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Abstract. Heat transfer by laminar natural convection in confined spaces is of great interest in the engineering field. 
The flow that occurs in a cavity is an important physical phenomenon that must be investigated, as it can be applied to 
projects of electronic components of electrical circuits with heat dissipators. The objective of the numerical model 
consists of evaluating the amount of heat transferred by the fins and also visualizing the velocity field and the 
isothermal lines in the fluid (air) and solid (aluminum) domains. The surface of the electronic component is kept at a 
high uniform temperature. The vertical surfaces are uniformly kept at low temperatures. The inferior horizontal 
surface around the electronic component and the superior horizontal surface are considered adiabatic. Four fins with 
rectangular cross-sections are placed on the inferior surface of the electronic component. Solutions for low values of 
Rayleigh are obtained by keeping the Prandtl number equal to 0.70. The Computational Fluid Dynamics is used. 
Hence, the Finite Volume Method (MVF) with Eulerian scheme is applied to solve the conservation equations for the 
unsteady state. It is assembled a 3D model with width wide enough to eliminate the wall effect in the flow and then 
enabling one to compare the results with 2D cases from literature. The present work shows that not only the increase 
of the Rayleigh number, but also the presence of the fins augments the heat transfer. 
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1. INTRODUCTION   
  

During the last four decades, significant attention was given to the study of natural convection in enclosures 
subjected to heating and cooling using four-finned dissipators placed on a heated base. This was due to the occurrence 
of natural convection in a wide range of application areas that include nuclear reactor design, post-accident heat 
removal in nuclear reactors, geophysics and underground storage of nuclear waste, energy storage systems and others. 
Natural convection heat transfer in enclosures containing heat generating fluids with different geometrical parameters 
and boundary conditions has been extensively considered in the open literature. 

Several electronic equipments have been designed to be closed rectangular boxes with small openings on the bottom 
surface to allow natural ventilation. Components of electronic equipment are usually placed on the bottom surface of 
the cavity. They always dissipate heat at a constant temperature even on the standby mode. Although many works deal 
with laminar natural convective flow, some still consider a partially heated base. 

In the case of natural convection in a two-dimensional domain, many works have been experimentally and 
numerically developed. 

Dong and Li (2004) carried out a study of natural convection inside a cavity which is crossed by a horizontal 
cylinder using the Stream function Method and the Boussinesq Vorticity in the differential equations for conservation 
od mass, momentum and energy. The effect of the material, geometry and Rayleigh number on the heat transfer was 
investigated considering a regime which is approximately permanent. 

Bilgen and Oztop (2005) conducted a natural convective heat transfer study in an inclined square cavity with 
isolated walls, being that one is partially opened. The flow is laminar and permanent with the Rayleigh number and the 
inclination angle varying from 103 to 106 and from 0° to 120°, respectively. 

Nasr et al. (2005) proposed a case similar to the present work where one of the vertical walls of the two-dimensional 
model is heated in a small portion at a constant temperature. They considered a generic system of cooling and heating 
with a permanent laminar convective air flow inside a cavity. It is observed that convective flow is strongly affected by 
the geometry. 

Bakkas et al. (2006) investigated the permanent laminar natural convective flow in a two-dimensional horizontal 
channel with rectangular blocks mounted along the bottom surface. These blocks were heated at a constant temperature 
and connected to the bottom surface by layers which were adiabatically isolated. Having Rayleigh number from 102 to 
106 and Prandtl number equal to 0.7 (air), it was verified that the block dimensions affected significantly the 
temperature and velocity convective fields. 

 



  

Ben-Nakhi and Chamkha (2007) focused their work on the numerical study of steady, laminar, conjugate natural 
convection around a finned pipe placed in the center of a square enclosure with uniform internal heat generation. Four 
perpendicular thin fins of arbitrary and equal dimensions are attached to the pipe whose internal surface is isothermally 
cooled. The sides of the enclosure are considered to have finite and equal thicknesses and their external sides are 
isothermally heated. The problem is put into dimensionless formulation and solved numerically by means of the finite-
volume method. Representative results illustrating the effects of the finned pipe inclination angle and fins length on the 
streamlines and temperature contours within the enclosure are reported. In addition, results for the local and average 
Nusselt numbers are presented and discussed for various parametric conditions. 

