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Abstract. The modeling and simulation of fluid flow problems in heterogeneous and anisotropic porous media 

represents a great challenge from mathematical and numerical point of views. Particularly, the simulation of oil 

recovery in petroleum reservoirs, may involve the numerical solution of an elliptic type equation with highly 

discontinuous coefficients for the pressure field, and a non-linear hyperbolic type equation for the saturation field. In 

the present work, we present a node-centered finite volume method, with median dual control volumes using an edge-

based data structure (EFVM). This formulation is capable of handling both, heterogeneous and anisotropic (full 

tensor) porous media using structured and unstructured meshes. The algorithm consists in a modification of the two 

step Crumpton’s edge-based approach, which includes the cross-diffusion terms in an very ellegant manner. This 

formulation formally guarantees local conservation even for non-orthogonal meshes and highly discontinuous 

coeficients, keeping second order accuracy for the pressure field and, at least, first order accuracy for the velocity field 

on general triangular meshes. In order to verify the accuracy of the proposed edge-based finite volume procedure we 

present some numerical experiments involving heterogeneous and highly anisotropic materials. For the examples 

analyzed, numerical results compare very favorably with others found in literature.  

 
Keywords: finite volume, edge-based, pressure equation, heterogeneous and anisotropic porous media 

 

1. INTRODUCTION 
 
The task of modeling and simulating diffusion type problems in heterogeneous and anisotropic media can be a great 

challenge from a mathematical and numerical point of view. Abrupt variations in the permeability field (i.e. the 
diffusion coefficient) is a common feature whenever modeling and simulating fluid flow in petroleum reservoirs and 
aquifers. Over the last years, much effort has been put in developing numerical methods that make use of unstructured 
meshes, such as the finite element method (FEM) and the finite volume method (FVM), due the fact that these methods 
allow for better modeling of complex geometrical features and because they can easily incorporate mesh adaptive 
procedures. When handling conservation laws, FVM are particularly attractive as they conserve mass, globally and 
locally. It is well known that traditional “five point” finite difference methods (FDM) are unable to handle full tensors 
or non-orthogonal meshes. Besides, it can be proved that these schemes introduce first order errors in the approximation 
of flux terms between discontinuous materials (Edwards and Rogers, 1998), making these methods unsuitable for the 
modeling and simulation of fluid flow in highly heterogeneous and anisotropic porous media. 

Locally conservative schemes, such as the mixed finite element method (MFEM) and flux continuous finite volumes 
(FCFV), also called multipoint flux approximations (MPFA), have been extensively studied in literature (Ewing, 1983; 
Aavatsmark et al, 1998, Edwards and Rogers, 1998; Edwards, 2000; Klausen and Eigestad, 2004). In the context of 
reservoir simulation, the recently developed FCFV are defined by assuming continuous pressures and normal fluxes 
across control volumes interfaces (Aavatsmark et al, 1998, Edwards and Rogers, 1998). Despite of the high 
computational costs associated to these methods, particularly the MFEM, both methods are capable of handling full 



tensors elliptic equations in highly non-homogeneous porous media using structured or unstructured meshes. The finite 
element method, which is globally, but not locally conservative (i.e. at element level), requires some kind of flux 
recovery in order to formally guarantee local conservation (Loula et al, 1999). 

In the present paper, we show a node centered finite volume formulation in which median dual control volumes 
(Donald’s dual) are used with an edge-based data structure (Luo et al, 1995; Crumpton et al, 1997; Rees et al, 2004; 
Carvalho et al, 2005) in such a way that the geometrical coefficients are associated to the edges and nodes of the primal 
mesh. This formulation, which is capable of handling structured or unstructured meshes, and non-homogeneous and 
anisotropic porous media, has been chosen due to the fact that vertex-centered FV schemes are usually superior to cell 
centered schemes in terms of memory usage (Luo et al, 1995; Rees et al, 2004), and because edge-based data structures 
are known to be computationally more efficient than their element-based counterparts (Luo et al, 1995). 
 
2. MATHEMATICAL FORMULATION  

 

In the two dimensional case the equation which defines an elliptic problem in a heterogeneous and anisotropic 
medium can be written as 
 

 ( )( ) ( )K x u f x∇ ⋅ ∇ =
� �

�
 with ( ) 2x x, y= ∈ Ω ⊂

�
�   (1) 

 
where, 
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is a symmetric matrix that is allowed to be discontinuous through the internal boundaries of the domain Ω . 
In order to formally define an elliptic problem (Crumpton, 1995), we further assume that 

 

 
 2

xx yy xyK K K>                            (3) 

 
Integrating Eq. (1) and applying the Green-Gauss theorem to its left side, yields 
 

 ( )K u n f

Γ Ω

∇ ⋅ ∂Γ = ∂Ω∫ ∫
�

�
                          (4) 

 
Equation (4) which is the integral form of Eq. (1), defines, for instance, the pressure field for the fluid flow of oil 

and water in heterogeneous and anisotropic petroleum reservoirs or the transport of contaminants in aquifers (Rees et al, 
2004; Carvalho et al, 2005). 

