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Abstract. Gradient based algorithms are in general very efficient in locating a relative optimum closest to the starting 
point of the design space. However, in recent years non gradient probabilistic based algorithms have been extensively 
investigated by the research community. Such algorithms are search procedures based on some natural phenomena. 
However such methodologies are involved with many more function evaluations than gradient based strategies. 
Despite of that, they are very versatile as they are easy to implement, accept both discrete and continuous design 
variables, do not require function continuality and above of all are very suitable for parallel computation. The recent 
probabilistic algorithm called Particle Swarm Optimizer is implemented in this work. As applications of optimization 
tools to large structural design problems could be cost prohibitive unless suitable approximation concepts are 
employed, problem approximation using the reduced-basis method (RBM) is here considered. The RBM is a Galerkin 
projection onto low order approximation spaces comprising solutions of the problem of interest at selected points in 
the parameter/design space. Moreover, the accuracy of such quantities is assured as errors estimators are 
incorporated in the procedure. The particle swarm optimization algorithm is then developed in the framework of the 
RBM. Truss structuress are the applications addressed here. 
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1. INTRODUCTION  
 

Optimization techniques have been extensively used to obtain economical and reliable structural designs. 
Commonly in an optimization process several functions evaluations are required in consequence of design changes 
dictated by optimizers. To apply such techniques to real engineering problems could be an issue as the computational 
cost required for multiple numerical simulations could be, in certain cases, prohibitive. In the last decade, 
approximation concepts (Haftka et al, 2004) started to be more extensively applied in optimization procedures as a 
strategy to overcome such drawback. The approximations methodologies can be divided into two types: functional and 
physical (Haftka et al, 2004). While in the first an alternate and explicit expression is sought for the objective function 
and/or the constraints of the problem, the focus of the second is on replacing the original problem by one which is 
approximately equivalent but which is easier to be solve. 

Problem approximation is the focus of the present work and, in this context, we will consider the reduced-basis (RB) 
method (Almroth et al, 1978, Noor and Peters, 1980, Fink and Rheinboldt, 1983, Prud’homme et al, 2002). The purpose 
of such scheme is to get high fidelity model information with low computational cost. The central idea considered in the 
development of the method is the recognition that to approximate the field variable and hence the outputs of the solution 
we do not need to represent every possible function of the infinite dimensional solution space associated with the 
governing equation, but rather those on a much lower-dimensional manifold induced by the parametric dependence. 

To obtain structural designs a computational system using a standard SSO algorithm (Afonso, 1995) is implemented 
integrating geometric definition, finite element (FE) analysis and optimization. In the present context, RB 
approximations rule the structural analysis module. As a consequence, output is very fast computable. Single objective 
optimization problems will be addressed here. The particle swarm (PS) algorithm is used as an optimizer. 

A fully FE based SSO algorithm is also implemented for comparison purposes. Some examples are solved and the 
results are discussed. The importance of considering RB approximations for functions evaluations in an optimization 
procedure is highlighted. 
 
2. PROBLEM FORMULATION  
 

The typical formulation of a structural optimization problem is given by: 
 
Minimize or maximize ( )f x  
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where ( )f x  is the objective function, x  is the vector of design variables, lx  and upx  are the limit values for the design 
variable varn  is the number of design variables, g  is a typical constraint and conn  is the number of constraints. 
 
3. PARTICLE SWARM OPTIMIZATION 
 
3.1. General idea 
 

PS refers to a relatively new family of algorithms that may be used to find optimal (or near optimal) solutions to 
numerical and qualitative problems (Pomeroy, 2003). PSO was originally developed by a social-psychologist (James 
Kennedy) and an electrical engineer (Russell Eberhart) in 1995. 

The Particle Swarm Optimization (PSO) (Sobieszczanski-Sobieski and Venter, 2002) is based on natural 
phenomena, which is a simplified social model that is closely tied to swarming theory (Pomeroy, 2003). A physical 
analogy might be a swarm of bees that is adapting to its environment. In this analogy each bee (a particle) makes use of 
its own memory as well a knowledge gained by the swarm as a whole, to efficiently adapt to its environment. 

