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Abstract. A dynamic response of reinforced plate structures through the Boundary Element Method (BEM) have been 
carried out in the present investigation. The dynamic fundamental solutions of the plane stress elasticity and thin plates 
are used to transform the governing differential equations into displacements boundary integrals. Plane elements 
containing an association of flexural and in-plane mechanisms were adopted to represent a single folded plate called 
Macro-element. The assemblage of the Macro-elements is made by compatibility and equilibrium conditions at the 
element interfaces. Boundary conditions are imposed in the assembled structure. A well-posed problem presents four 
unknowns and, consequently, four integral equations are required for every node. The strategy is to use two integral 
equations for the membrane and the two integral equations for the thin plate at every node. Under the assumption of 
small deformation and small strain, the in-plane motion and the out-of-plane motion are not coupled. A non-singular 
BEM formulation is implemented. The geometry and the variables are discretized using linear elements. Two distinct 
collocation points for both the plate Boundary Integral Equation (BIE) and for the membrane BIE are required. For 
every boundary node four boundary integral equations are written. The stationary dynamic responses of the reinforced 
structures are characterized by its modal quantities that means, by its eigenfrequencies and eigenvalues. These 
quantities are obtained by analyzing the numerical Frequency Response Functions (FRF) where a harmonic force of 
constant amplitude excites the structure at a given point and the resulting displacement is measured at another point. 
From the resonances or peaks of the FRFs the operational eigenfrequencies may be determined. The operational 
eigenmodes (vibration mode shapes) are determined by calculating the folded plate structure displacement field at the 
determined operational eigenfrequencies. The propose scheme was shown to be capable of dealing with models 
subjected to different boundary conditions and out-of-plane loadings. The results agree very well with published 
results in the literature. 
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1. INTRODUCTION  
 

Reinforced structures systems are functional, efficient, economical and readily constructed of most common 
materials. Many structures taken out of a production line will exhibit variations on some or all of its geometrical, 
material and assembling properties and this dispersion will reflect in their behavior. Small changes of the physical 
properties can significantly affect the results, and the prediction error tends to increase when using models to perform a 
structural static and dynamic analysis. The static analysis of the reinforced plate system employed methods for the 
solution such as a methodology based on energy principles (Kukreti and Cheraghi, 1993), a semi analytical method 
(Mukhopadhay, 1994) or the differential quadrature method (Siddiqi and Kukreti, 1998). Also it is possible to model 
behavior this structures by the Finite Element Method (FEM) (Deb and Booton, 1988; Palani et al., 1992), the 
Boundary Element Method (BEM) (Tanaka and Bercin, 1997; Sapountzakis and Katsikadelis, 2000; Tanaka et al., 
2000; Wen et al., 2002; Oliveira Neto and Paiva, 2003) or a combination of these numerical methods (Ng and Cheung 
Xu, 1990). A rather limited amount of technical literature is available on the dynamic analysis of stiffened plate 
systems. On the other hand, a significant research effort is under way in both the academia and the industry to improve 
the numerical models and to develop new modeling methods for the dynamic analysis (Arruda and Ahmida, 2003). 
Finite and boundary elements have some limitations to obtain vibration responses at middle and upper frequency ranges 
due to the necessity of refining the mesh. Using finite elements fine meshes are required leading to very large algebraic 
systems. An alternative is posed by the BEM. If formulated with the proper auxiliary state, the BEM only requires 
boundary discretization, leading to considerable smaller algebraic systems. The direct boundary element sub region 
formulations based on Kirchhoff’s plate theory has been applied to the dynamic analysis of thin-walled structures 
formed by assembling folded plate models using the so-called static fundamental solution (Tanaka et al., 1988; Tanaka 
et al., 1998). Assembled plate structures were also analyzed by BEM and comparisons with FEM are given to 
demonstrate the accuracy of this methodology (Dirgantara and Aliabadi, 2002). Another dynamic analysis of elastic 
plates reinforced with beams takes into account the resulting in plane forces and deformations in the plate as well as the 



axial forces and deformations in the beam, due to combined response of the system (Sapountzakis and Katsikadelis, 
1999). The presented method employs the static solution similar to the models described previously. The consequence 
of these formulations is that the inertia forces lead to a domain integral. In these previous articles it was necessary to 
develop a procedure to deal with the domain integral. A way to derive the governing integral equation for the problem is 
to use a stationary dynamic fundamental solution as in Beskos (1987), Beskos (1991) and Beskos (1997). If this 
fundamental solution is applied the resulting integral equation requires only the discretization of the boundary of the 
single folded plate being analyzed.  

