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Abstract−This work provides an estimation procedure to determine J-resistance curves for SE(T) fracture specimens
using the unloading compliance technique and the eta-method. Collaborative experimental and computational inves-
tigations nowunderway exploit thesemethods support development of a standard test procedure for this crack configu-
ration. In the present study, attention is directed to pin-loaded SE(T) specimens with varying geometry and crack sizes
but representative solutions arealso included for clampedSE(T) specimens.A summary of themethodology uponwhich
J andΔa are derived sets the necessary framework to determine crack resistance data from the measured load vs. dis-
placement curves. The extensive plane-strain analyses enable numerical estimates of the nondimensional compliance,
μ, and the plastic factors η and γ for a wide range of specimen geometries and material properties characteristic of
structural and pipeline steels. The results presented here produce a representative set of solutions which lend further
support to develop standard test procedures for constraint-designed SE(T) specimens applicable in measurements of
crack growth resistance for pipelines.
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1. INTRODUCTION

Safety analyses and engineering critical assessments (ECA)of damagedpipelines remain akey issue indesign andoperation
of highpressure piping systems, includingonshore andoffshore facilities.As thepipeline infrastructure ages, robust proce-
dures for integrity analyses become central to specifying critical flaw sizes which enter directly into procedures for repair
decisions and life-extension programs of in-service structural components. Perhaps more importantly, these procedures
must ensure fail-safe operations which avoid costly leaks and ruptures due to material failure to comply with the current
stringent environment-based regulations. Current codes and standards for oil and gas pipelines provide rules for welding,
inspection and testing of transmission pipelines (see, for example, API 1104 (1999), CSAZ662 (1999)). While these codes
provide simplified acceptance criteria for fabricationdefects (such as slag inclusions andporosity inweldments) basedupon
workmanship standards and fracture toughness testing, they not specifically address stable ductile tearing of crack-like de-
fects that form during in-service operation.

Manystructural steelsgenerally exhibit significant increases in fracture toughness, characterizedby theJ Integral (Rice,
1968), over the first few mm of stable crack extension (Δa ), often accompanied by large increases in background plastic
deformation. Conventional testing programs to measure crack growth resistance (J-Δa ) curves routinely employ three-
point bend, SE(B), or compact, C(T), specimens containing deep, through cracks (a∕W≥0.5). However, laboratory testing
of fracture specimens tomeasure resistance curves (also often termedR-curves) consistently reveals amarked effect of abso-
lute specimen size, geometry, relative crack size (a∕W) and loading mode (tension vs. bending) on toughness at similar
amounts of crack growth (see Joyce and Link (1995) for representative experimental studies). These effects observed inR-
curves have enormous practical implications in defect assessments and repair decisions of in-service structures under low
constraint conditions. Structural components falling into this category include pressurized piping systems with surface
flaws that form during fabrication or during in-service operation (e.g., weld cracks and cracks derived from blunt corrosion,
slag and nonmetallic inclusions, dents at weld seams, etc.) (Eiber and Kiefner, 1986; AWS, 1987; NEB, 1996). These crack
configurations generally develop low levels of crack-tip stress triaxiality (associated with the predominant tensile loading
which develops in pressurized piping systems) thereby contrasting sharply to conditions present in deeply cracked SE(B)
and C(T) specimens. Consequently, defect assessments of cracked pipelines based on standard, deep notch specimens may
beunduly conservative andoverly pessimistic.While suchconservatism represents anextra factor of safety, excessivepessi-
mism in defect assessments can lead to unwarranted repairs or replacement of in-service pipelines at great operational costs.



These observations have prompted research efforts to support the use of geometry dependent fracture toughness values
in defect assessment procedures for structural components under low constraint conditions. Specifically for pressurized
pipelines and cylindrical vessels, there has recently been a surge of interest in predicting fracture behavior based upon single
edge notch tension specimens − SE(T)[ (see, e.g., Nyhus (1999) and Nyhus and Ostby (2002)). The primary motivation
to use SE(T) fracture specimens in defect assessment procedures of cracked pipes is the strong similarity in crack-tip stress
and strain fieldswhichdrive the fracture process for both crackconfigurations (Cravero andRuggieri, 2005). Theseprevious
research initiatives represent a significant promise in engineering applications of constraint-designed SE(T) fracture speci-
mens. However, full understanding of the fracture behavior directly connected to this crack configuration which supports
development of standard test procedures is still lacking.

