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Abstract. The dynamic characteristics of a rotating beam play a significant role in the overall performance and design of
various engineering systems, such as turbo-machinery, wind turbines, etc. In this work the dynamic problem of a flexible
pendulum and a beam rotating around an axis perpendicular to its plane is addressed taking into account the gravitational
effect. The dynamics of pendulums and rotating beams is studied according to three approaches, two of them related with
the Strength of Materials theory (SM) and the other one with nonlinear Theory of Elasticity (TE). The stiffening effect due
to the centrifugal forces is taken into account only in the case of the rotating beam subjected to high rotating speeds and
neglected in the case of a pendulum under self-weight due to the low values of the speed, when addressed with SM theory.
The derivation of the governing equations is done by superposition of the deformations to the rigid motion for the first
approach (SM). The second approach with SM theory is through the application of Hamilton’s principle. Thelagrangian
form is employed with the nonlinear TE. Comparison of the three models allows to determine advantages and drawbacks
of each of them.
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1. Introduction

The dynamic modeling of beams rotating in its planes has been subject of many research works in the last decades
due to its application in aerospace, aviation and robotic industries (see for instance Vetyukovet al.(2004), Al-Qaisia and
Al-Bedoor (2005), Banarjeeet al.(2006), among others). The stiffening contribution due to the centrifugal force in one of
the major complexities when dealing with this problem.

The dynamic of a body that is subjected to large displacements may be dealt with the classical Theory of Elasticity
(TE) for small deformations (Hunter, 1983), the Theory of Strength of Materials (TSM) (in which the stiffening effect due
to centrifugal forces should be considered), finite elasticity of a "floating" system (Vetyukovet al.(2004), Fung (1968))
or finite deformations (Fung (1968), Truesdell (1960)). The particular case of a beam under a prescribed rotation of a
pendulum and the derivation of the governing equations is addressed according to the following approaches: TSM with a
"floating" frame, TSMvia Hamilton’s principle including the stiffening contributions and, finite elasticity (Fung, 1968).

A brief discussion is done on the type of constitutive equation (Fung, 1968 and Truesdell, 1960) using the Piola-
Kirchoff stress tensor giving place to strongly non-linear equations that will be solved using the finite element methods.
The boundary conditions are also discussed since the equations are stated in itslagrangianform. Also an analysis of the
energy conservation is included (Laiet al., 1993) which permits the control of the numerical solution convergence.

The results of the stiffening effect in the rotating beam and the pendulum motion found with TSM and nonlinear TE
are compared.

2. Statement of the equations of motion

In this work the equations of motion of the a deformable pendulum and a rotating beam in its plane are stated and
solved. Two approaches are dealt with and compared. The first one is given by the theory of Strength of Materials (TSM)
in one dimension and the second by means of the theory of Elasticity (TE) in two and three dimensions. The latter is the
most relevant in this paper.
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Figure 1. The pendulum and its displacement vectors.

2.1 Lineal one-dimensional model

Also in the TSM approach two types of model were stated. One of them by means of effect superposition (Hunter,1983)
and the other one using Hamilton’s principle.

Effect superposition The equations that govern the beam vibrations within the TSM are

E∗A
∂2u

∂X2
− ρA

∂2u

∂t2
= f1 (1)

E∗I
∂4v

∂X4
+ ρA

∂2v

∂t2
= f2 (2)

whereE∗ is the modulus of elasticity,A is the cross-sectional area of the bar,ρ is the volumetric density,u y v are
the longitudinal and transverse displacement respectively,u = (u, v)T is the displacement vector andf1 y f2 are the
eventual normal and shear applied forces (gravity force components). It is assumed that the body motion is a result of the
superposition of a rigid motion and a small deformation. That is, let us suppose that the body (beam or pendulum) motion
is given by the displacement vector

u = ur + ud (3)

whereur(t) = (ur(t), vr(t))T is the rigid part of the motion andud(X, t) = (ud(X, t), vd(X, t))T is the part related
with the deformation. After replacing in Eqs. 1 and 2 the following yields
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Now ur should be obtained from the equations governing the rigid motion to be replaced in Eqs. 4 and 5 in order to solve
the problem. For instance, in the case of a pendulum of lengthL in y direction and gravityg, one obtains̈θ− 3

2L
g sin θ = 0

and once solvedθ(t), ur = X(sin θ − 1) vr = −X cos θ may be known.