The numerical implementation of a social model assumes that population is a swarm and each individual is a 
particle. The algorithm repeatedly updates the position of each particle over a time period to simulate the adaptation of 
the swarm to the environment. In order to find a new position of a particle, its current position, a velocity vector and a 
time increment are taken into account (Bochnek and Forys, 2003). 
 
3.2. Basic algorithm 
 

Particle swarm optimization makes use of a velocity vector to update the current position of each particle in the 
swarm. The position of each particle is updated based on the social behaviour that a population of individuals, the 
swarm, adapts to its environment by returning to promising regions that were previously discovered. The process is 
stochastic in nature and makes use of the memory of each particle as well as the knowledge gained by the swarm as a 
whole. The outline of a basic PSO algorithm is as follows: 

1- Start with an initial set of particles, typically randomly distributed throughout the design space; 
2- Calculate a velocity vector for each particle in the swarm; 
3- Update the position of each particle, using its previous position and the updated velocity vector; 
4- Go to Step 2 and repeat until convergence. 

 
3.3. Initial distribution 
 

The initial swarm is generally created such that the particles are randomly distributed throughout the design space 
which is limited by the lower and upper bounds of the design variables. Each considered particle is associated with an 
analyzed design. In a similar scheme the initial values for particle’s velocity are set. In this process, minimum and 
maximum velocity values for local changes for each particle are predefined parameters of the algorithm. 

In the present work, the following equations are used to obtain the random initial position and the velocity vectors. 
 

0 min 1 max min( )i r= + −x x x x  (2) 
 

0 min 2 max min( )i r= + −v v v v  (3) 
 

where 0
ix  is the initial position and 0

iv  is the initial velocity for a particle i , in Eq. (2) and Eq. (3), 1r  and 2r  are 
random numbers between 0 and 1 (they are different for each coordinate), minx  is the vector of lower bounds for the 
design variables, maxx  is the vector of upper bounds for the design variables, minv  is the vector of lower bound of local 
changes and maxv  is the vector of  upper bound of local changes. The velocities values for minv  and maxv  commonly 
used in literature are -4 and 4. 
 
3.4. Updating variables 
 

The scheme for updating the position of each particle is shown in Eq. (4). 
 

1 1
i i i
k k k t+ += + Δx x v  (4) 

 
where 1

i
k+x  represents the position vector of particle i  at iteration 1k +  and 1

i
k+v  represents the corresponding velocity 

vector and tΔ  represent the time step (a unit time step is used throughout the present work), i
kx  represents the position 

vector of particle i  at iteration k . 
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The scheme for updating the velocity vector of each particle depends on the particular PSO algorithm under 
consideration. A commonly used scheme was introduced by Shi and Eberhart (Sobieszczanski-Sobieski and Venter, 
2002), as shown in Eq. (5). 

 

1 1 1 2 2( ) ( )i i i i i i
k k k k kw c r c r+ = + − + −v v p x p x  (5) 

 
where 1r  and 2r  are random numbers between 0 and 1 (they are different for each coordinate), i

kv  represent the 

velocity vector of particle i  at iteration k , ip  is the best position found by particle i  and i
kp  is the best position in the 

swarm at time k  (Sobieszczanski-Sobieski and Venter, 2002). 
In optimization context p  is the vector of design variables. As observed in Eq. (5) for each problem there are three 

parameters to be set, they are the inertia ( w ) and the two trust parameters ( 1c  and 2c ). The inertia controls the 
exploration capability of the algorithm: high values for global behavior while low values are more appropriate for local 
behavior. The trust parameters indicate how much confidence the current particle has in itself ( 1c ) and how much 
confidence it has on the swarm ( 2c ). For structural optimization problems, in this work, is proposed 1,0w ≤  starting 
the procedure with a value that will be automatically decreased during the optimization process. For the trust 
parameters, the following values are advised: 1 2 2c c= = . They are kept constant during the whole procedure. 
 
3.5. Problem parameters update 
 

As mentioned previously, the inertia weight parameter w  is adjusted automatically during the optimization. In the 
present work the changes are based on the coefficient of variation of the objective function values. The goal is to change 
the w  value automatically, with no interaction from the user. A starting value of 0,9w =  is used to initially 
accommodate a more global search and is dynamically reduced to no less than 0. The idea is to terminate the PSO 
algorithm with a more local search. The w value is adjusted using the updating formula 

 
new old ww w f=  (6) 

 
where neww  is the newly adjust w  value, oldw  is the previous w  value and wf  is a constant between 0 and 1. In the 
present work 0,975wf =  is used throughout, resulting in a PSO algorithm with a fairly global search characteristic. 