As a step in this direction, this work provides an estimation procedure to determine J-resistance curves for SE(T) frac-
ture specimens using the unloading compliance technique and the eta-method. Collaborative experimental and computa-
tional investigations now underway exploit these procedures to support development of a standard test procedure for this
crack configuration. In the present study, attention is directed to pin-loaded SE(T) specimens with varying geometry and
crack sizes but representative solutions are also included for clamped SE(T) specimens. A summary of the methodology
upon which J and Δa are derived sets the necessary framework to determine crack resistance data from the measured load
vs.displacement curves. The extensiveplane-strain analyses enable numerical estimatesof thenondimensional compliance,
μ , and theplastic factors η and γ for awide rangeof specimengeometries andmaterial properties characteristicof structural
andpipeline steels. The results presentedhereproduce a representative set of solutionswhich lend further support todevelop
standard test procedures for constraint-designed SE(T) specimens applicable in measurements of crack growth resistance
for pipelines.

2. ESTIMATION PROCEDURE OF J-R CURVES

Analytical efforts to support the development of laboratory measurements for fracture toughness resistance data have fo-
cusedprimarilyon theunloading compliancemethodbasedupon testingof a single specimen. Implementationof themethod
essentially follows from determining the instantaneous value of J and specimen compliance at partial unloading during the
measurement of the load-displacement curve as illustrated in Fig. 1(a). The technique then enables accurate estimations of
J and Δa at several locations on the load-displacement records fromwhich the J-R curve can be developed. Before deriving
the quantities and parameters needed to determine the crack growth resistance curves for the SE(T) specimens, this section
first provides an overview on the nature of the methodology.

The procedure to estimate crack growth resistance data begins by invoking the energy release rate interpretation of the
J-integral. Upon consideration of the elastic and plastic contributions to the strain energy for a cracked body under Mode
I deformation (Anderson, 2005), J canbe conveniently defined in termsof its elasticcomponent, Jel , andplastic component,
Jpl , as

J= Jel+ Jpl =
K2
I

E′ +
ηJ Apl

BN b0
(1)

where KI is the elastic stress intensity factor for the cracked configuration, Apl is theplastic areaunder the load-displacement
curve, BN is the net specimen thickness at the side groove roots (BN=B if the specimen has no side grooves where B is the
specimen gross thickness), b0 is the initial uncracked ligament (b0=W−a0 where W is thewidth of the cracked configura-
tion and a0 is the initial crack length). In writing the first term of Eq. (1), plane-strain conditions are adopted such that
E′= E∕(1−ν2 )where E and ν are the (longitudinal) elasticmodulus and Poisson’s ratio, respectively. Factor ηJ introduced
by Sumpter and Turner (1976) represents a nondimensional parameter which relates the plastic contribution to the strain
energy for the cracked body and J. Fig. 1(b) illustrates the essential features of the estimation procedure for Jpl . Here, we
note that Apl (and consequently ηJ ) can be defined in terms of load-load line displacement (LLD or Δ) data or load-crack
mouth opening displacement (CMOD or V) data. For definiteness, these quantities are denoted ηCMODJ and ηLLDJ .While both
definitions serve essentially as ameans to quantify the effect of plasticwork on the J-integral, ηJ -values based on LLD have
a different character than the corresponding ηJ -values based on CMOD. This issue is discussed in more details in the next
sections.

The previous expression (1) defines the key quantities driving the evaluation procedure for J as a function of applied
(remote) loading and crack size. Further, the previous solution for Jpl retains strong contact with the deformation plasticity
definition of J and thus assumes nonlinear elastic material response. However, the area under the actual load-displacement
curve for a growing crack differs significantly from the corresponding area for a stationary crack (which the deformation

[) This specimen is also denoted SENT in the European literature.