Equations of motion vía Hamilton’s principle The kinematic transformation equations (see Figure 1) are

x(X, t) = X sin θ + u(X, t) sin θ + v(X, t) cos θ (6)

y(X, t) = −X cos θ − u(X, t) cos θ + v(X, t) sin θ (7)

The following four energy contributions are introduced:W1, is the axial and bending energy,W2 is the energy
generated by the axial stress state of the centrifugal effect due to the bending strain,K is the kinetic energy andP is the
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gravitational potential energy. Letσ = ρω2(L2 − X2)/2 be the stress due to centrifugal force, then

2W1 = EA

∫ L
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Consequently thelagrangianisL =K − (W1 + W2 + P ) and with this, the Hamilton’s principle

δ

∫ t2

t1

Ldt = 0 (12)

which gives place to the equations of motions where previously a non-dimensionalization was introduced as follows,
z = x/L (0 ≤ X ≤ L) , (0 ≤ z ≤ 1)
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where kL = E∗

ρL2 ; kV = E∗I
ρAL4 ; F (z, t) = −

(
ω2Lz + g cos ωt

)
; G(z, t) = −g sin(ωt)

2.2 Two and three-dimensional model for finite deformations

2.2.1 Equations of motion

In this Section the equations of the elastic body continuum, in two or three dimensions for finite displacements and
deformations are stated. That is, in these models no hypothesis is made with respect to the smallness of the deformations.
The statement of these equations is made within the frame of the Mechanics of Continuum with thelagrangianor material
representation presenting some advantages over theeulerianor spatial representation in the case of Mechanic of Solids
problems. In turn if the problem of the continuum is given by theeulerianconfiguration, besides the equation of motion
(Cauchy Eq.)

∇ · σ + ρb = ρa (15)

the corresponding to the mass continuity should also be stated

dρ

dt
+ ρ∇ · v = 0 (16)

whereσ is the symmetric stress tension of Cauchy,ρ is the mass density,b are the body forces anda andv are the
acceleration and velocity fields resp. It should be taken into account that botha andv are calculated as material derivatives
which introduces a strong non-linearity in the differential equations. If the body is subjected to finite displacements in
the space, the statement of the boundary equations is a problem of hard solution since the boundary position is one of the
unknowns of the motion. Now, if the problem is given in thelagrangianor material reference, the equation of motion is
the only to be solved.

∇ ·P + ρ0b = ρ0A (17)

whereP is the Piola - Kirchoff first stress tensor (Truesdell and Noll,1965),ρ0 = ρ(X, t0) is the initial density (already
known) andA = ∂V

∂t = ∂2R
∂t2 (R is the position vector andA is the acceleration field that is simply the partial derivative

of the velocity field. The boundary conditions are imposed over the initial boundary (already known), which together with
the initial conditions and the equation of motion yields a closed problem. Both the boundary as well as any point position
of the body will be known once solved the problem. All the non-linear problem is transfered toP tensor which besides
being non-symmetric, is of hard physical interpretation.

The second Piola - Kirchoff stress tensorS, which is symmetric, is given byP = FS whereF is the gradient of
deformation, and then the equation of motion writes

∇ · (FS) + ρ0b = ρ0A (18)
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2.2.2 First Piola - Kirchoff stress tensor

If df is the force element that acts in the deformed elemental areadA, the following is true

df = tdA (19)

t = σn (20)

whereσ is the Cauchy stress tensor andn is the unit vector normal to the elemental areadA. The same forcedf may be
referred to the non-deformeddA0

df = t0dA0 (21)

in which t0 is the stress vector referred to the non-deformed area. Vectort0 is parallel to vectort but with different
modulus sincedf = t0dA0 = tdA. That is, to suppose thesameforce referred to different areas (deformed and non-
deformed) gives place to stress vectors of the same direction and magnitudes proportional to the area change.

t0 = t
dA

dA0
. (22)

The first Piola - Kirchoff tensor is defined form the relationshipt0= PN, whereN is the unit vector normal to areadA0,
analogously to the Cauchy tensorσ of t0dA0 = tdA.