The w  value is not adjusted at each design iteration. Instead, the coefficient of variation of objective function values 
for a subset of best particle is monitored. If the coefficient of variance falls below 1 it is assumed that the algorithm is 
converging towards an optimum solution and Eq. (6) is applied. A general equation to calculate the coefficient of 
variance for a set of points is provided in Eq. (7) 

 
StdDevCOV Mean=  (7) 

 
where COV  is the coefficient of variation, StdDev  is the standard deviation and Mean  is the mean value for the set of 
points. In this work, a subset of the best 20% of particle from the swarm is monitored. 

 
3.6. Constrained optimization 

 
The basic PSO algorithm is defined for unconstrained problems only. Since most engineering problems are 

constrained in one way or the other, it is important to add the capability of dealing with constrained optimization 
problems. It was decided to deal with constraints by making use of a quadratic exterior penalty function. This technique 
is often used to deal with constrained problems in genetic algorithms (Goldberg, 1989). In the current implementation, 
when one or more of the constraints are violated, the objective function is penalized as shown bellow. 

 
P( ) ( ) ( )f μα= +x x x  (8) 
 

where μ is the parameter of penalty, ( )f x  is the normalized objective function of problem given as: 
 

0( ) ( ) ( )f f f=x x x  (9) 
 

and ( )α x  is given as: 
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and ( )g x  is the set of all constraints (with violated constraints having values larger than zero). In the present work a 

penalty parameter of 810μ =  is used during the whole procedure. 
 
3.7. Treatment for particles with violated constraints 
 

A simple modification to Eq. (5) is proposed when there are particles with one or more violated constraints. The 
modification can be explained by considering particle i , which assumed to have one or more violated constraints at 
iteration k . By re-setting the velocity vector of particle i  at iteration k  to zero, the velocity vector at iteration 1k +  is 
obtained as 

 

1 1 1 2 2( ) ( )i i i i i
k k k kc r c r+ = − + −v p x p x  (11) 

 
3.8. Convergence criterion 
 

A convergence criterion is necessary to avoid any additional function evaluations after an optimum solution is 
found. In the present work a particle cluster formation as a stop criterion was created and implemented. The cluster 
formation consists in concentration of the particles. The procedure is locked up if a considerable amount of particles are 
grouped around of the same point. 

For a cluster formation check it is necessary to select an amount of particles with the best positions in the design 
space. Then it is verified the relative position between them. When the greater difference between all distances is 
smaller than a tolerance, previously determined, then the convergence is achieved. The number of pre-selected particles 
considered in the cluster formation has been studied. 
 
4. PRESENT APPLICATION 
 

The application addressed in this work consists in plane truss submitted to static loads. The global equation of the 
specific problem is given as 

 
=Kd F  (12) 

 
where K  is the global stiffness matrix, d  is the displacement vector (unknowns) and F  is the force vector applied. 

One of the outputs with great interest in structural designs are the stress on the truss bars, calculated for each bar as 
follows 

 
e

e
e

f
A

σ =  (13) 

 
in which eA  is the area of one generic bar e  and ef  is obtained as follows. 

From a local equilibrium we have 
 

e e eF K d=  (14) 
 

and 
 

e T efe F= R  (15) 
 

in which case R  is the matrix of rotations, see (Cook, 1981), and ef  of Eq. (13) could be, for instance the first 

component of vector efe , i. e., 
 

(1)e ef fe=  (16) 
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5. RB APROACH 
 
5.1. Central idea 
 

To construct an approximation for the displacements and consequently to any solution output (here we will focus on 
the compliance) satisfying efficiency and accuracy requirements. 
 
