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Abstract. A fuel injected engine is a highly nonlinear system, because it presents time delays that vary inversely with 
engine speed and is time-varying due to aging of components and environment changes, such as engine warm-up after 
a cold start. The engine dymanic equations are usually derived from steady-state map data and other empirical 
information and, hence, entail a great deal of uncertainty. In this paper we propose an on-line identification algorithm 
for estimating the engine speed and manifold pressure. Based on Lyapunov arguments and by using a robust 
modification of the gradient methodology it is proved that the engine speed and manifold pressure estimation errors 
coverge to zero, assymptotically, whereas the parameter error remain bounded, even in the presence of bounded 
disturbances.   
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1. INTRODUCTION   
  

Several schemes for controlling the speed of fuel injected engines have been proposed in recent years 
(Vachtsevanos et al., 1993; Puskorius and Feldcamp, 1994; Powell et al., 1998; Powellt and Hrovatt, 2000; Yu and Li, 
2001; Yu et al., 2001; Sun et al., 2005). These works are mainly based on the previous knowledge of the systems 
dynamic, which is usually derived from steady-state map data and other empirical information, or also, by on-line 
identification techniques to approximate the unknown nonlinearities of the engine, such as neural networks (NN) and 
fuzzy systems (FS). However, the aforementioned techniques have several drawbacks: 1) traditional modeling is based 
on empirical information, as for instance steady-state maps, and then entail an enormous deal of uncertainty, with a 
negative impact on the control performance (Puskorius and Feldcamp, 1994; Vachtsevanos et al., 1993); 2) 
identification techniques based on neural networks, such as radial basis function NN (Sanner and Slotine, 1992), which 
are mainly used in identification-based control algorithms, have poor interpolation capability and requires large number 
of basic functions for tackling with multidimensional network inputs (Rysdyk and Calise, 2005); 3) NN-based 
identification models do not provide any physical insight on the process under consideration (Ge et al., 2002), and 4) all 
aforementioned works are incapable of guaranteeing the convergence of the residual speed and manifold pressure 
estimation errors to zero. 

Based on a passivity framework (Sontag and Wang, 1995), in Yu and Li (2001) adaptive laws for the weights of 
linear in the weights dynamic NN were proposed to ensure convergence of the speed and manifold pressure estimation 
errors to a neighborhood of the origin. It was showed that robust techniques such as dead-zone and σ -modification 
(Ioannou and Sun, 1995) are not necessary to ensure stability of gradient descent algorithms for weight adjustment in 
the presence of modeling error and bounded disturbances. In order to improve the approximation capability, nonlinear 
in the weights dynamic NN have been used to parameterize a 1.6 liter, 4-cilinder fuel injected engine, as reported in Yu 
et al. (2001). Based on the stability proof, learning laws for the weights were chosen to guarantee that the state errors 
were all bounded. 

Recently in Vargas and Hemerly (2007), a robust modification for the weight adaptive law in neuro-identification 
problems was proposed to ensure, in contrast to the literature, that the prediction error converges to zero in the presence 
of approximation error and disturbances. The adaptive law consisted of a leakage modification of a standard gradient 
descent algorithm. However, in contrast to commonly leakage modifications (Ioannou and Su, 1995) which aim at 
stability in the presence of approximation errors and disturbances, the leakage term was introduced for, in addition to 
stability, ensuring that the state error converges to zero. It was proved by using usual Lyapunov arguments and an 
adaptive bounding technique (Polycarpou, 1996) that the state error converges asymptotically to zero, whereas the 
others error signals remain bounded. However, some assumptions on the design parameters, which can be hard to be 
verified in practice, are necessary to ensure convergence to zero.  

In this paper, motivated by the previous facts, we propose an on-line identification algorithm, without NN, for 
estimating the main parameters in the engine, and in addition, for ensuring the state error convergence to zero, even in 
the presence of internal and external disturbances. Based in the methodology introduced in Vargas and Hemerly (2007) 



and a 1.6 liter, 4-cilinder fuel injected engine model proposed by Powell and Cook (1987), it is proposed an 
identification model and parameter adaptation law that ensure bounded identification of the manifold and rotational 
constants and, at the same time, the asymptotical convergence of the speed and manifold pressure to the true values. 
Since the proposed method is valid to any operation points, in contrast to others models derived from steady-state map 
data and other empirical information, and it ensures convergence, is very adequate for identification-based control 
purposes.  
   
2. PROBLEM FORMULATION 
  

Consider an engine model operating under idle (Powell and Cook, 1987) described by 
 

( ) 1aoaip vmmkP +−= &&&                                                                              (1) 

( ) 2lin vTTkN +−=&                                                                               (2) 
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P is the manifold pressure (kPa),  

N is engine speed (rpm),  

δ  is the spark advance (degrees),  

θ  is the throttle angle (degrees),  

aim&  is the mass flow rate into the manifold,  

aom&  is the mass flow rate out of the manifold and into the cylinder,  

dT  are disturbances which act to the engine as unmeasured accessory torque  (N-m) 

iT  is the internally developed torque (N.m),  

lT  is the load torque made up of accessory torque dT  and shaft torque (N.m),  

( )Pg  is a manifold pressure influence function,  

aom  is the air mass in the cylinder,  

τ  is a dynamic transport time delay,  

pk  is a manifold dynamics constant,  

nk  is a rotational dynamics constant, and 

21 v,v  are bounded internal or external disturbances. 