Figure 1 (a) Partial unloading during the evolution of load with crack mouth opening displacement;
(b) Definition of the plastic area under the load-displacement curve.
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definition of J is based on) (Anderson, 2005). Consequently, themeasured load-displacement records must be corrected for
crack extension to obtain an accurate estimate of J-values with increased crack growth. A widely used approach (which
forms the basis of current standards such asASTME1820 (2001)) to evaluate Jwith crack extension follows from an incre-
mental procedure which updates Jel and Jpl at each partial unloading point, denoted k, during the measurement of the load
vs. displacement curve in the form

Jk = Jkel+ Jkpl . (2)

Within this approach, the k-th elastic term of J is directly calculated from the corresponding k-th value of KI using the
first term of previous Eq. (1) which yields

JKel =
Kk

I
2

E′ . (3)

For the SE(T) specimen, parameter KI is evaluated at the current load, Pk , as

Kk
I =

Pk
BN W

F ak∕W  (4)

where F ak∕W defines anondimensional stress intensity factor dependent upon specimengeometry, crack size and loading
condition. The Appendix provides analytical expressions for the nondimensional stress intensity factors F ak∕W  for the
SE(T) specimens analyzed here, .

Similarly, the k-th plastic term of J follows from the second term of Eq. (1) using the current plastic area, Ak
pl . Given

an estimated value for Jpl at k−1, the k-th value of J is given by

Jkpl = Jk−1pl +
ηk−1
bk−1BN

Ak
pl− Ak−1

pl
 × Γ (5)

in which Γ is defined as

Γ = 1−
γk−1
bk−1
ak− ak−1  (6)

where factor γ is evaluated from

γk−1 = − 1+ ηk−1−bk−1W
η′k−1
ηk−1
 (7)



with

η′k−1= W
dηk−1

dak−1
. (8)

Another key step in the experimental evaluation of crack growth resistance response involves the accurate estimation
of the instantaneous crack length as testing progresses. The unloading compliance technique provides a convenient and yet
simple procedure to correlate crack extension to the specimen compliance with increased crack growth. Fig. 1(a) illustrates
the essential features of themethod. The slope of the load-displacement curve during the k-th unloading defines the instanta-
neous specimen compliance, denoted Ck , which depends on specimen geometry and crack length.

Application of the procedure outlined above requires correct specification of all quantities entering directly into the
calculationof J throughEq. (2-8) aswell as the specimen compliance, C . These quantities thus play a crucial role in defining
the J-R curve from laboratorymeasurements of load vs.displacement for the tested specimen.Current test standards provide
appropriate forms for factors η, γ and the compliance C which are only applicable to C(T) and SE(B) specimens with deep
cracks (a∕W≥0.45). The relatively limited analyses and data available to construct crack growth resistance data for SE(T)
specimens underscores the need for improved and accurate descriptions of factors η, γ and compliance C for these crack
configurations. The following sections explore detailed numerical and validation analyses which lead to a definite set of
expressions describing those key quantities.

3. NUMERICAL PROCEDURES

3.1 Finite Element Models

Detailed finite element analyses are performed on plane-strain models for a wide range of 1-T SE(T) specimens (thickness
B=25.4 mm). The analysis matrix includes specimens with a∕W=0.1 to 0.7 with increments of 0.1, and H∕W=4, 6 and
10. Here, a is the crack size specimen,W is the specimen width and H is the distance between the pin loading or clamps.
The analyses also consider the effect of loading conditions, pin-loaded ends vs. clamped ends; these specimens are denoted
as SE(T)P and SE(T)C. Figures 2(a-b) shows the geometry and specimen dimensions for the analyzed crack configurations.