The study of natural convection in a three-dimensional domain is still not quite explored in literature where works 
such Janssen et al. (1993) and Tric et al. (2000) can be found.  

Janssen et al. (1993) carried out a study of natural convection in a cubic cavity using the Finite Volume Method 
with permanent and transient flows. In the permanent flow case, the boundary layer along the wall was studied while in 
the transient regime, the convective flow periodicity generated by a 3D model was investigated. A comparison with the 
classic 2D model was conducted. 

Tric et al. (2001) studied exact solutions to the governing equations of natural convection of air inside cubic cavities 
which were thermally loaded by two opposite vertical walls with different temperatures and Rayleigh numbers going up 
to 107. The solutions were considered exact with relative global errors below 0.03 % and 0.05 % for Rayleigh numbers 
103 and 107, respectively. 

In the present work, permanent and laminar natural convection study in a cubic cavity with four-finned aluminum 
dissipator placed on a bottom horizontal surface is carried out. Heat transfer is investigated based on temperature and 
velocity behaviour and on the local Nusselt number along the bottom heated surface of the base of the dissipater in 
contact with the bottom surface of the cavity. The remaining part of the bottom surface of the cavity is thermally 
isolated. The lateral vertical walls are kept with a uniform low temperature and the cavity upper horizontal wall is 
thermally isolated. Figure 1 shows details of the geometry. The solution to this problem is found by the application of 
the Fluid Dynamics Calculus using the Finite Volume Method and the Eulerian scheme to discretize the domain in 
space and time. This is done by integrating the transport differential equations of mass, momentum and energy. The 
mesh has 36,194 nodes and 174,909 elements where 160,281 are tetrahedral and 14,312 are prismatic which are placed 
near the lateral vertical walls in order to capture the boundary layer effects. This mesh is used in all cases. Two cases 
are analyzed with Rayleigh numbers 106 and 107. Temperature and velocity distributions are analyzed over a vertical 
section that crosses the half part of the base and fins. The Nusselt number is also calculated along the base by ranging 
the Rayleigh number. The machine used to run all cases has a processor Intel Pentium 4® that runs at 3.0 GHz and 2 
GB of RAM. The time computing cost was approximately 49 minutes for Rayleigh number of 106 e 107, both for a 
physical time of 4 s. CFD software package from Ansys CFX-5.6® was used. 

 
2. PROBLEM DESCRIPTION 
  

Figure 1 shows the geometry with domain Ω that is filled with air (Pr = 0.7) and whose base with fins made of 
aluminum. It is considered a cubic cavity where S1 and S2 are the isolated surfaces. S3 and S6 are surfaces that are kept 
at a uniform low temperature while S7 is at a uniform high temperature. The local heating is simulated by a heat source 
that is located in the middle portion of the base wall, S7. 

The initial condition on the entire domain Ω is taken for temperature θ = 0 and air velocities u = v = w = 0. All 
properties are considered constant, except the density on the buoyancy forces that follows the Boussinesq 
approximation. 

Figure 2 depicts the mesh used in the computational simulation, projected over YZ plan, and the solid body mesh. 
 
2.1. Problem hypotheses 
  

The following hypotheses are considered: 
a) Three-dimensional domain; 
b) Unsteady regime; 
c) Laminar and incompressible flow; 
d) Viscous dissipation is neglected; 
e) Physical properties ( K,c,, pμρ ) are constant, except density in the buoyancy forces; 
f) No internal heat generation. 
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Figure 1. Computational domain: (a) Geometry in 3D; (b) Dissipator mounted on S7 surface, with four 4 rectangular 

fins (dimensions in mm). 
 

  
(a) (b) 

 
Figure 2. Computational mesh: (a) In a vertical surface, YZ plan for x = 0.04 m, with prismatic (boundary layer) and 

tetrahedral elements; (b) In the aluminum dissipator. 
 

2.2. Governing equations 
 

With the above considerations, the conservation equations for air can be written as follows: 
i)  Continuity: 
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iii)  Energy: 
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where u, v, and w are the flow velocity components in m/s, x, y and z are the directions in space, t is the time in s, ρ is 
the fluid density in kg/m3; p is the flow relative pressure in Pa, g is the local acceleration component in m/s2, and β is 
the volumetric coefficient of thermal expansion in K-1. The subscript f represents fluid (air).  

