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Abstract. A fuel injected engine is a highly nonlinear sgstdecause it presents time delays that vary ielensith
engine speed and is time-varying due to aging ofpmments and environment changes, such as engime-u@aafter

a cold start. The engine dymanic equations are liswderived from steady-state map data and othepigoal
information and, hence, entail a great deal of utaiaty. In this paper we propose an on-line id&atition algorithm
for estimating the engine speed and manifold pressBased on Lyapunov arguments and by using astobu
modification of the gradient methodology it is pedvthat the engine speed and manifold pressurenattin errors
coverge to zero, assymptotically, whereas the patamerror remain bounded, even in the presencéaninded
disturbances.
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1. INTRODUCTION

Several schemes for controlling the speed of fugécied engines have been proposed in recent years
(Vachtsevanos et al., 1993; Puskorius and Feldca8g4; Powell et al., 1998; Powellt and HrovattD@0Yu and Li,
2001; Yu et al., 2001; Sun et al., 2005). Theseka/@re mainly based on the previous knowledge efsystems
dynamic, which is usually derived from steady-statep data and other empirical information, or alsp,on-line
identification techniques to approximate the unknawenlinearities of the engine, such as neural okdsv(NN) and
fuzzy systems (FS). However, the aforementionednigcies have several drawbacks: 1) traditional higlés based
on empirical information, as for instance steaditestmaps, and thegntail an enormous deal of uncertainty, with a
negative impact on the control performance (Puskorand Feldcamp, 1994; Vachtsevanos et al., 1928);
identification techniques based on neural netwasksh as radial basis function NN (Sanner and ri&pti992), which
are mainly used in identification-based controbaiiipms, have poor interpolation capability anduiegs large number
of basic functions for tackling with multidimens&nnetwork inputs (Rysdyk and Calise, 2005); 3) bMhsed
identification models do not provide any physicaight on the process under consideration (Ge,2@02), and 4) all
aforementioned works are incapable of guarantediegconvergence of the residual speed and manffaddsure
estimation errors to zero.

Based on a passivity framework (Sontag and Wang5Y19n Yu and Li (2001) adaptive laws for the waiy of
linear in the weights dynamic NN were proposedrisuee convergence of the speed and manifold pesstimation
errors to a neighborhood of the origin. It was sbedwhat robust techniques such as dead-zonegarmmdodification
(loannou and Sun, 1995) are not necessary to estalpdity of gradient descent algorithms for weigldjustment in
the presence of modeling error and bounded distad®a In order to improve the approximation cajitgbihonlinear
in the weights dynamic NN have been used to paexnmeta 1.6 liter, 4-cilinder fuel injected engias, reported in Yu
et al. (2001). Based on the stability proof, leagniaws for the weights were chosen to guarantaethie state errors
were all bounded.

Recently in Vargas and Hemerly (2007), a robustifreadion for the weight adaptive law in neuro-idiéoation
problems was proposed to ensure, in contrast tbténature, that the prediction error convergegewm in the presence
of approximation error and disturbances. The adagdw consisted of a leakage modification of and#ad gradient
descent algorithm. However, in contrast to commdaBkage modifications (loannou and Su, 1995) wiidth at
stability in the presence of approximation errand disturbances, the leakage term was introducedrf@addition to
stability, ensuring that the state error convergegero. It was proved by using usual Lyapunov arguots and an
adaptive bounding technique (Polycarpou, 1996) thatstate error converges asymptotically to zerdoereas the
others error signals remain bounded. However, sassemptions on the design parameters, which cdratueto be
verified in practice, are necessary to ensure aqgevee to zero.