SE(T)P SE(T)C

Figure 2Geometries for analyzed SET fracture specimens: (a) Pin-loaded specimens; (b) Clamped specimens; (c)
Finite element model used in plane-strain analyses of the pin-loaded SE(T) specimen with a⁄W=0.5 and H/W=6.
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Figure 2(c) shows the finite element model constructed for the plane-strain analyses of the pin-loaded SE(T) specimen
with a∕W=0.5 and H∕W=6.All other crackmodels have very similar features.A conventionalmesh configuration having
a focused ring of elements surrounding the crack front is usedwith a small key-hole at the crack tip. Our previous numerical
analyses (Cravero andRuggieri, 2005) reveal that suchmesh design provides detailed resolution of the near-tip stress-strain



fields thereby providing accurate numerical evaluation of J-values. Symmetry conditions permitmodeling of only one-half
of the specimen with appropriate constraints imposed on the remaining ligament. A typical half-symmetric model has one
thickness layer of 1365 8-node, 3-D elements (2950 nodes) with plane-strain constraints imposed on each node.

3.2 Computational Procedure and Material Laws

The finite element codeWARP3D (Koppenhoefer, 1994) provides the numerical solutions for the plane-strain analyses re-
ported here. The code enables conventional linear elastic analysis and incorporates both aMises (J2) constitutive model in
both small-strain and finite-strain framework. Evaluationof the J-integral derives fromadomain integral procedure (Moran
and Shih, 1987) which yields J-values in excellent agreement with estimation schemes based upon eta-factors for deforma-
tionplasticity (ASTME1820, 2001)while, at the same time, retaining strongpath independence for domains definedoutside
the highly strained material near the crack tip.

To construct the relationship between specimen compliance, C , and crack length, a series of linear elastic analyses
provides the load-displacement ratios for all fracture models. These analyses adopt conventional values for the elastic
constants, E=206GPa and ν=0.3. Evaluation of factors η and γ requires nonlinear finite element solutionswhich include
the effects of plastic work on J and the load-displacement response. These analyses utilize an elastic-plastic constitutive
model with J2 flow theory and conventional Mises plasticity in small geometry change (SGC) setting. The numerical solu-
tions employ a simple power-hardening model to characterize the uniaxial true stress (σ ) vs. logarithmic strain (Á ) in the
form

Á
Á0=

σ
σ0

Á≤ Á0 ;
Á
Á0=  σσ0

n

Á> Á0 (9)

where σ0 and Á0 are the reference (yield) stress and strain, and n is the strain hardening exponent. The finite element analyses
considermaterial flowproperties covering typical pipeline grade steelswithE=206GPa and ν=0.3: n=5 and E∕σ0=800
(high hardening material), n=10 and E∕σ0=500 (moderate hardening material), n=20 and E∕σ0=300 (low hardening
material). These ranges of properties also reflect the upward trend in yield stress with the decrease in strain hardening expo-
nent characteristic of ferritic pipeline steels.

4. RESULTS AND DISCUSSION

The following sections provide selected key results for the extensive numerical analyses conducted for pin-loaded and
clamped SE(T) specimens with varying configurations. These results include compliance equations and factors ηand γ
needed to determine Δa and J from experimentallymeasured load-displacement records. The analyses also explore the ef-
fect of the estimation scheme (CMOD vs. LLD) on plastic eta-factors for pin-loaded SE(T) specimens.

4.1 Compliance Equations

Standard elastic analyses under plane-strain conditions typically define the (linear) dependence of applied load on displace-
ment for a given specimen geometry with different crack sizes. Such dependence provides the required data fromwhich the
specimen compliance for varying crack size is extracted. By performing a series of finite element analyses for other speci-
men geometries, determination of C proceeds as previously described. Figures 3(a-b) provide the variation of normalized
compliance, μ ,with crack length to specimenwidth ratio, a∕W , for thepin-loaded andclampedSE(T) specimenswithvary-
ing H∕W-ratios. In all plots, the normalized compliance μ is defined by (Saxena, 1998)

μ= 1
1+ E′BefC (10)

where

Bef = B−
B− BN 

2

B
. (11)

The results displayed in Fig. 3(a) reveal that the compliance μ for the pin-loaded SE(T) specimen is essentially independent
of specimen length as characterized by the H∕W-ratio; here, all curves collapse onto a single curve defining the dependence
of μ on a∕W . For the clampedSE(T) specimens, the results displayed inFig. 3(b) exhibit a rather different behavior inwhich
the compliance μ depends on the H∕W-ratio for deeper cracks (a∕W≳0.4); however, μ is essentially independent of H∕W
for shallow cracks (a∕W≲0.2).