The present paper analysis the dynamic stationary of the reinforced panels subjected to time harmonic loadings 
using the BEM. In the propose methodology the panels are considered as assembled folded plate structure (Sanches et 
al., 2004). The formulation is built by coupling boundary element formulations of plate bending and two dimensional 
plane stress elasticity. This uncoupled system is joined to form a Macro-element. The plate structure is divided into 
several regions, and the equilibrium and compatibility equations along the interface boundaries are imposed. The 
boundaries are discretized into linear continuous and discontinuous isoparametric elements. Four displacement integral 
equations are written for every boundary node. The stationary dynamic responses are characterized by its modal 
quantities that means, by its eigenfrequencies and eigenvalues. These quantities are obtained by analyzing the numerical 
Frequency Response Functions of the reinforced structure. A harmonic force of constant amplitude excites the structure 
at a given point and the resulting displacement is measured (calculated) at another point. From the resonances or peaks 
of the FRFs the operational eigenfrequencies may be determined. The operational eigenmodes (vibration mode shapes) 
are determined by calculating the folded plate structure displacement field at the determined operational 
eigenfrequencies. A numerical example is presented to illustrate the proposed methodology. Different configurations of 
the reinforcements are used to simulate free and simply supported boundary conditions. The implementation is 
validated by comparison with numerical results determined in the literature. The results obtained are shown to be in 
good agreement with others formulations and the proposed scheme may be seen as an accurate methodology to analyze 
free and forced stationary vibrations of structures assembled by folded plates, as for example plate structures and also 
reinforced panels. 
 
2. BOUNDARY INTEGRAL EQUATIONS 
 

The boundary elements is a well established numerical technique in the academic community. Its formulation, based 
on the displacement boundary integral equation has been successfully applied to static and dynamic linear elastic 
problems. The procedure adopted to analyze stationary dynamic reinforced plates is obtained from the direct boundary 
integral equations to solve the plane stress elasticity and bending problems in each plane element (folded plate). The 
integral equations are independent due to the small strain hypotheses. Displacements and efforts of each plane element 
are combined to obtain the final equation using kinematics compatibility and equilibrium equations and the multi-region 
technique is employed with each plane element representing a region. 

The plane element is referred to midline coordinates xα and thickness coordinate x3 under the local system 
coordinates. Throughout the paper, indicial notations are used. Latin indices taking values {1, 2, and 3} and Greek 
indices assuming the range {1, 2}. Figure 1 presents local reference axes for the plane element with domain Ω and 
contour Γ. In the dynamic plane stress elasticity problem, uα represents the displacement values, σαβ represents de 
stresses components and the boundary traction’s tα is related with the stress tensor and directions cosines through the 
boundary outward unit normal n. For the dynamic plate bending problem, qα (q1, q2) represents the shear forces, mαα 
(m11, m22) represent the bending moments and mαβ (m12, m21) represent the twisting moments. 
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Figure 1. Analyzed domain stress and forces definitions. 
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The displacement boundary integral equation for the plane stress elasticity problem (membrane) and smooth 
boundaries is given by 
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where Kαβ is equal to Kronecker delta for a smooth boundary, dΓ and dΩ denote boundary and domain differentials, 
respectively; uβ (Q) and tβ (Q) are displacement and traction boundary values associated with a boundary point Q, 
respectively. The term Uαβ

*(Q,P) represents a displacement fundamental solution and may be interpreted as the 
displacement at point Q in the direction α  due to a harmonic unit point force applied at the point P in the direction β. 
Analogously the  term Tαβ

*(Q,P) represents the traction fundamental solution and may also be interpreted as the traction 
at point Q in the direction α  due to a harmonic unit point load applied at P in the direction β. Considering that all 
variables are undergoing a time harmonic displacement, u(t)= û exp(i ω t), with circular frequency ω, they are given by 
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where K0 and K1 are the zero and one order modified Bessel function of second kind, r is the distance between load and 
displacement point, k1 = i (ω /c1) e k2 = i (ω /c2), i = √ -1, c1 = (λ+2µ/ρ)1/2, c2 = (µ/ρ)1/2, ρ is the density and λ e µ are 
the Lamé’s constants. The complete expressions for these fundamental solutions are listed by Domingues (1993). 