The conservation equation for the aluminum domain can be written as: 
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where the subscript s stands for solid (aluminum). 
 

 

2.3. Boundary and initial conditions 
 

They are as follows: 
i) Initial Conditions: 
for t = 0: 
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ii)  Boundary Conditions: 
for t > 0: 
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where S1 , S2 , S3 , S4 , S5 , S6 and S7 represent the surfaces on the boundaries of the domain Ω , as shown in Fig. 1. 
 
2.4. Dimensionless equations 

 
In order to generalize the theorical analysis governed by equations 1 to 6, dimensionless variables are introduced: 
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where τ is the dimensionless time; X, Y e Z are the dimensionless coordinates; U, V, W are the dimensionless velocity 
components; P is the relative dimensionless pressure, and θ is the dimensionless temperature.  

Substituting (13) and (14) in (1) to (5): 
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For the solid domain: 
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where Gr and Pr are the Grashof and Prandtl numbers defined respectively by the following: 
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In order to calculate the local Nusselt number, Fig. 3 presents the energy balance along the dissipator surface. One 

can say that the heat received (Qw) is equal to the heat delivered (Qfin) taking the aluminum part as the control volume.  
So: 
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And then:  
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where qw and qfin are the heat fluxes on S7 and the dissipater surface, respectively. 

Since: 
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Figure 3. Heat transfer balance along the dissipater surface. 
 

the average Nusselt number Nu is calculated by the expression as follows: 
 

( )[ ]
( ) ,

TT
TT

kA
HkANu

ch

h

ffin

*
sw

⎭
⎬
⎫

⎩
⎨
⎧

−
δ−

δ
=             (26) 

 
where kf and ks are the fluid and solid thermal conductivity, h is the local convective heat transfer coefficient, δ is a 
small distance from the dissipater bottom (δ/H = 0.025), Aw and Afin are the S7 and the aluminum surfaces in contact 
with air, respectively, and H* is any relevant measure to obtain appropriate Nu value orders. 

The initial and boundary conditions are now expressed in the dimensionless form as: 
i) Initial conditions: 
for τ = 0: 
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ii) Boundary conditions: 
for τ > 0: 
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3. NUMERICAL METHOD 

 
The solution of the partial differential equations in time and space can be solved using the Computational Fluid 

Dynamics (CFD) by Finite Volume Method (FVM), which is a method of discretization in space and in time of the 
entire domain, which can use a mesh with finite number of volumes (Barth and Ohlberger, 2004).  
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In this method of discretization, the mesh can have two typical volume schemes: centralized face and centralized 
volume. For both schemes of control volume, the variables can be solved in terms of average values. Figure 4 shows the 
centered face and control volume used in the Finite Volume Method, as in Barth and Ohlberger (2004). 

 

 
 
 

Figure 4. Details of the control volume used in the Finite Volume Method (Barth and Ohlberger, 2004). 
 
The governing equations can be solved applying a suitable algorithm (Euler’s equations for inviscid flows and 

Navier-Stokes’s equations for viscous flow). In particular case of phenomena with fluid flows and heat transfer, it is 
necessary to link the pressure and velocity. Among the algorithms that can solve all variables in the same time step with 
velocity and pressure linked equation, CFD has used the SIMPLE Method (Semi Implicit Method for Pressure Linked 
Equation) (Shaw, 1992).  

This methodology is a interactive process, where the error or residual is compared to a reference error, also named 
“target error”. In this way, flow and heat transfer simulations require the introduction of suitable flow and heat transfer 
models to guarantee a satisfactory convergence. 

 
4. RESULT ANALYSIS 

 
Through the iterative calculation using CFD, it was observed the convergence in relation to the deviation calculated 

by the goal error equal to 106 for the two cases where Ra = 106 and 107. Figure 5 shows the Convergence Curves for the 
local Nusselt number on S2 and S7 for Ra = 106 and 107.  
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Figure 5. Convergence curves for the RMS deviation on heat transfer rate for Ra = 106 and 107. 
 