In this paper, motivated by the previous facts, swepose an on-line identification algorithm, withddN, for
estimating the main parameters in the engine, aradidition, for ensuring the state error convergeoczero, even in
the presence of internal and external disturbar@ased in the methodology introduced in Vargastenherly (2007)



and a 1.6 liter, 4-cilinder fuel injected engine dab proposed by Powell and Cook (1987), it is pemab an

identification model and parameter adaptation laat £nsure bounded identification of the manifahdi aotational

constants and, at the same time, the asymptotizaletgence of the speed and manifold pressureetdrtie values.
Since the proposed method is valid to any opergia@nts, in contrast to others models derived fgieady-state map
data and other empirical information, and it ensutenvergence, is very adequate for identificabased control
purposes.

2. PROBLEM FORMULATION

Consider an engine model operating under idle (R@amed Cook, 1987) described by

P = Kp (g = ao) + v (1)
N =k, (T, - T))+v, 2)
where
my = (1+ K6 + kngz)g( P),
My, = —KaN = Ky P + KNP+ kg NP2,
1 P <506625

g( P) = 2 ’
0.019A4101325P-P“ P >50.6625

T, =-39.22+325024n,, -0.011252 +0.6350 + (277/ 60)(0.0216+0.000673)N — (277/ 60)*0.00010N 2,
T, =(N/26317) +T,, my, =y (t-7)/(120N), k, =4240, k,=5426, k,=0907, k,,=0.0998

K3 =0.0005968 k, =0.1336, k5 =0.0005341 Kk, =0.000001757
P is the manifold pressure (kPa),

N is engine speed (rpm),

o is the spark advance (degrees),

@ is the throttle angle (degrees),

m,; is the mass flow rate into the manifold,

m,, is the mass flow rate out of the manifold and into thandet,

T4 are disturbances which act to the engine as unmeasured accessay(ion)
T, is the internally developed torque (N.m),

T, is the load torque made up of accessory torfpend shaft torque (N.m),
g(P) is a manifold pressure influence function,

m,, is the air mass in the cylinder,

T is a dynamic transport time delay,

k, is @ manifold dynamics constant,

k, is a rotational dynamics constant, and

vy Vv, are bounded internal or external disturbances.

The meaning of the main variables of the model is showedginlHjVachtsevanos et al., 1993). For a more
detailed discussion on the engine dynamic and equations aboReserius and Feldcamp, (1994) and the references

therein.
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Figure 1. The main engine subsystem.

By defining x=[P N]", u=[6 4]", the engine model (1)-(2) can be rewritten as

x =Wrr(xu) + h(xu,t) 3)
_ My — My,
”{Ti —(N/263.17)2} @
— _|ky O] —_ A
W {o kJ’ " {vz - knTJ ©

where x 002 is the state vectoy 0 02 is the control inputW is an unknown parameter matrix, 102 is a vector
of time varying uncertain variables, which includes and others internal or external disturbances.
We assume that the following can be established

Assumption 1: For allt> 0

[A(xu.)| < Po 6)

whereh, > 0 is an known constant.

Remark 1: To avoid confusion, we defink, to be the smallest constant such that (6) are satisfied.

The goal is to design an on-line identifier for the sysf&)¥(2), which ensures asymptotic estimation of theestat
even in the presence of internal or external disturbances.

It should be highlighted that system on-line identifizatis important not only to predict the behavior of th&tem,
but also for providing an appealing system parameterizatibinch can later be used in the synthesis of control

algorithms, since mathematical characterization is often a preitegiai controller design.
3. IDENTIFICATION MODEL AND STATE ERROR EQUATION

We start by presenting the identification model and the diefindf the relevant errors associated with the problem.



Note that (3) can be rewritten as

X = BWn(x,u) + h(x,u,t) (7

where BO 0% s a scaling matrix defined &8 = diag(bI ) ,b#0, h=h+ (W - BW)n, andW is a properly selected
parameter matrix. It should be noted, based on (6), thatlfoi= 0 we have||h(x,u,t)|| < h, for some positive constant

hy .
Remark 2: The matrixB provides an additional degree of freedom for shaping thei¢mrtrperformance.