The boundary integral representation of the displacement components for plate bending problems can be written as 
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In the Equation (5),  K(P) is equal to Kronecker delta for a smooth boundary, w is the out-of-plane displacement, w,n 

is the rotation in the direction of outward normal to the boundary Γ, Vn is the equivalent shear, Mn is the bending 
moment and Rc is the corner reaction. The classical theory makes use of the equivalent shear (Vn) in boundary integrals 
and a corner reaction (Rc) at each corner when polygonal plates are considered, 
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where Qn is the shear in the direction of outward normal and Mns is the twisting moment in the direction normal and 
tangential to the boundary Γ. The expression (7) presents the corner reaction (Rc) at corner k as the difference between 
the twisting moments at the corner neighborhood on the forward side (Mns

F) and the backward side (Mns
B). Again, if that 

all variables are undergoing a time harmonic displacement, load g and deflections w will also vary harmonically and the 
fundamental solution of has the form (Vivoli and Filippi, 1974; Niwa et al. 1981) 
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In Equations (8) to (12), J0 e Y0 are the zero order Bessel functions of the first and second kind, respectively, K0 is 

the zero order modified Bessel function of the second kind, J1 e Y1 are the first order Bessel functions of the first and 
second kind, K1 is the first order modified Bessel function of the second kind, respectively and β  is the angle between r 
and n. The flexural rigidity D is equal to Eh3/[12(1-ν2)], E is the Young’s modulus, ν is the Poisson’s ratio, h is the 
thickness, ω is the circular frequency and ρh is the mass density per unit area. 
 
2.1. Statement of the Model 
 

The plane element presented in Figure 1, will be assembled by superposition of the membrane and thin plate effects 
to form the called Macro-element. The plane stress elasticity Boundary Integral Equation (1) representing the 
membrane may be discretized leading to the following algebraic system of equations: 
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Analogously the BIE (5) describing the out-of-plane bending effect (thin plate) may be discretized as follows: 
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In Equations (13) and (14) the upper indices m and p on the coefficient matrices H and G stand, respectively, for 

membrane and plate mechanisms. Furthermore u1 and u2 represent the in plane membrane displacements associated 
with the in plane tractions t1 and t2. The plate displacement normal to the x1-x2 plane is w and its derivative with respect 
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to the boundary normal n is w,n. The corresponding generalized forces are the shear forces Vn and the bending moment 
Mn. These Equations may be superposed to form the plane Macro-element in which membrane and bending 
mechanisms are uncoupled: 
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The plane Macro element given by equation (15) is written in terms of a local coordinate system (x1

’ - x2
’ - x3

’ ), 
shown in Figure 2. To perform the coupling of distinct Macro elements it is necessary to transform this equation from a 
local to a global coordinate system. This is done by means of an intermediate coordinate system and a set of two 
coordinate transformation matrices (Palermo Jr., 1992). The local and global systems are presented in Figure 2. The x3 
axis represents the longitudinal length. An intermediate coordinate system was employed in the change of coordinates 
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Figure 2. Coordinates - a) local, b) intermediate, c) global 

 
The local system is noted by xi

’, the intermediate system by xi
’’ and the global system by xi. The transformation 

matrices are given by 
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It is notice that the direction of the bending moment and normal rotation vectors at the Macro-element side should 

be changed to obtain the global matrices when their directions do not agree with the global coordinate’s system 
direction. This procedure was presented by Palermo Jr. (1992). 
 
2.2.  Multi-region Formulation of the Macro-elements 
 

After the Macro-element equations have been written in terms of the global coordinate system the assemblage may 
take place. The interface boundaries between Macro-elements must be parallel to a single axis. In a global coordinate 
system this axis is called x3 as shown in Figure 3. 
 

 
 

Figure 3: Global coordinate system and Macro-elements interface boundaries. 
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Figure 3 also shows a plate structure with reinforcements. It can be noticed that the reinforcements are all aligned to 
the x3 axis. The vector of generalized displacements and forces may now be sub-divided into ones belonging or not to a 
common interface. For the case of two Macro elements Ω1 and Ω2, shown in Figure 4, the individual equations for 
every Macro-element may be written as 
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Figure 4. Displacements and forces in two Macro-elements. 
 