PNdA0 = σndA (23)

and since

dA n = (det F) dA0 (F−1)T N (24)

one obtains

P = (det F) σ (F−1)T . (25)

that is the relationship between the Cauchy and the first Piola - Kirchoff tensors.

2.2.3 Second Piola - Kirchoff tensor

On the other hand, let us suppose that the elemental force vectordf is the result of the transformation of other elemental
force vectordf0 (with respect to the non-deformed body) by means of the gradient of deformation tensorF (in the same
way that the displacement vectorsdx = FdX are transformed).

df = Fdf0 (26)

with df0 = t∗dA0 and let us assume that this new stress vector is related to the normal vector through a new tensor
t∗ = S∗N,. Then

df = F(t∗dA0) = F S∗N dA0 (27)

and sincedf = tdA, the following standstdA = F S∗N dA0 and after a new transformation ofdA, the next yields

F S∗N dA0 = σndA (28)

F S∗N dA0 = σ((det F) dA0 (F−1)T N) (29)

That is, F S∗= (det F) σ (F−1)T = P. ThenS∗ = S;, second Piola - Kirchoff tensor. Then, to suppose that the
elemental force is transformed as the displacement vectors by means of theF gives place to the second Piola - Kirchoff
tensor as the stress tensor. It can be shown that the latter is symmetric.

2.2.4 Constitutive equation

If the Hookean material lineal model is abandoned and one introduces in the finite deformation model, the type of
constitutive equations is a universe of large variety (Truesdell and Noll, 1965 and Fung,1968). Truesdell classifies three
large families, all of them consistent with the linear elasticity,elastic, hyperelastic and hypoelasticmaterials. The simpler
ones to model are theelastic materials that are given in the following form
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σ = g(e) (30)

S = g′(E) (31)

wheree and E are theEulerian(of Almansi) andLagrangian (of Green) are the finite deformation tensors. Analogously
with linear elasticity, in this work it is assumed (Fung,1968)

S = λ tr(E)I + 2µE (32)

in whichλ andµ are Lame’s constants,λ = νE∗/(1 + ν)(1− 2ν) , µ = E∗/2(1 + ν) andE∗ andν are the modulus of
elasticity and the Poisson’s coefficient, resp. Eq. (32) is also known as St. Venant–Kirchhoff material model (Truesdell and
Noll, 1965) that, obviously, in the limit for infinitesimal deformation, leads to the Hooke’s law for elastic homogeneous
and isotropic bodies,(S → σ = λ tr(ε)I + 2µε). Additional alternative to possible constitutive equations may be read in
Filipich and Rosales, 2000.

2.2.5 Boundary conditions

As was mentioned before, the main advantage of the statement inlagrangian coordinates is given by the simple
consideration of the boundary conditions imposed over the known non-deformed body.

Figure 2. Pendulum scheme in the non-deformed configuration.

That is, once the pendulum boundary is defined, a null condition is imposed for the stress in all boundary point with
exception to the pivot (p) and null displacement on the pivot (p). In this work the pendulum is assumed to be 5 m long
and having a square cross-sectional area of0.1m2 (see Figure 2).

t0 = 0 (33)

u(p) = 0 (34)

In the rotating beam case, the rotational velocity is assumed constant to compare with the one-dimensional theory. The
boundary conditions are again, null stress at all boundary points except for the clamped side and null displacement at this
side.

2.2.6 Simulations and results

The pendulum The numerical simulations are carried out using the finite element method by means of the software
FlexPDE 5. Quadratic elements are used in the spatial domain in all the non-linear TE simulations. When dealing with
the linear TSM cubic elements were considered. Temporal integration was done using the Gear method (second-order
implicit Backward Difference Formula). Example 1 deals with the pendulum withE∗ = 4 · 107 N m−2, ν = 0.3 and
densityρ = 7850 kg/m3. The pendulum is freed from the horizontal position with both null deformation and velocity.