5.2. Efficiency 
 

The use of an affine decomposition to the stiffness matrix of the conventional (costly) problem is the requirement to 
perform inexpensive computational calculations. Thus we rewrite K  as 

 

1

( )
R

r r
r

μ
=

=∑K Kμ  (17) 

 
in which each parameter rμ  is a cross sectional area to be specified for different geometric regions r  ( 1,  2,  ...,  r R= ) 
of the truss. It is important to emphasize that the stiffness matrix rK  is restricted to particular geometric region r  and 
is independent of μ . 
 
5.3. Approximation 
 

To construct the RBM approximations, firstly a sample SN  in the design D  must be chosen 
 

{ }1
1 1S ( ,  ..., ) ,  ..., ( ,  ..., )N N

R Rμ μ μ μ=  (18) 
 

where each 1( ,  ..., )i
Rμ μ  is in D , this means 

 
l up

rμ μ μ≤ ≤  (19) 
 

in which lμ  and upμ  are the lower and upper limits respectively of D . The associated reduced basis space is 
represented by 

 

{ },  1,  ...,  N iW span i N= =ζ  (20) 
 

in which 
 

( )( ,  ..., ) ,  1,  ...,i i
R i Nμ μ= =1dζ  (21) 

 
Taking the above definitions, the reduced-basis approximation problem can be formulated as:  
For D∈μ  find ( )Nd μ  in the Galerkin projection of ( )d μ  onto NW . Therefore, taking into account the 

observations made previously, the reduced-basis approximation ( )Nd μ  is expressed as 
 

1

( ) ( ) ,  ( )
N

N i i i N

i

α α
=

= ∈ℜ∑d μ μ ζ μ  (22) 

 
The above equation means that Nd  can be expressed as a linear combination of the displacements solutions iζ . In 

matrix form Eq. (22) is rewritten as 
 

( ) ( )N = Zd μ α μ  (23) 
 
Using stationary conditions to the total potential energy and Eq. (23) to represent the displacements field, we end up 

in the following equation (Prud’homme et al, 2002) 
 



( ) ( )N N=K Fμ α μ  (24) 
 

in which 
 

T( ) ( )N N N×= ∈ℜK Z K Zμ μ  (25) 
 

and 
 

TN N= ∈ℜZF F  (26) 
 

5.4. Accuracy 
 
The accuracy checking for the method is accomplished due to consideration of a posteriori error estimator 

procedure. To compute the error in a computationally efficient way the following residual equation should be solved 
 

ˆ( ) ( ) R( )=C eμ μ μ  (27) 
 

in which ( )C μ  is a symmetric operator defined such that 
 

T Tˆ ˆ( ) ( ) ( ) ( ) ( ) ( )≤K Ce e e eμ μ μ μ μ μ  (28) 
 
In the above equations ( )e μ  is the exact error and ˆ( )e μ  is the approximated error and R  is the residue. To compute 

C  we consider the so-called point conditioner strategy (Prud´homme et al, 2002): 
 

ˆ( ) ( )g=C Kμ μ  (29) 
 

in which { }( ) min ,  1,  ...,rg r Rμ= =μ  and 
 

1

ˆ
R

r
r=

=∑K K  (30) 

 
It is important here to emphasize that the solution and error computations are very fast as it take the advantage of 

using several precomputed quantities ( μ independent). This is possible due the Eqs. (24, 25) together with the 
decomposed form of our stiffness matrix, defined in Eq. (17). 
 
6. EXAMPLES 
 

The approaches presented before are tested for some truss applications. In this work some benchmark examples are 
analyzed. The examples highlight the advantage of using the RBM over the conventional approach as problem 
complexities increases. For comparison purposes, a fully FE based solution (Afonso and Patera, 2003, Albuquerque, 
2005) are also considered. 
 
6.1. Geometry definition 
 

Three different benchmark trusses are considered. They are: ten bars truss, two hundred bars truss and nine hundred 
and thirty bars truss. Their geometry and loading definition are indicated in Fig. (1). The Elastic Modulus is 

112,07 10E = ×  for all cases. 
For the reduced-basis solution, each truss is subdivided in three regions, regions I, II and III, indicated in Fig. (1), in 

which the struts are determined to have different cross sectional areas. This leads to R=3  in the present study. The 
initial area 1 2 3( ,  ,  )A A A  of each one of the two trusses is the same. It is considered 9N =  and the sample 1SN  for the 

ten bars truss and 15N =  and the sample 2SN  for the remaining two trusses. The samples are indicated in Tab. (1) and 
Tab. (2) respectively. The quantity of interest to be computed is the stress in all their members. 
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Figure 1. Geometry and loading definition for: (a) ten bars truss, (b) two hundred bars truss and (c) nine hundred and 

thirty bars truss 
 

Table 1. Sampling 1SN  for the ten bars truss example sample. 
 