Figure 3 Variation of compliance, μ, with a⁄W-ratio: a) pin-loaded SE(T) specimens with different H⁄W-ratios;
b) clamped SE(T) specimens with different H⁄W-ratios..
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Usingnow theprevious results for guidance,weconstruct the functional dependenceof crack lengthand specimencom-
pliance as follows:

a
W
= c0+ c1μ+ c2μ2+ c3μ3+ c4μ4+ c5μ5 (12)

where it is understood that a 5-th order polynomial fitting is employed. Equation (12) defines a key step in the evaluation
procedure of the crack growth resistance curve. Bymeasuring the instantaneous compliance during unloading of the speci-
men (see Fig. 1), the current crack length follows directly from solving the above expression for μ. Table 1 provides the
polynomial coefficients of Eq. (12) derived from a standard least square fitting for the pin-loaded and clamped SE(T) speci-
mens. The solid lines displayed in the plots define the fitting curves corresponding to Eq. (12).

Table 1 Coefficients for the polynomial fitting of Eq. (12).

c0 c1 c2 c3 c4 c5

SE(T)P all H/W 1.0056 −2.8744 5.4420 −12.510 16.102 −7.0642

H/W=4 2.3928 −14.074 47.881 −104.58 124.20 −59.423

SE(T)C H/W=6 2.1263 −13.461 51.299 −120.47 147.83 −71.812

H/W=10 1.6485 −9.1005 33.025 −78.467 97.344 −47.227

4.2 J Estimation Using Eta-Factors

Based upon the plastic work defined by the plastic component of the area under the load vs. CMOD curve or the load vs.
LLD curve (see Fig. 1(b)), the nondimensional η-factors for the analyzed SE(T) specimenwith H∕W=6 are obtained using
the procedure outlined previously. The analyses consider the effect of loading conditions (pin-load vs. clamp) and a wide
range of hardening properties (n=5, 10, 20) as described by the constitutive law given by Eq. (9).

Figures 4(a-b) provide the η-factors derived from CMOD and LLD for the pin-loaded SE(T) specimens (hereafter de-
noted as ηCMODJ,P and ηLLDJ,P ) with varying a∕W-ratios. Consider first the results displayed in Fig. 4(a). The ηCMODJ,P -values are
essentially independent of strain hardening for the entire range of a∕W -ratio. Such response provides a particularly interest-
ing result in that factor ηCMODJ,P for this specimen remains virtually constant with a value of≈1.0. Consider next the results
shown in Fig. 4(b). The behavior displayed by the ηLLDJ,P -values constrasts rather sharply with the observed response for
ηCMODJ,P . While the eta-factor based on LLD is relatively insensitive to strain hardening in the range a∕W≳0.4, ηLLDJ,P varies



considerably with n for shallower cracks. More importantly, the ηLLDJ,P -values depend strongly on a∕W -ratio, particularly
in the range a∕W≲0.4. Here, we also note that the behavior displayed by the plots of Figs. 4(a-b) remains essentially un-
changed for other H∕W-ratios. Consequently, these numerical results are understood to represent all applicable values of
η-factors for pin-load SE(T) specimens having a wide range of crack sizes relative to specimen width.

ηCMOD
J,P

Figure 4 Variation of plastic η-factor with a⁄W-ratio for pin-loaded SE(T) specimens: a) derived from CMOD;
b) derived from LLD..
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Figure 5 presents the η-factors using CMOD for the clamped SE(T) specimens (ηCMODJ,C ) with H∕W=6 and different
a∕W-ratios. In contrast to the pin-loaded specimen (see Fig. 4), the ηCMODJ,C -values for this case decrease steadily and almost
linearly with crack length in the range 0.10<a∕W<0.6. However, the eta-factor displays a different trend for a∕W=0.7
in which ηCMODJ,C slightly increases for moderate to low hardening materials (n=10 and 20). Given the very large crack size
for this case (which implies a very reduced crack ligament), such behaviormaybedue to the impingement of the gross bend-
ing (and associated in-plane plastic deformation) on the local crack-tip plastic zones thereby affecting theplasticwork (upon
which factor η is determined). Similar trends are observed for other H∕W-ratios. However, the eta-factors for these cases
also display relatively weak dependence on the H∕W-ratio. Since the focus of this work rests primarily on the utilization
of pin-loaded SE(T) specimens, those results are omitted to conserve space.

