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Abstract. Lattice structures consists of many similar one-dimensional coupled elements. These members can have four
different types of motion; longitudinal, torsion and bending in two orthogonal planes. Generally, bending natural fre-
quencies tend to be low compared to natural frequencies associated with longitudinal and torsional motion. Because of
this, lattice structures have a particular dynamic characteristic; the coexistence of independent long and short wavelength
modes. Long wavelength modes are associated with member axial elongation of the elements and occur when the length
of the structure is a multiple of half wavelength of waves propagating axially in the structural members, while the short
wavelength behaviour is related to the bending of the structural members occurring when the length of a element is a
multiple of half flexural wavelength. In this paper the effects of short wavelength modes in the performance of some acive
control strategies is analysed. Feedforward and feedback control strategies are considered in the analysis and a lattice
structure consisting of 93 members connected through 33 joints is used as an example.
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1. INTRODUCTION

In the literature, the terms Truss and Frame are often used to describe lattice structures. Both terms come from the
static analysis field. They refer to two- or three-dimensional structures composed of one-dimensional elements. A one
dimensional element is long and thin, so that all its properties can be reasonably defined by a single axial coordinate
orthogonal to the member cross section. Lattice structures have attracted the attention of engineers for many years.
The first applications of these structures can be found in the civil engineering field. (The American Society of Civil
Engineers, 1972, 1976) has published extensive survey about the theme prior to 1975. In the aerospace engineering field,
lattice structures are employed in applications such as solar energy panels, solar sails, large astronomical telescopes,
communication antennae and space station structures. These structures have to keep their weight to a minimum and
lattice structures have an easy way of packing, deployment and construction in space. Important developments in large
space structures were done in the nineteen eighties and some examples of initial wishes in (The journal of Astronautics
and Aeronautics 1978). During the mid 1980’s, National Aeronautics and Space Administration (NASA) developed
the program Assembly Concept for Construction of Erectable Space Structures (ACCESS) to test construction in space
(Rogers and Tutterow, 1986). The lattice structure considered in this work is based on the structure assembled by NASA
in 1984 during the program ACCESS. The structure is a satellite boom consisting of 93 members connected by 33 joints
as illustrated in figure 1. The structural members have Young’s modulus of 6.8967× 1010 N/m, density of 2.6840× 103

Kg/m3 and diameter of 0.00635 m. The structure has 10 equal units called bays with length of 0.45 m. A structure with
the same characteristics have been used in previous works, where (Moshrefi-Torbati et al., 2003), (Moshrefi-Torbati et al.,
2006) discuss feedforward control strategies for vibration control.
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Figure 1. The satellite boom with 93 structural members and 33 joints with respective numbering scheme and global
reference system showing the directions x, y and z.
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1.1 The dynamic behaviour of lattice structures

Lattice structures consists of many similar coupled one-dimensional elements. A lattice member in space can have
four different types of motion; longitudinal, torsion and bending in two orthogonal planes. In general, bending natural
frequencies tend to be low compared to natural frequencies associated with longitudinal motion or torsion of beams. This
leads to a particular dynamic characteristic in lattice structures: the coexistence of very different short and long wavelength
modes of vibration. These dynamic features have already been studied by (Flotow, 1986) where he discussed the design of
lattice structures taking into account the short/long wavelength behaviour in order to enhance the performance of a active
control strategy. The LWM (Long Wavelength Mode) comprises of axial elongation of the structural members and they
occur when a dimension of the structure, such as length, is a multiple of half wavelength of waves propagating axially in
the structural members. In most cases this mode can be compared to the mode of a continuous system such as a beam or
a plate. An example of this mode is shown in figure 2 for the structure considered in this work where this mode shape can
be compared to the first bending mode shape of a continuous beam with free-free (f-f) boundary conditions. The other

Figure 2. An example of a long wavelength mode showing the bending of a satellite boom.