The structure (7) suggests an identification model ofdhm f
%= Ak - x)+ BW7(x,u) (8)

whereA is a stability matrix,X is the estimated state, akid is the estimated parameter. It will be demonstrated that

the identification model (8), along with the adaptation law W, to be stated in the next, ensures asymptotic
convergence of the state error, even in the presence of distasban

Remark 3: A drawback with identification models based as (8) is they fare not suitable for prediction, since such
schemes can only work on-line, because their weights cannatrgento the ideal ones (Yu et al., 2001). The proposed
identification model (8) also suffers from this. Howewamilarly to other models, for instance these based on neural
networks, it is relevant for identification-based controbrbbver, the parameterization (8) allows the establishment of
a state error equation which is later used in the stabildlysis.

Define the state estimation error &s=X-x. Using (7) and (8), we formulate the state estimation egaation
as follows:

X = AX + BWrz(x,u) - h(xu,t) 9
whereW :=W -W .

4. ADAPTIVE LAW AND STABILITY ANALYSIS

The adaptive laws in this section are based on a LyapunovHAddgsis, and ensure bounded estimation errors. In
addition, we show asymptotic convergence of the predictioor eémr the presence of approximation error and
disturbances. The proposed adaptive law emplgymodification (loannou and Sun, 1995), with a dynamikdea

gain to ensure robustness against approximation error andodisces. Dynamic leakage gains have been used in Chai
and Tao (1994) and Vargas (1997) where robust adaptive coftimkar plants and on-line identification of dynamical
systems, respectively, were studied.

Before presenting the main theorem, we state a fact, remarkmanth)avhich will be used in the stability analysis.

Fact 1: Let W W, WW 00?2 and C 0022 be a diagonal matrix such th@&' C = C, whereC = diag(c ), ¢ > 0.
Then, with the definition oV =W -W , the following equalities are true:

zvirlit-ve)-fo] +fofir- ) -[ctu-w)

20w = W+ M2 |~

2
E
(10)

Remark 4: The first equality in (10) leads to the following inedtyal

2007 W o 2 T + e

W =Wo|© = e ~Wo 2 (11)
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where ¢y = maxc ) and ¢, = min(c;) .

Lemma 4.1: Let a scalar bounding function be given by

==y ) 20000 = ]} Ml ) -2 0| 12

where

. 2
@ w)==—2 13
=525 (13)

and y,.l,01,a, .4 >0. Then, subject to the condition

#(0)= ap (14)
where 5:% , the bounding function is lower bounded, fortad , Yy
10
@lt)= ap (15)
Proof: Consider the Lyapunov-like function
Vy, =@y, /2 (16)

By taking the derivative of (16) along (12) we abta

Vi = DR 2200 - ] + el )20 | an

Furthermore, based on (12) and (14) it follows tﬁdt)>0 for all t=0. Then, with the definition (13), the
Lyapunov derivative (17) can lower bounded as

v, = =2a,| P|X([ - o] (18)

Hence, if < o we have\/,/, > Q which implies that the bounding function is diext towards the outside or

boundary of the regio{«Z/ |12/ < 51//} . Consequently, based on (14), it follows tigae oy for all t = 0.

We now state and prove the main theorem of therpape

Theorem 4.1: Consider the class of nonlinear systems deschiged), which satisfy Assumption 1. Let the weitgw
be given by

W= —yW{zc(Q/ -y) M - (l - aZC‘l)/vo] %] + BKX 7" (x,u)} (19)

where ¢ is given by (12),), > Q1 is an identity matrix,K = PT +P, Pis the unique positive definite solution of
the Lyapunov equation

L"P+PL=Q (20)

whereL > 0and Q> 0. Then, subject to the condition (14), and if



_ 2a,|K8),

(21)
alo
a, = Ci min (22)
WTW, <0 (23)
Bi<|W-W|. <8, (24)
where
a, :”B—lu hO Bl :4a—1|0 B2 = LIO as =] (Q) (25)
1 1 1 min
O M e 2
the error signals\, W, are uniformly bounded aniim, _, X(t)=0.
Proof: Consider the candidate Lyapunov function
V=X PR+W )y W/2+ 0y, g /2 (26)

where = -y .
By evaluating (26) along the trajectories of (22)(and (19), we obtain