 
3. NUMERICAL FORMULATION 

 
As mentioned before, in the present work, we have adopted a vertex centered finite volume procedure with median 

dual control volumes built over a triangular primary mesh, in which the geometric coefficients necessary to our 
calculation are associated to the edges and to the nodes of the primary mesh (Luo et al, 1995; Crumpton et al, 1997; 
Sorensen, 2001; Rees et al, 2004; Carvalho et al, 2005). These edge and node coefficients are pre-computed in a pre-
processing stage from the more traditional element data structure which is commonly used in the finite element method 
context. 

For a general node I of the mesh, Eq. (4) can be approximated as:  
 

 
L L L L

I I

IJ IJ IJ IJ I I

L L

F C F D f VΩ Γ⋅ + ⋅ =∑ ∑
�� � �

                       (5) 

 

where 
L LIJ IJF K u= ∇
�

�
 is the flux function defined at the control surface, 

I
V  is the volume of the CV surrounding node I, 

the upper index Ω  represents approximations that are associated to every edge LIJ  of the mesh which is connected to 

node I, Γ  refers only to boundary edges connected to that node, and the summation 

IL

∑ is performed over the edges 

( )IL connected to node I. The geometrical coefficients 
LIJC
�

 and 
LIJD
�

 are defined as 
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In Equation (6), K K 1A , A +  and LA  are the areas of the control surfaces associated to the control surface normals 

Kn
�

, K 1n +

�
 and Ln

�
, respectively. Further details can be found in (Carvalho et al, 2005). 

In order to approximate the mid-edge gradients/fluxes required in Eq. (5), different strategies can be devised (Svärd 
and Nordström, 2003). A classical approach involves using a simple two point approximation in which mid-edge fluxes 
are formally second order accurate only if the media is isotropic and the straight lines that connects two adjacent nodes 
and the control surfaces are orthogonal to each other, as in the case of the Voronoi tessellations (Edwards, 2000). 
Schemes using such approaches are equivalent to the so called control volume finite difference methods (CVFD). 

In the present paper, we use a different approach which has been originally devised by Crumpton et al (1997) for 
the discretization of diffusion terms in the Navier-Stokes equations. In this approach, in order to obtain the final discrete 
system of equations, we first determine nodal gradients as functions of the discrete scalar field and then, we use these 
gradients to compute the elliptic terms in a second step (Crumpton et al, 1997; Sorensen, 2001) naturally arise when we 

are handling full tensor problems, i.e. xy yxK K 0.0= ≠ or when we are using non-orthogonal meshes, as both problems 

can be seen as equivalents (Edwards and Rogers, 1998). 
In order to compute the nodal gradient, we make use of the Gauss-Green theorem to integrate the gradient of the 

scalar variable at node I, obtaining 
 

I I

I I Iu u n

Ω Γ

∇ ∂Ω = ∂Γ∫ ∫
�

                          (7) 

 
Assuming that the average gradient in the control volume can be defined as  

 

I
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Similarly to Eq. (5), we can write the discrete form of Eq. (7) as 
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Further, we must adopt the following linear edge approximations 
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Inserting Eq. (10) in Eq. (9), we obtain 
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The boundary term ( )
LIJuΓ

 defined in Eq. (10) assumes a piecewise linear interpolation for boundary fluxes similar 

to a FEM type approximation, being formally second order accurate in space when linear triangles are used (Luo et al, 
1995).  
 
3.1. Anisotropic and heterogeneous media 

 

In the case of heterogeneous media, fluxes definitions over the edges located at the interface between different 
materials can be ambiguous (Helming and Huber, 1998). If gradients computed as described in Eq. (11) are directly 
used for flux computations, an inconsistent flux would be obtained along CV faces adjacent to material discontinuities. 



In order to circumvent this problem, gradients are recovered in a sub-domain by sub-domain approach. First, material 
properties (e.g. porosity and permeability) are associated to sub-domains. For each physical sub-domain, we store a list 
of edges and nodes and their associated geometrical coefficients. For the mesh considered in Fig. (1), it is necessary to 

include new geometrical coefficients, 
LIJ L LD A n=
� �

 and 
MIJ M MD A n=
� �

, which are quantities related to internal boundary 

edges, in order to correctly reconstruct gradients and fluxes in a particular sub-domain. These coefficients are used to 
obtain a second order recovery of gradients for each physical sub-domain of the problem, allowing for a discontinuous 
flux computation. Therefore, for heterogeneous media, we can rewrite Eq. (11) as 
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Figure 1. 2-D Control volume split by two different materials. 
 