behaviour of lattice structures is the SWM (Short Wavelength Mode). The SWM are generally dominated by bending of
the structural members. They occur when the length of a structural member is a multiple of half flexural wavelengths. The
natural frequencies related to bending motion tend to be low when compared to natural frequencies related to longitudinal
motion. Because lattice structures are assembled using many similar coupled subsystems, many SWM may occur in
narrow frequency bands. Moreover manufacturing imperfections and other small non-linearities (joint backlash, member
buckling, joint friction), nominal properties can diverge from one member to the others, increasing even more the number
of modes and causing a phenomenon called mode localization, where the motion is confined in a few regions of the
system (Anderson, 1958) (Lust et al., 1995). Short wavelength modes can be beneficial in terms of vibration, if they work
as absorbers as discussed by (Flotow, 1986) or they may be undesirable if they interfere with an active control strategy,
for example. In typical mechanical systems, short wavelength modes usually occur only in mid and high frequencies,
however, lattice structures may exhibit this behaviour in frequencies even lower than the long wavelength modes shapes.
An example of a SWM is illustrated in figure 3 for the satellite boom structure considered in this work. This mode
involves bending of the structural members only. The properties that control the dynamics of SWM are associated with
the characteristics of the members such as material and geometric properties and also the boundary condition imposed by
the structure joints. Some of these properties can be changed without affecting the LWM. Increasing the ratio of second
moment of area to the cross section area of the members, for example, would increase only the natural frequencies of
short wavelength mode shapes, while the frequencies of long wavelength mode shapes would remain fixed. Depending
on the behaviour of the lattice structure (short or long wavelength), the placement of actuators and the performance an
active control strategy can be affected. In this paper, two strategies for vibration control are considered; Feedforward and
Integral Force Feedback (IFF).

Figure 3. An example of a short wavelength mode showing the bending of structural members of a satellite boom.
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2. THE CONTROL OF VIBRATION IN LATTICE STRUCTURES

Lattice structures are used in space to keep the spacecraft weight to a minimum during launch. Some of the desirable
characteristics for a space structure are good wave dispersion, rapid decay of transient disturbances, desired frequency
spectrum/mode shapes and adaptability to active and passive control. It is known, however, that materials used for space
applications are in some cases in contrast to these characteristics. Most materials used in space are light and flexible
with inherent low values of structural damping. Active vibration control is used to reduce vibration levels with minimum
addition of mass to the structure. Most applications of active control in lattice structures make use of piezoelectric
actuators where members (or part of them) are replaced by actuators which work by applying two axial forces to the
member. In terms of control architectures, two different strategies are generally used in vibration control: feedforward
and feedback control. One of the differences between them is the reference signal driving the controller. In feedforward
control, a reference signal correlated to the disturbances forces is used to generate a control force. In the feedback control
strategy, a sensor measures a signal that is feed back to a controller in order to modify this signal. In terms of disturbance
characteristics, feedforward is usually used to control tonal disturbances and their harmonics, while feedback can be
applied to a variety of disturbances types. In figure 4, the block diagrams illustrate the differences between these two
forms of active control.
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Figure 4. Block diagrams describing the different strategies of active control, (a) feedforward, (b) feedback

In figures 4(a) and 4(b), fd and fc are the vectors of disturbance forces and control forces, respectively. Y is the
mobility relating either the disturbance or control force to the velocities at positions y and m. Hfb and Hff are the
matrices of feedback and feedforward control gains, respectively. A difference between the two controllers is that the
feedforward control is applied at position c is designed to minimize variables at positions m while, in the case of collocated
feedback control, the variable that is minimized is that at position y where the controller c is applied. This gives no
guarantee that the variables at position m are also minimized. In the work of (Preumont et al., 1992) an active control
system using integral force feedback (IFF) is described where actuators are placed in a collocated manner with force
sensors. The aim of the controller is to reduce vibration levels of the two first long wavelength mode shapes. Because
actuators and sensors are collocated and dual, the active control system is always stable, and the IFF control acts similar to
an active damper reducing the resonance peaks in the system frequency response function. Similar applications for lattice
structures are also described by (Gawronski, 1998) and (Meirovitch, 1990) where modal based active control is used. The
success of a feedback active control system for a lattice structure based on the mode shapes assumes that short wavelength
mode shapes are not present while in an implementation of feedforward control, this does not affect the performance of a
active controller, as discussed in the following sections.

3. MODELLING THE LATTICE STRUCTURE

In order to predict the short and long wavelength modes, a model of the lattice structure was developed using the
dynamic stiffness method, where the dynamic stiffness matrices of the individual members were calculated by means of
the exact solutions of the beam wave equations. The procedure for calculating the dynamic stiffness matrix of the whole
system is similar to the finite element method procedure and it is described in reference (Richards and Leung, 1977). In
this method the joints displacements are related to the external loads applied to the joints in the frequency domain as

q(ω) = D−1(ω)f(ω) (1)

where, q and f are the vectors containing the joints displacements and external forces, respectively. Considering a
three-dimensional structure, these vectors have dimension 6nj × 1, where nj is the number of joints in the structure. The
dynamic stiffness matrix D has dimension 6nj × 6nj . This means that six variables are used to describe the motion of
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one joint, where three variables refer to linear displacements and the other three to angular displacements. Similarly, for
the vector of external loads, three variables are forces and three variables are moments applied in the joints.