ηCMOD
J,C

Figure 5Variation of plastic η-factor with a⁄W-ratio derived fromCMOD for clamped SE(T) specimens.
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To provide a simpler manipulation of the previous results in evaluation procedures for crack growth resistance curves,
the following equations provide a polynomial fit (derived from a standard least square technique) to the dependence of theη-
factors on a∕W-ratio:

ηCMODJ,P = 0.9095+ 0.1227 a∕W  (13)

ηLLDJ,P =− 0.1683+ 7.3828(a∕W)− 5.1833 a∕W
2

(14)

ηCMODJ,C = 1.0120− 0.5747 a∕W  (15)

where it is understood that subscripts P andC refer to pin-loaded and clamped SE(T) specimens. The solid lines in the plots
displayed in Figs. (4-5) define the above fitting curves. Further, by taking the derivative of these expressions with respect
to the crack size and using Eqs. (6-8), correction of the J-integral for crack growth through Eq. (5) is then readily performed.

5. CONCLUDING REMARKS

This study describes an estimation procedure of crack growth resistance curves for SE(T) fracture specimens using the un-
loading compliance technique based upon testing of a single specimen. The methodology follows from determining the
instantaneous value of the specimen compliance at partial unloading during the experimental measurement of the load-dis-
placement data which enables accurate estimations of J and crack extension, Δa , with increased loading. The extensive
plane-strain analyses reported here provide a full set of nondimensional compliance, μ , and plastic factors η and γ for a
wide range of specimen geometries, including pin-load and fixed ends, and material properties characteristic of structural,
pressure vessel and pipeline steels.

Our results reveal that the compliance μ for the pin-loaded SE(T) specimen is essentially independent of specimen
length as characterized by the H∕W-ratio. For the clamped SE(T) specimens, however, the compliance μdepends on the
H∕W-ratio for deeper cracks (a∕W≳0.4), but is essentially independent of specimen length for shallowcracks (a∕W≲0.2).
The loading condition also affects rather strongly thebehavior of the plastic η-factors derived fromour analyses.Here, how-
ever, specification of the plastic area, Apl , (upon which factor η is based ) in terms of CMOD or LLD plays a significant
role indefining amore accurate and convenient parameter todetermine theJ-valuewith increased crackextension.Our anal-
yses demonstrate that η-factors derived from CMOD are essentially independent of strain hardening (and material proper-
ties) and provide values which are less sensitive to the loading level than the corresponding η-factors derived from LLD.
Clearly, such results favor theuseof ηCMODJ in experimentalmeasurements of crack growth resistancedata usingSE(T) spec-
imens. While additional experimental studies are needed to build a more extensive body of laboratory data, the results pre-
sentedhere provide adefinitebasis to support developments of standard test procedures for constraint-designedSE(T) spec-
imens applicable in measurements of crack growth resistance for pipelines.
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APPENDIX:
Stress Intensity Factor Solutions for SE(T) Specimens

Evaluation of the J-integral for the SE(T) specimens requires accurate solutions for the (Mode I) elastic stress intensity fac-
tor, KI, appearing in the first term of Eq. (1) or (3) presented in Section 2. While some previous studies (Blatt et al., 1994;
John, 1997; John and Rigling, 1998; Tada et al., 1985) provide the stress intensity factors for these crack configurations,
these published solutions cover a limited geometry range, particularly a∕W and H∕W-ratios. The present section provides
a comprehensive set of KI-solutions for pin-loaded and clampedSE(T) fracture specimenswith varying specimengeometry
(different a∕W and H∕W-ratios) and eccentricity of loading (offset in the loading point relative to the center of the specimen
for the pin-loaded fracture specimen).