Figure 3 shows 11 superpositions of the pendulum for the first second of motion, corresponding to the TE model and
Fig. 4 depicts 11 superpositions that were found with the TSM model. The number of finite elements and the time step are
adjusted in order to attain an error less that 1% int = 1. The energy variation of the pendulum (non-lineal elastic model)
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Figure 3. Sequence of the pendulum motion. Example 1. First second (TE).

is shown in Fig. 5. It may be observed that the total energy remains constant, necessary condition for the numerical
solution since we are dealing with a conservative system. The total energy is the sum of the kinetic, elastic strain and
potential energies,

E = T + Ue + Ug (35)

with

T =
1
2

∫
ρ0V ·V dV (36)

Ug = g

∫
ρ0y dV (37)

U̇ e =
∫

ρ

ρ0
tr

(
S

DE
Dt

)
dV (38)

whereg is the gravity acceleration andy is the material component along the height of the position vector. Consider
that all the integrals are made w.r.t. the non-deformed configurationlagrangianwith which the material derivatives are
coincident with the partial ones.DE

Dt = ∂E
∂t

Rotating beam When the pendulum is clamped at one end and subjected to a constant angular velocityωthe boundary
conditions are the ones stated above. It is known that the vibration frequencies of a rotating beam increases asω does. In
the lineal one-dimensional theory (TSM) the stiffening effect of a rotating beam is due to the contribution of the second
order work done by the axial stress caused by the centrifugal force over the bending deformation. For the general case
of the dynamic of the elastic body considering finite deformation it is not necessary to introduce additional terms in the
equation of motion since they are general. Obviously the modal superposition is not valid, since the equation of motion
with large deformations are not linear. Notwithstanding, the stiffening effect that is evident in the linear model frequencies,
may be observed when the Fourier transform of the dynamic response is found for any point of the rotating body.

Figure 6 depicts the variation of the vibration frequency when the rotating velocity is increased. The TSM results are
shown in full lines and the non linear TE in dashed lines. In this case the material is steel:E∗ = 2.1 · 1011Nm−2. and
ρ = 7850 kg andν = 0.3.

3. FINAL COMMENTS

The dynamic of a flexible pendulum was addressed with the Strength of Material (SM) theory and the finite Theory of
Elasticity (TE). The SM approach was performed with two models, superposition of motions and Hamilton’s principle.
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Figure 4. Sequence of the pendulum motion. Example 1. First second. TSM

The latter provides for the stiffening effect. However, numerical instability problems prevented numerical simulations.
In the case of the superposition model, the equations are partially coupled. That is, only the deformation equations are
coupled with the rigid motion but the rigid motion equations are uncoupled with the deformations. This derived from
the type of construction. The nonlinearity is only present in the rigid body motion. On the other hand, when applying
Hamilton’s principle, fully coupled equations arise. The latter is a consistent approach.

The stiffening effect due to the centrifugal forces is considered only for the rotating beam since the pendulum is
subjected to low rotational speeds and consequently such effect is negligible.

The finite elasticity approach yielded similar results to the ones obtained with SM theory (first approach). However,
in the above illustration, since a low value of modulus of elasticityE∗ was chosen, the resulting deformations were not
very small, then the response is not identical.

Also the dynamics of a beam rotating with high speed was studied. The stiffening effect in the SM model makes
it possible to find almost coincident values of frequencies found via finite TE. It may be concluded that not only the
stiffening contribution is considered but also it is the correct one.

In the conservative pendulum case, the total energy composed of the gravitational, strain and kinetic parts remains
constant in time. This is useful to check that the numerical integration scheme do not introduce damping or instabilities.
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Figure 5. Energy as function of time for the pendulum of Example 1. (1) Total energy, (2) kinetic energy, (3) strain energy
and (4) gravitational potential energy.

Figure 6. Variation of the first six frequencies with toω. - - TE, — TSM.