3.1 Objective function for vibration control

Often in applications of active vibration control it is common to use cost functions based on the square of a quantity
such as acceleration or velocity. The formulation of sensible cost functions for similar application has been discussed by
(Anthony et al., 2000) and (Moshrefi-Torbati et al., 2006). In this work, the objective function is defined as the sum of
linear square velocities of the joints 31, 32 and 33 of the lattice structure showed in Figure 1. This objective function, or
Cost Function (J) is proportional to the kinetic energy at these joints and it is calculated from

J(ω) = vH
m(ω)vm(ω) (2)

where, ω is the frequency and the simbol ()H denotes the Hermitian forms of a vector. The vector vm is given by

vm =
[

v31
x v31

y v31
z v32

x v32
y v32

z v33
x v33

y v33
z

]T
(3)

where v31
x is the velocity at joint 31 on direction x, for example. The frequency dependency has been drooped for

simplicity. The results of a model obtained by numerical simulation of the cost function J has been compared to the
results of a laboratory experiment

4. EXPERIMENTAL TEST

Experimental tests were conducted in a lattice structure in order to compare the results of a mathematical model
obtained by the dynamic stiffness method. The experimental rig consists of a lattice structure of 93 aluminium members
and 33 aluminium spherical joints of mass 0.022 kg. A picture of the experimental rig is shown in figure 5. To simulate
the free-free boundary condition, the structure was suspended using elastic wires. The suspension apparatus with the
structure has natural frequencies bellow 4 Hz. The system was excited with an electromagnetic shaker mounted on foam
rubber. The system was excited with white noise in the frequency band 20 - 1kHz. Acceleration at joints 4, 31, 32 and
33 were measured using PCB-Model 352A24 ICP accelerometers (with nominal sensitivity of 10 mV/ms2). The mass of
the accelerometers is about 0.8 grams and they have not been take into account in the modelling of the system. The input
force was measured using a PCB-Model 208C01 ICP force sensor (with nominal sensitivity about 100 mV/N). Using a
frequency analyser model HP35650, the transducer signals were recorded and acceleration frequency response functions
(FRFs) were calculated and recorded. The FRFs were calculated with a resolution of 0.25 Hz. Hanning windows was
used in the calculation of the FRFs. The FRFs were smoothed by averaging the data 10 times using no time overlapping.

Figure 5. The lattice structure experimental rig. Structure is suspended by elastic wires with electromagnetic shaker
attached to joint 4.

4.1 Comparison of numerical and experimental results

The results of the model obtained by numerical simulation of the cost function J has been compared to the results
of a laboratory experiment. In these results, a harmonic force was applied at joint 4 in the y direction in the frequency
range 20-1kHz using steps of 1 Hz. The comparison is given in Figure 5 which shows a good agreement between results
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Figure 6. Cost function. The thick line is the theoretical. The thin line is the experimental. dB ref. 1 m2/Ns2.

obtained numerically and experimentally. This result shows that the model is capable of predicting the various resonant
peaks associated to the bending of the structural members.

5. FEEDBACK CONTROL

In this article, integral force feedback (IFF) control is considered as one of the control strategies. The advantage of
using this form of feedback control or the direct velocity feedback is if the sensor-actuator pair is placed in a collocated
manner, stability is guaranteed. This form of active control is explained in the work of (Preumont et al., 1992), in which
a force sensor is used to measure the force acting axially in a structural member. The sensor signal passes through a
signal integrator and an amplifier which drives voltage/current to a piezoelectric actuator producing an unconstrained
deformation δ in the actuator. The unconstrained deformation in the actuator is related to the measured force fy as

δ = HFy =
g

jω
fy (4)

For small deformations, δ can be written as δ = ndd33V , where nd is the number of piezoelectric stacks in the
actuator, d33 is a piezoelectric constant and V is the voltage applied. The placement of actuators in a lattice structure for
IFF can be done based in a index based on the fraction of modal strain as defined in the work of (Preumont et al., 1992)
this methodology assumes that the behaviour of the structure can be explained by modal parameters, or in other words,
that the dynamics of the structure is controlled by long wavelength mode shapes. Two examples of long wavelength mode
shapes showing the members with a larger fraction of modal strain are showed in figure 6.