The coupling of the Macro-elements is performed by considering kinematics compatibility and equilibrium at the 
interface nodes. Considering T the vector of external loads applied at the elements interface, compatibility and 
equilibrium are given by 
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After Equations (19) and (20) have been applied to Equation (18) the basic system of equation for two coupled 
macro-elements are given by 
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where, U1 and U2 are generalized displacement vectors (bending and stretching) related to sub-regions Ω1 and Ω2; 
respectively. T1 and T2 are the corresponding generalized forces. The displacement vector Ui and the corresponding 
forces vector Ti stands for the values at the interface; Ti

1 and Ti
2 represent forces vectors at the interfaces for each one of 

the Macro-elements and I is the identity matrix. 
 
2.3. Discrete BEM Formulation of the Macro-elements 
 

The Macro-elements coupled by Equation (21) were discretized by rectilinear boundary elements described by linear 
shape functions. Considering B1 and B2 the initial and final coordinates of the elements, the element geometry may be 
expressed in terms of intrinsic coordinates, ς: 
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This same interpolation is used for the field variables of the boundary elements possessing no corners, leading to an 
isoparametrical formulation. For elements with corners the field variables were discretized by discontinuous elements. 
The corner nodes were displaced towards the interior by one fourth of the element length (0.25Le). Four integral 
equations were written for every boundary node. The collocation points were placed outside the Macro-element 
domains. When collocation point P is placed outside the domain (P∉Ω), the integration free-term disappears. 
Moreover, the corner reactions Rck can be written in terms of neighbor node rotations using a finite difference scheme. 
Although this is the correct way to treat corner reactions, in the present implementation these terms were neglected. A 
final algebraic system [A] {X} = {B} is obtained once the equations are assembled and the prescribed boundary 
conditions applied. The solution of this system, vector X, contains all unknown boundary quantities. The system matrix 
[A (ω)] contain circular frequency dependent terms. After the vector X is determined, the displacement at the assembled 
domains may be readily obtained by the non-singular integrations with Gauss quadrature. 
 
3. NUMERICAL EXAMPLE 

 
This section presents an attempt to demonstrate the previously described strategy to analyze reinforced panels 

structures. A computer program has been developed and numerical integration techniques have been adopted for the 
boundary elements. A representative example has been studied to demonstrate the efficiency of the methodology.  In all 
cases treated, the numerical results have been obtained using twelve Gauss point integration. 
 
3.1. Plate structure with reinforcement 
 

Consider a reinforced structure composed of the two joined rectangular plates and a reinforcement, simply supported 
(SS) in two edges x 3= 0 and x3 = ap, and freely supported (F) at the remaining edges, x1 = 0 and x1 = bp, where length 
ap = 18 m and width bp  = 9 m, as shown in Figure 5. Sapountzakis and Katsikadelis (2000) have analyzed the same 
structure for plate thickness and reinforcement dimension using a software package. 

 

 
 

Figure 5. Plan of a reinforced structure subjected to concentrated time-harmonic load. 
 
The plates and reinforcement are excited by a concentrated point force and the frequency of excitation is 

continuously changed within a pre-established range. Each assembled region (plates and reinforcement) is made of 
same constitutive properties with Young’s modulus Ep = Er = 3.0 × 107 kN/m2, Poisson’s ratio ν = 0.154. The thickness 
of two plates is h = 0.20 m. The reinforcement is of rectangular cross section 1.0 m × hr placed along its axis of 
symmetry, as shows in Fig. 5. Computations by the BEM are carried out for the following two boundary discretizations 
using linear elements: Mesh 1: 30 boundary elements per Macro-element (region), as shown Figure 6, and Mesh 2: 60 
boundary elements per macro-element (region). 

 

 
 

Figure 6.  Boundary discretization: Mesh 1. 
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Take initially the two plates loaded by a unit harmonic normal excitation on the interface between the two plates at 
distances x1 = 4.5 m and x3 = 9 m (x1-x3 plane) and later the same configuration for the two plates plus reinforcement 
are analyzed. The values of the initial eigenfrequencies of the structure are reproduced in Table 1. These values are 
compared with the values presented by Sapountzakis and Katsikadelis (2000). 
 

Table 1. Natural frequency of the structure no reinforcement and with reinforcement 1.0 m × hr . 
 