The meaning of the main variables of the model is showed in Fig. 1 (Vachtsevanos et al., 1993). For a more 

detailed discussion on the engine dynamic and equations above see Puskorius and Feldcamp, (1994) and the references 

therein.  
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Figure 1. The main engine subsystem. 

 

By defining [ ]TNPx = , [ ]Tu δθ= , the engine model (1)-(2) can be rewritten as 
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where 2ℜ∈x  is the state vector, 2ℜ∈u  is the control input, W  is an unknown parameter matrix, 2h ℜ∈  is a vector 
of time varying uncertain variables, which includes dT  and others internal or external disturbances.  

We assume that the following can be established  

 

Assumption 1: For all 0≥t  

( ) 0ht,u,xh ≤                                                                                 (6) 

 

where 0ho ≥  is an known constant. 

 

Remark 1: To avoid confusion, we define 0h  to be the smallest constant such that (6) are satisfied. 

The goal is to design an on-line identifier for the system (1)-(2), which ensures asymptotic estimation of the states, 
even in the presence of internal or external disturbances. 

It should be highlighted that system on-line identification is important not only to predict the behavior of the system, 
but also for providing an appealing system parameterization, which can later be used in the synthesis of control 
algorithms, since mathematical characterization is often a prerequisite to controller design. 
  
3. IDENTIFICATION MODEL AND STATE ERROR EQUATION 
  

We start by presenting the identification model and the definition of the relevant errors associated with the problem. 

Fuel injector  

N 

θ

Oxygen 
sensor  δ

aim&

aom&

P 



Note that (3) can be rewritten as 
 

( ) ( )t,u,xhu,xBWx += π&                                                                                (7) 

 

where 22×ℜ∈B  is a scaling matrix defined as ( )ibdiagB = , 0≠ib , ( )πBWWhh −+= , and W is a properly selected 

parameter matrix. It should be noted, based on (6), that for all 0≥t  we have ( ) 0ht,u,xh ≤  for some positive constant 

0h . 

 
Remark 2: The matrix B provides an additional degree of freedom for shaping the transient performance.    

 
The structure (7) suggests an identification model of the form  
 

( ) ( )u,xŴBxx̂Ax̂ π+−=&                                                                               (8) 

 

where A is a stability matrix, x̂  is the estimated state, and Ŵ  is the estimated parameter. It will be demonstrated that 

the identification model (8), along with the adaptation law for Ŵ , to be stated in the next, ensures asymptotic 
convergence of the state error, even in the presence of disturbances. 

 
Remark 3: A drawback with identification models based as (8) is that they are not suitable for prediction, since such 
schemes can only work on-line, because their weights cannot converge to the ideal ones (Yu et al., 2001). The proposed 
identification model (8) also suffers from this. However, similarly to other models, for instance these based on neural 
networks, it is relevant for identification-based control. Moreover, the parameterization (8) allows the establishment of 
a state error equation which is later used in the stability analysis. 

 
Define the state estimation error as xx̂:x~ −= . Using (7) and (8), we formulate the state estimation error equation 

as follows: 
 

( ) ( )t,u,xhu,xW
~

Bx~Ax~ −+= π&                                                                   (9) 

where WŴ:W
~ −= .  

 
 
4. ADAPTIVE LAW AND STABILITY ANALYSIS 

 
The adaptive laws in this section are based on a Lyapunov-like analysis, and ensure bounded estimation errors. In 

addition, we show asymptotic convergence of the prediction error in the presence of approximation error and 
disturbances. The proposed adaptive law employs 1ε -modification (Ioannou and Sun, 1995), with a dynamic leakage 

gain to ensure robustness against approximation error and disturbances. Dynamic leakage gains have been used in Chai 
and Tao (1994) and Vargas (1997) where robust adaptive control of linear plants and on-line identification of dynamical 
systems, respectively, were studied. 
Before presenting the main theorem, we state a fact, remark and lemma, which will be used in the stability analysis. 
 

Fact 1: Let 22
0 W

~
,Ŵ,W,W ×ℜ∈  and 22×ℜ∈C  be a diagonal matrix such that CCC T = , where ( )icdiagC = , 0>ic . 

Then, with the definition of WŴW
~ −= , the following equalities are true: 
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Remark 4: The first equality in (10) leads to the following inequality: 
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where ( )imaxi cmaxc =  and ( )imini cminc = . 