(a) (b)
Figure 7. Placement of actuators for IFF control. Lines plotted with thicker lines indicate members with larger index of

fraction of modal strain for that mode: (a) bending, (b) torsion.

For structures, where the low frequency range is dominated by short wavelength modes, it may be difficult to use
the fraction of modal strain to defined good positions for placing actuators. As a numerical example, two situations



Procedings of COBEM 2007
Copyright c© 2007 by ABCM

19th International Congress of Mechanical Engineering
November 5-9, 2007, Brasília, DF

are considered. The first uses the nominal properties of the structure discussed previously in this article and the second
situation is for a structure with the same properties, except that the ratio between the second moment of area and the cross
section area (I/S) has been increased by 5 times the nominal value. By doing this, the long wavelength natural frequencies
remain unchanged, while short wavelength natural frequencies are shifted to higher frequencies. An actuator is placed
in the member defined by joints [17-20] where, according to figure 6, it is an optimum place to control the first bending
mode shape, which is the first long wavelength mode of the lattice structure. Figures 7(a) and 7(b) show the result of the
simulation for the two situations. The value of gain for the feedback controller in both situation was set to g = 0.0004
m/N.
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Figure 8. The cost functions with (solid line) and without IFF control (faint line) for the structure with the nominal

properties (a) and the structure where short wavelength mode shapes have been shifted (b). dB ref. 1 m2/Ns2.

The results of figure 7(a) shows that the cost function remains almost unchanged with the implementation of IFF in the
presence of short wavelength mode shapes, while in the figure 7(b), where the short wavelength mode shapes have been
shifted to higher frequencies, the IFF is capable of controlling the peak associated to the first long wavelength bending
mode shape with a attenuation of approximate 12 dB for that mode.

6. FEEDFORWARD CONTROL

Feedforward control can be applied in situations where there exists advanced information about the disturbance forces
in a structure. In feedforward control, each frequency is considered separately (this is suitable for tonal vibration and their
harmonics) and therefore the problem of non-causality is avoided (Nelson and Elliott, 1992). In this work, the translational
velocity components at three joints in the structure are used. In this way, the vibration on the "end-face" plane on which
the joins are located is controlled (equations 2 and 3). The vector of velocities vm can be written in terms of transfer
mobilities, disturbances and control forces as

vm = Ymdfd + Ymcfc (5)

where, Ymd and Ymc are the transfer mobility from the disturbance forces fd and the transfer mobility from the
control forces fc to the velocity vector vm, respectively. The idea of the feedforward control is to reduce the velocities
at position m by destructive interference of waves. The control force in this case is a linear weighted combination of the
disturbance force given as

fc = Hff fd (6)

where, Hff is the feedforward controller. Using the quadratic representation of the cost function found in equation
2 it is possible to define a optimum controller that minimizes the sum of squared velocities at position m. The optimum
controller is given by (Fuller et al., 1996) as

Hoptimum
ff = −

(
YH

mcYmc

)−1
YH

mcYmd (7)

Results of numerical simulation of an implementation of feedforward control are shown in figure 8 for the system with
nominal properties and for the system where the SWM have been shifted as in the previous example. The position of the
actuator is the same of that used in IFF control (member defined by joints [17-20]).

The results in figure 8 show that the performance of the feedforward control is not influenced greatly by the short
wavelength modes shapes.
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Figure 9. The cost functions with (solid line) and without feedforward control (fainted line) for the structure with the

nominal properties (a) and the structure where short wavelength modes have been shifted (b). dB ref. 1 m2/Ns2.

7. CONCLUDING REMARKS

The dynamics of lattice structures related to the different short and long wavelength regimes have been discussed. A
numerical model obtained by dynamic stiffness method using the solutions of wave equations was shown to be capable
of predicting the dynamics of short wavelength modes. This model has been used to predict the results of two forms of
active control; feedforward and feedback. It has been shown that the short wavelength modes play an important role in
the performance and placement of an actuator for feedback control. The results of feedforward control, however, do not
depend greatly on the existence of the short wavelength modes shapes.
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