N 1 2 3 4 5 6 7 8 9 
1μ  0.1 1.0 10.0 1.0 1.0 10.0 0.1 1.0 10.0 

2μ  0.1 0.1 0.1 2.0 5.0 2.0 10.0 10.0 5.0 

3μ  0.1 0.1 0.1 5.0 1.0 1.0 10.0 10.0 10.0 
 

Table 2. Sampling 2SN  for the two hundred bars truss and nine hundred and thirty bars truss examples sample. 
 

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1μ  6,62 2,89 9,77 3,94 7,47 8,16 2,53 5,50 6,90 0,85 1,50 8,70 5,20 4,63 0,46 

2μ  9,62 1,93 4,79 2,12 7,64 8,28 9,25 6,27 0,90 5,99 7,10 2,81 4,51 0,21 3,60 

3μ  7,43 2,36 6,12 8,65 0,70 4,11 3,77 9,88 9,28 7,16 1,02 1,79 2,92 4,73 5,46 
 
6.2. Optimization 
 

The PSO algorithm presented in this work is used in this section to obtain optimum truss designs. For PSO solution 
the population in the swarm is 50 particles. The other parameters are those previously mentioned. 

The volume is the objective function to be minimized. A part from that, the design variables are 1 1Aμ = , 2 2Aμ =  
and 3 3Aμ =  and the design space considered is [ ] [ ] [ ]0.1,  10.0 0.1,  10.0 0.1,  10.0D = × × . This means that their lower 
and upper limits are respectively 0.1 and 10.0. Apart from those, stress constraints are imposed to the problem, such that 
the allowable stress value is given in Tab. 3 to all bars for each truss. 

 
Table 3. Stress constraints. 

 
 Tension Compression 

10 bars truss 4000 4000 
200 bars truss 20000 20000 
930 bars truss 0,5 0,5 

 
Tables 4, 5 and 6 show the optimization results for the 10 bars truss example, the 200 bars truss and 930 bars truss 

respectively, considering both strategies investigated here (FE and RBM ). 
 
 
 



Table 4. 10 bars truss example results 
 

 FE solution RBM solution 
1μ  0,52 0,52 

2μ  0,29 0,29 

3μ  0,10 0,10 
Volume 31,318 10×  31,318 10×  

Time (normalized) 0,0314 1,00  
 

Table 5. 200 bars truss example results 
 

 FE solution RBM solution 
1μ  0,43 0,43 

2μ  1,51 1,51 

3μ  7,27 7,27 
Volume 51,726 10×  51,726 10×  

Time (normalized) 2,719  1,00  
 

Table 6. 930 bars truss example results 
 

 FE solution RBM solution 
1μ  1,56 1,56 

2μ  0,1 0,1 

3μ  0,24 0,24 
Volume 25,88 10×  25,88 10×  

Time (normalized) 4,269  1,00  
 
For each case, both strategies converge to the same optimum. However, the fast computation inherit to RBM is 

perceived for the 200 bars and 930 bars cases. Also the difference in CPU time using both schemes increases as the 
structure gets more complex. For the RBM the CPU time is almost constant as the number of degrees of freedom 
increases. For the ten-bar truss N  is greater than the total number of degrees of freedom. Therefore, as the structure of 

NK  matrix is dense this explains the CPU time consumed for that case be higher for RB solution when compared with 
FE solution. This highlights the importance of the use RBM for the design of large structures. 
 
7. CONCLUSIONS 
 

Optimum designs were here obtained for classical trusses problems. The RBM was integrated in a PSO algorithm in 
order to conduct fast computations. A certify of fidelity for the reduced basis was obtained through the implementation 
of a posteriori error estimator.  

The results were compared to the conventional PSO, which employs FE method. As the complexity of the FE’s 
equation increases the advantage of using the reduced basis in the SSO algorithm was highlighted. 
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