In Equation (12), R

Iu
Ω∇ is the nodal gradient and R

IV
Ω is the control volume of a node I associated to the sub-

domain RΩ , and R

LIJC
Ω
�

 and R

LIJD
Ω
�

 refer to the geometrical coefficients of the edge LIJ  associated to the same sub-

domain RΩ . Finally, note that in this sub-domain approach, R

LIJD
Ω
�

refers to both, external and internal boundary edges, 

and REΓ  and RIΓ  refer, respectively, to loops over external boundary edges and internal edges between multiple 

domains. In order to compute the fluxes of Eq. (5), we define a local frame of reference, in which one axis is placed 
along the edge direction (P), and another axis (N) is orthogonal to the direction (P), and subdivide the gradients into two 
components as stated in Eq. (13) 

 
R R R

L L L

( N ) (P)

IJ IJ IJu u u
Ω Ω Ω

∇ = ∇ + ∇  (13) 

 

The component of the gradient parallel to the edge direction R

L

(P)

IJu
Ω

∇  is replaced by a local second order central 

difference approximation R

L

(P*)

IJu
Ω

∇ , as follows 
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where: 
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L
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Ω
−
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∆

�
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In Equation (15) 
LIJ∆  and 

L LIJ L IJ
L IJ= ∆
� ����

 are, respectively, the length and the unity vector of the edge IJL.  

From Equation (13), the normal component of the gradient associated to the edge IJL can be computed as 
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where the gradient along the edge direction is given by 
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Inserting Eq. (17) in Eq. (16) yields 
 

( )( )R R R

L L L L L

N

IJ IJ IJ IJ IJ
u u u L L
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Inserting Eq. (15) and Eq. (19) in Eq. (14), we have  
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( )
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L
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−
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Defining the continuous “hybrid” mid-edge flux function as 

 
* *R R R

L LIJ IJF K u
Ω Ω Ω= − ∇

�
 (21) 

 
in which the term hybrid was used to indicate that one part of the mid-edge gradient/flux (i.e. the cross-diffusion term) 
is computed using the traditional edge-based finite volume approach by averaging the nodal Green-Gauss gradients, and 
the other part is computed using the compact two point finite difference scheme.  
Inserting Eq. (20) in Eq. (21), we can write 
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* L
R R R R

L L L L L L

L

J I
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IJ

u u
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Using Eq. (18) in Eq. (22), we can redefine Eq. (5) using this new surface flux approximation as  

 

( ) ( )

R R R R R

L L L L
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In the equation above, R

L LIJ IJF D
ΩΓ ⋅

� �
 must be replaced by the appropriate Neumann boundary condition and Ndom 

refers to the number of domains that surrounds node I. 
It must be emphasized that, while source terms are simply volume averaged quantities, nodal gradients and fluxes 

are recovered in a sub-domain by sub-domain basis (i.e. looping over sub-domains) in order to formally guarantee that 
both are correctly approximated for each material along interface edges. This approach produces, in general, a non-
symmetric system of equations that is assembled in a sub-domain approach and has been solved using a simple sparse 
Gauss elimination solver. 

 
the expression above is built in  

 
4. ERROR EVALUATION 

 

 In order to evaluate the errors in the example to be presented, we define the asymptotic truncate error as 
 

 ( )1q q

hE Ch O h
+= +  (24) 



 

In Equation (24), h is the mesh spacing, q is the order of the error, C is a constant independent of h and ⋅  refers to 

some specified norm. The numerical convergence rate is estimated as  
 

 2

2

log
h

h

E
q

E
≅  (25) 

 
Following Crumpton (1995), we define the root mean square error as 
 

 ( )
1 2

2

1

ˆ ˆ
RMS

NP

RMS L
I

E u u u u NP
=

 
= − = − 
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∑  (26) 

 

where u is the exact solution, û is the approximate solution and NP is the number of nodes of the mesh. 

 
5. EXAMPLE: DISCONTINUOUS AND ANISOTROPIC MEDIA 

 
In order to evaluate and compare the accuracy of the proposed finite volume procedure for the solution of elliptic 

equations with discontinuous and anisotropic coefficients and discontinuous distributed source terms, we present the 
results obtained for a benchmark problem which was originally presented in Crumpton (1995) that solved this problem 
using a flux continuous finite volume scheme using structured orthogonal quadrilateral meshes. In this problem, defined 

by Eq. (1), we consider a unity square domain (i.e. [ ] [ ]1,1 X 1,1− − ) with numerical boundary conditions obtained from 

the exact solution, which is also valid at domain boundaries. The discontinuous source term and the full tensor 
discontinuous diffusion coefficients are given by 

 

 ( )
( ) ( ) ( )

( ) ( )