The stress intensity factor is conveniently defined in the form

KI = P
B W

F a∕W  (A.1)

where F a∕W defines a nondimensional stress intensity factor dependent upon specimen geometry, crack size and loading
condition. Here, P is the applied load, B denotes the specimen thickness andW is the specimen width. For any given value
of P, B andW, calculation of KI follows from evaluation of F a∕W  for a given a∕W-ratio and loading condition (pin-load
or clamp).

Anextensive seriesof linear finiteelementanalyses for pin-loadedandclampedSE(T)analyseswasconducted toevalu-
ate the nondimensional stress intensity factor, F a∕W , for different a∕W and H∕W-ratios. The analyis matrix (see Fig.
2) includes fracture specimenswithcrack size in the range0.1≤a∕W≤0.7with increments of0.1 andwithdistancebetween
the pin loading or clamps H∕W=2, 4, 6, 8, 10, 20 and 50. The finite element codeWARP3D (Koppenhoefer, 1994) provides
thenumerical solutions for the linear elastic analysis describedhere. For eachmodel, evaluationof the elastic stress intensity
factor follows from computational of the J-integral using the conventional relationship J= K2

I ∕ E′ where
E′ = E∕(1−ν2 ) with ν=0.3 andE=206GPa in all analyses. The finite elementmodels employed in these computations
have essentially similar mesh details as the numerical models previously described in Section 3.

Figure A.1 provides the key results describing the KI-solutions for the analyzed crack configurations in terms of the
variation of the nondimensional stress intensity factor, F a∕W with a∕W-ratio for different loading conditions, H∕W-ra-
tios. The plots displayed in Fig. A.1(a) reveals that the variation of F a∕W  with a∕W-ratio for the pin-loaded specimen
remains unchanged for varying H∕W-ratios; such results are entirely consistent with the stress intensity solutions for pin-
loaded SE(T) specimen given by Tada et al. (1985). In contrast, there is a strong effect of the H∕W-ratio on F a∕W  for
the clamped specimen shown in Fig. A.1(b), particularly for moderate to deep cracks (0.3≤a∕W≤0.7).



Using again the previous results for guidance, we construct the functional dependence of the nondimensional stress in-
tensity factor and a∕W-ratio as follows:

F a∕W  = ξ0+ ξ1 a∕W  + ξ2 a∕W 
2
+ ξ3 a∕W 

3
+ ξ4 a∕W 

4
+ ξ5 a∕W 

5
(A.2)

where it is understood that a 5-th order polyonomial fitting is employed. Table A.1 provides the polynomial coefficients of
Eq. (12) derived from a standard least square fitting for the pin-loaded and clamped SE(T) specimens. The solid lines dis-
played in the plots define the fitting curves corresponding to Eq. (A.2).
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Figure A.1.Nondimensional stress intensity factor with a/W-ratio: (a) pin-loaded
SE(T) specimens; (b) clamped SE(T) specimens.
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Table A.1 Coefficients for the polynomial fitting of Eq. (A.2).

Specimen ξ0 ξ1 ξ2 ξ3 ξ4 ξ5

SE(T)P all H/W −0.0720 11.6294 −61.6928 223.4007 −355.5166 239.3969

H/W=2 0.2390 4.7685 −10.8390 22.8483 −25.1329 13.8204

H/W=4 0.2565 4.4604 −7.0538 18.6928 −19.4703 9.2523

H/W=6 0.2681 4.1916 −4.5098 12.5442 −6.4726 0.7304

SE(T)C H/W=8 0.2852 3.8168 −1.4522 3.5078 9.4071 −7.8491

H/W=10 0.2832 3.8497 −1.4885 4.1716 9.9094 −7.4188

H/W=20 0.2682 4.1767 −3.8639 14.9622 −7.9416 9.4143

H/W=50 0.0746 8.2866 −34.2306 117.6196 −165.6966 104.8546


