by the ISE value. The comparative analysis of ISE values for position presents a reduction of 88% after joining the
feedback control structure, and a reduction of 91% for speed. In further works a control system for trajectory tracking for
omni-directional robots with tolerance to wheels sliding will be developed. This is a very common disturbance in wheels
mobile robots.
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