 
Lemma 4.1: Let a scalar bounding function be given by 
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Proof: Consider the Lyapunov-like function 

21ψγψ ψψ ˆˆV −=                                                                          (16) 

By taking the derivative of (16) along (12) we obtain 
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Furthermore, based on (12) and (14) it follows that ( ) 0>tψ̂  for all 0≥t . Then, with the definition (13), the 

Lyapunov derivative (17) can lower bounded as 
 

[ ]δψψψαψ −−≥ ˆx~ˆlV 12&                                                                (18) 

 

Hence, if δψψ ≤ˆ  we have 0≥ψV& , which implies that the bounding function is directed towards the outside or 

boundary of the region { }δψψψ ≤ˆˆ . Consequently, based on (14), it follows that δψψ ≥ˆ  for all 0≥t . □  
We now state and prove the main theorem of the paper. 
 

Theorem 4.1: Consider the class of nonlinear systems described by (7), which satisfy Assumption 1. Let the weight law 
be given by 
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where ψ̂  is given by (12), 0>Wγ , I  is an identity matrix, PPK T += ,  P is the unique positive definite solution of 

the Lyapunov equation 
 

QPLPLT =+                                                                            (20) 

 
where 0>L  and 0>Q . Then, subject to the condition (14), and if 
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the error signals ψ~,W
~

,x~  are uniformly bounded and ( ) 0=→∞ tx~limt . 

 
Proof: Consider the candidate Lyapunov function  
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By evaluating (26) along the trajectories of (9), (12) and (19), we obtain 
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By using Fact 1, the representation 
2222 ∗−+= ψψψψψ ˆ~ˆ~ , and (20), the Lyapunov derivative can be written as 
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Furthermore, by using Remark 4, condition (23), Lemma 4.1, and notation (25), the Lyapunov derivative (28) can 

upper bounded as 
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Further using (22) and rearranging terms, we obtain 
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By employ the definition of ψ , see (21), recalling that ψψψ −= ˆ~ , and using Lemma 5.1, (30) reduces to 
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which, by using (13), implies 
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Thus by using Lemma 5.1 and rearranging terms in (32), we finally obtain 
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It addition, we note from (24) that 
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By substituting (34) into (33), and using Lemma 4.1, we arrive at 
 

2
3 x~V α−≤&                                                                                       (35) 

 

Hence, the error signals ψ~,W
~

,x~  are uniformly bounded. Further, since V is bounded from below and non increasing 

with time, we have 
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where ( ) ∞<= ∞∞→ VtVlimt . Notice that with the bounds on ,~,W
~

,x~ ψ  and h, 
2

x~  is uniformly continuous. Thus from 

(9), it follows that x~&  is bounded. Hence by Barbalat´s lemma (Ioannou and Sun, 1995), we conclude that 
( ) 0=→∞ tx~limt . □  

Remark 5: Conditions (14), (20), and (22) are trivial since them are defined by the user according to a desired 
performance. Condition (21) implies a previous knowledge of an upper bound for the disturbances, which is assumed in 
(6). Condition (23) is trivial since the matrix W is previously known. The previous knowledge of bounds for the 



modeling error and parameter is not peculiar to the proposed scheme. Most robust modifications in the literature, as for 
example, switching-σ , parameter projection, and dead-zone require a priori information on the plant or modeling error 
for ensuring stability, as reported in Ioannou and Sun (1995).  
 
Remark 6: A sufficient interval condition for satisfying (24) can be formulated as  
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Observe that there is at least one way of selecting the design parameters to satisfy (37): by selecting a conservative 

F
W0  (large enough) and, in the sequence, by adjusting 

F0WW −  (small enough).  

 
Remark 7: Although the ultimate bound for the residual state error can be controlled to be asymptotically null by 
choosing appropriately some design parameters, as 0W  and B, it may be nontrivial to control the transient performance, 

due to the cross dependence between some design parameters, as shown in (22). Then, an extensive trial and error 
procedure may be needed. 
 
5. SIMULATIONS 
  

In this Section simulations are presented to show the application and the performance of the proposed method. We 
select θ  as being a square wave with amplitude 20o, frequency 0.25 rad/s, δ  as a sine wave with amplitude 30o, 

frequency 0.5 rad/s, dT  as a sawtooth wave with amplitude 10 N.m, frequency 0.5 rad/s, 0=τ , and ( ) [ ]T500100x = . 

The measurements of P and N are contaminated with two square waves of 1 Hz and amplitudes of 0.5 kPa and 10 rpm 
respectively. The performance in the estimation of the manifold pressure and engine speed are shown in Figures 2-3. 
We can see that the simulations confirm the theoretical results, that is, the algorithm is stable and the residual state error 
is small. 
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Figure 2- Performance in the estimation of P.  
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Figure 3- Performance in the estimation of N. 

 
 
 
6. CONCLUSIONS 
  

In this paper we have proposed an identification model and an associated parameter adaptation law for identifying 
the manifold and rotational constants and estimating the speed and manifold pressure of a 1.6 liter, 4-cilinder fuel 
injected engine. It was proved, by using Lyapunov arguments and an adaptive bounding technique, that the entire 
identification process is stable, ensuring both the estimation with bounded errors of the engine parameters and the 
convergence of the speed and manifold pressure estimations to their true values. Further results aiming adaptive 
observation and control are under investigation and will be opportunely reported. 
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