 
The FRF24-24 (Mesh 1) and FRF42-42 (Mesh 2) that means the frequency response functions obtained by exciting the 

node number 24 and 42 and calculating the response at the same point are shown in Figures 7, 8 and 9. The three 
configurations are presented, structure no reinforcements and with reinforcements 1.0 × 0.20 and 1.0 × 0.40 m. In these 
Figures the resonances and anti-resonances can be clearly recognized. The system operational eigenfrequencies (natural 
frequencies) are determined from the frequencies at which resonances in the FRFs occur. Note that the present model 
give very near values corresponding to symmetric and antisymmetric modes. 
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Figure 7. FRFs for the structure no reinforcements: Mesh 1 and 2. 
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Figure 8. FRFs for the structure with reinforcement 1.0 × 0.20: Mesh 1 and 2. 
 

No reinforcement 1.0 × 0.20 1.0 × 0.40 
BEM BEM BEM Results 

Mesh 1 Mesh 2 

Sapountzaki
s and 

Katsikadelis 
(2000) 

Mesh 1 Mesh 2 

Sapountzakis 
and 

Katsikadelis 
(2000) 

Mesh 1 Mesh 2 

Sapountzaki
s and 

Katsikadelis 
(2000) 

- - - 1.416 1.416 - 2.470 2.470 - 
2.119 2.119 3.127 9.501 9.501 8.571 9.853 9.853 9.430 

10.556 10.556 9.435 10.556 10.556 9.430 13.016 13.016 13.906 
11.610 11.610 12.751 21.101 21.101 21.954 22.508 22.508 22.168 
22.508 22.508 22.182 26.374 26.374 22.168 30.944 30.944 27.879 
28.834 28.834 29.729 32.350 32.350 33.326 32.350 32.350 35.233 
32.350 32.350 33.314 41.489 41.489 41.608 43.599 43.599 41.608 

Frequency 
(Hz) 

41.138 41.138 41.624 43.599 43.599 42.310 45.005 45.005 47.314 
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Figure 9. FRFs for the structure with reinforcement 1.0 × 0.40: Mesh 1 and 2. 
 

The additional modal quantity necessary to characterize the dynamic behavior of the reinforced structure is given by 
the eigenmodes or the natural modes of vibration. Figure 10a show the boundary displacements corresponding to the 
first eigenmode of the two plate structure, ω = 2.119 Hz. Figure 10b show the boundary displacements corresponding to 
the third eigenmode of the reinforced structure ω = 21.101 Hz. 
 

 
  a) First eigenmode, ω = 2.119 Hz.         b) Third eigenmode, ω = 21.101 Hz. 
 

Figure 10. Operational eigenmodes: a) two plates, b) reinforced structure. 
 
In Figure 10 the operational modes are obtained by calculating the displacement field at boundary of the structure at 

each resonance frequency present in the FRF. In all configurations, external boundary nodes of the structure in x1 
direction are simply supported. 
 
4. CONCLUDING REMARKS 
 

The stationary dynamic analysis of structures with reinforcements has been studied. A version of the Boundary 
Element Method is implemented in a computer program to analyze the behavior of the reinforced plate structures. The 
dynamic stationary fundamental solution is used to transform the differential equation governing the thin plate and 
membrane behavior into a boundary-only integral equation. The boundary integral equation is discretized using linear 
continuous and discontinuous linear elements. Four displacement integral equations are written for every boundary 
node. The collocation points of the integral equations are placed outside de plate domain, leading to a non-singular 
Boundary Element formulation. The proposed scheme is used, exemplarily, to obtain modal data, that is, 
eigenfrequencies and operational eigemodes of a reinforced plate structure. Frequency Response Functions may be 
determined for every boundary or domain point of the model. In the reported example, the FRF of a node on a free 
boundary is used to recover eigenfrequencies. The eigenfrequencies are determined from the resonance of the FRF. At 
these resonance frequencies the displacement fields of the structure furnish the operational eigenmodes. The presented 
results agree very well with a numerical solution presented in the literature. It is shown that there is some discrepancy in 
the eigenfrequencies obtained on the base in the model for the reinforcement-plate system. However, the methodology 
may be seen as an accurate model to analyze free and forced stationary vibrations of the reinforced plate structures have 
in view that the procedure require the discretization of the boundary only. 
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