2 cos    for 0
,

2 exp cos         for  0

sin y y x sin y x
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  
= 

  >   

�
                           (28) 

 
where α  is the intensity of the discontinuity between the two different regions. The exact solution for this problem is 

given by Crumpton (1995) as 
 

 ( )
( ) ( ) ( )

( ) ( )

2 cos      for 0
,

exp cos                                 for   0

sin y y x sin y x
u x y

x y x

α + + ≤  
= 

>
                   (29) 

 
We have solved this problem for using a sequence of uniform unstructured triangular meshes that were directly 

generated over the computational domain with a mesh spacing in such a way that the triangular meshes had 

approximately ( )8x8 , ( )16x16 , ( )32x32  e ( )64x64  elements. Figures (2.a) to (2.d) present the iso-contours for the 

scalar function ( ),u x y  obtained by the EBFV with the ( )64x64  mesh associated to 1.0α = ; (b) 10.0α = ; (c) 

100.0α = ; (d) 1000.0α = ,  respectively. 
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                (a)                         (b) 

 
                 (c)                         (d) 

 

Figure 2. Iso-contours of the scalar function ( ),u x y  obtained with unstructured triangular mesh ( )64x64  for the 

different values of α : (a) 1.0α = ; (b) 10.0α = ; (c) 100.0α = ; (d) 1000.0α = . 

 

Tables (1), (2), (3) and (4) present the root mean square errors, 
RMS

E , and the convergence rates 
RMS

q , for the 

four different values of (a) 1.0α = ; (b) 10.0α = ; (c) 100.0α = ; (d) 1000.0α = , obtained with our edge-based finite 

volume formulation (EBFV) and with the flux continuous finite volume method of Crumpton (CFV). As it can be 
clearly observed in Tab. (1), (2), (3) and (4), the EBFV presents second order accuracy for all values of α . From 

Tables (1) to (4) we can note that the increase of the strength of the discontinuity also increase the magnitude of the 
error for both, the EBFV and the Crumpton’s CFV schemes, even though the EBFV presents slightly better results for 
this particular problem. It is also clear that, independently of the strength of the discontinuity, the EBFV and the 
Crumpton’s CFV are both second order accurate.  

 
Table 1. Errors and convergence rates for 1.0α = . 

 

Mesh 
Divisions N 

RMS
E (EBFV) 

RMS
E  (CFV) RMS

q (EBFV) 
RMS

q  (CFV) 

8 3.4e-003 3.33e-003 ----------- ----------- 

16 6.70e-004 9.37e-004 2.2683 1.8294 

32 1.49e-004 2.45e-004 2.1149 1.9353 

64 3.33e-005 6.25e-005 2.1383 1.9709 

 
 
 
 



Table 2. Errors and convergence rates for 10.0α = . 

 

Mesh 
Divisions N 

RMS
E (EBFV) 

RMS
E  (CFV) RMS

q (EBFV) 
RMS

q  (CFV) 

8 5.60e-003 1.64e-002 ----------- ----------- 

16 1.00e-003 4.35e-003 2.4501 1.9146 

32 2.10e-004 1.11e-003 2.3066 1.9705 

64 4.25e-005 2.81e-004 2.3083 1.9819 

 
Table 3. Errors and convergence rates for 100.0α = . 

 

Mesh 
Divisions N 

RMS
E (EBFV) 

RMS
E  (CFV) RMS

q (EBFV) 
RMS

q  (CFV) 

8 4.38e-002 1.81e-002 ---------- ---------- 

16 8.40e-003 4.74e-003 2.3710 1.9330 

32 1.40 e-003 1.21e-003 2.5866 1.9699 

64 2.44e-004 3.04e-004 2.5279 1.9929 

 
Table 4. Errors and convergence rates for 1000.0α = . 

 

Mesh 
Divisions N 

RMS
E (EBFV) 

RMS
E  (CFV) RMS

q (EBFV) 
RMS

q  (CFV) 

8 4.38e-001 1.83e-000 ---------- ---------- 

16 8.54e-002 4.79e-001 2.3580 1.9337 

32 1.40e-002 1.22e-001 2.6030 1.9731 

64 2.40 e-003 3.07e-002 2.5251 1.9906 

 
  

6. CONCLUSIONS  

 

In the present paper we have described an edge-based node centered finite volume formulation (EBFV) which was 
used to solve elliptic type equations with highly discontinuous coefficients very accurately. Full tensors and flexible 
(unstructured) non-orthogonal triangular meshes are treated naturally in our formulation. In order to show the potential 
of the presented finite volume procedure we have solved a benchmark problem that involves full tensor and highly 
discontinuous diffusion coefficients and discontinuous distributed source terms. Our results (not fully presented here) 
are quite promising and compare very favorably with other results found in literature.  
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