It can be noticed that convergence is rapidly reached for lower Rayleigh numbers where the internal flow is 

significantly laminar and the viscosity effects are stronger. 
Table 1 shows the results for the average Nusselt number given by Eq. (26) at δ = 0.003 with H = 0.05 m, where H 

is the height of dissipator placed on the bottom surface. It can be observed that Nu increase as Rayleigh number goes up 
to 107, due to the higher temperature gradient between the surfaces S7 and S8. 

To observe the effect of Rayleigh number on heat transfer in the cubic cavity, Figs. 6 and 7 depict the temperature 
and velocity vectors distributions plotted on the ZX plan at (x / L = 0.40; 0 ≤ y / L ≤ 1, 0 ≤ z / H ≤ 1).  

From Figs. 6(a) and 7(a), it is noted that the ascending convective flow increases with Rayleigh number increase. 
For Ra = 106, two opposite vortices of the same intensity are formed on the reference plan at x / L = 0.40; 0 ≤ y / L ≤ 1, 
0 ≤ z / H ≤ 1, progressively nearer the finned surface. 

 
 
 

Centralized face Centralized volume 

Control volume 

Point of calculation 



  

Table 1. Average Nusselt number for Ra = 106 and 107 at the last time instant. 
 

Ra = 106 Ra = 107

Area of surface S7 - Aw in m2 2.30E-03 2.30E-03
Area of contact S8 - Ac in m2 8.06E-03 8.06E-03
Thermal Conductivity of Solid (Aluminium) Ks in W m-1 K-1 237.0 237.0
Thermal Conductivity of Fluid (Air) Kf in W m-1 K-1 0.026100 0.026100
H in m 0.12 0.12
δi in m 0.003 0.003
Th in K 673.2 673.2
Tc in K 667.1 618.1
T(δi) in K 673.1 654.1
Average Nusselt number Nu for each Rayleigh number 518.8 35874.9  

 

  
(a) (b) 

 
Figure 6. Case 1 – Ra =106 at the final instant for contour number 100: (a) Temperature distribution and (b) Velocity 

vector field at = 0.012 m, plan ZX. 
 

  
(a) (b) 

 
Figure 7. Case 2 – Ra =107 at the final instant for contour number 100: (a) Temperature distribution and (b) Velocity 

vector field at = 0.012 m, plan ZX. 
 

For Ra = 106 and 107, a typical behavior takes place. This behavior represents the strength order of the ascending 
convective flow between the fin heated surface and the upper isolated horizontal surface. This can also be seen in Figs 
6(b) and 7(b), where the progressive increase of the maximum velocity vector is noted when Rayleigh number is higher. 

One can also note that in Figs. 6(a) and 6(b), the isotherms find themselves in a more uniform distribution and 
deformed for Ra = 106, along the fin and in the fluid domain, thus enhancing the heat transfer. For Ra = 107, the heat 
transfer is predominantly featured by conductive effect, as depicted in Figs. 7(a) and 7(b). Significantly, for Figs 6 and 
7, the calculus indicates that the temperature gradient becomes stronger near the fin region as Ra increases. 
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An analysis in other flow plans is strongly recommended to analyze the intensity of the vortices generated in the 
third dimension. According to Bilgen and Oztop (2005) and Nasr et al. (2005), the temperature distributions as well as 
the vortices intensities are affected by the secondary effects of the ascending convective flow given by the third 
dimension of the cavity. This phenomenon implies the importance of the 3D study, as suggested by Janssen et al. 
(1993). 
 
5. CONCLUSION 
 

The natural convection study in a cubic cavity using CFD showed that: 
 

a) The average Nusselt number on the cavity base increased with the Rayleigh number increase due to the fact that 
the temperature gradient was higher between the heated surface and the temperature of the fluid domain; 

b) The ascending convective flow penetration from the heated surface was stronger as Ra increased; 
c) It was observed a progressive formation of vortices with a plum shape from the finned surface for Ra = 106. These 

vortices had equal intensity and opposite directions. 
d) The progressive increase of the flow maximum velocity vector induced by convection was verified with the 

Rayleigh number increase up to 107. 
 

In this way, with a satisfactory precision, the fluid dynamics calculus applied in this work is revealed to be a 
promising natural convection study applied to the electronic components. 
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