V=-X' (LTP+ PL)i -X"Kh
- 2| W W - W) 2R W 27

~2a i ] + el IR + 2wl
By using Fact 1, the representatig@y = > + (> —z//DZ, and (20), the Lyapunov derivative can be writisn
V =-x"Qx - x"k8(B*h)
-g|¥| U\Evv”i et -wp) -[ctw -wp)? } + 2a,JX]r W W) (28)
-l + 02 g2 JR|+ a i w1 + 2 gl

Furthermore, by using Remark 4, condition (23), bea.1, and notation (25), the Lyapunov deriva{R@) can
upper bounded as

V s[RI -aslR] + ke,
W+ i =V~ e -Wolli] (29)

_all(‘/72 +? ‘l//Z)"‘az‘M/ _WO“IZ:‘T/ +20’1|l//l/7}

—W (Ci min

Further using (22) and rearranging terms, we obtain

W, - a7
+a,[KB] + CimadfW -Wo (30)
—alIQZIZ —w2)+ 2a,| z/fﬁ]

VS R 9= ]~ ie?

By employ the definition ofy , see (21), recalling thaf = ¢ —¢ , and using Lemma 5.1, (30) reduces to
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W, - a9
+(0'1|0/2+Cimax"W _W0||i>AV _Cimm(//”WD‘Wo”i (31)
—al @ +aly? + 2y z//z/7]

V < R4 ] - i

which, by using (13), implies

. - - L ~12

V < R - 5% - V],
oo /2 G ~Wol2 1 = ot ~Wel (32)
2l 5

méﬂz +4a'1|o¢/2/47/ }

Thus by using Lemma 5.1 and rearranging terms2j, (8e finally obtain

R EEPRC TR

0_w HZ (4a41,)”

-y cin;aX_W of. ~ m | -

—;i—l/:um_lo - (IO/Z + Ci max MD —WOHF /alﬂ

_%:Ioaj - (IO/Z + Gy a W —WOHT: /aljwﬂ}}
It addition, we note from (24) that

el >l o o pw-wf @

A Cimal Mol 2
By substituting (34) into (33), and using Lemma, 4vé arrive at
V< —cr3||§||2 (35)

Hence, the error signalié,VT/,z,ﬁ are uniformly bounded. Further, sing¢es bounded from below and non increasing
with time, we have

t
im ., [IX()* ar< YOV (36)
0 a3

wherelim,_,V(t)=V,, <. Notice that with the bounds ox, W&, andh, ||§||2 is uniformly continuous. Thus from

(9), it follows that X is bounded. Hence by Barbalat's lemma (loannou &nd, 1995), we conclude that
lim, ., X(t)=0.

[m|
Remark 5: Conditions (14), (20), and (22) are trivial sinteem are defined by the user according to a desired
performance. Condition (21) implies a previous klemge of an upper bound for the disturbances, wisietssumed in
(6). Condition (23) is trivial since the matrW is previously known. The previous knowledge of s for the



modeling error and parameter is not peculiar toptteposed scheme. Most robust modifications initeeature, as for
example, switchings , parameter projection, and dead-zone recuipeiori information on the plant or modeling error
for ensuring stability, as reported in loannou &uith (1995).

Remark 6: A sufficient interval condition for satisfying (24an be formulated as

ZCCirmaX'M/ ‘Wo"zs I S\/Cime:lx;’:z"WOHHW_WOH 37)
1 1

Observe that there is at least one way of selecting the deairgmeters to satisfy (37): by selecting a conservative
[Wo| - (large enough) and, in the sequence, by adjugtvg W, | (small enough).

Remark 7: Although the ultimate bound for the residual state ecesr be controlled to be asymptotically null by
choosing appropriately some design parametergj,aandB, it may be nontrivial to control the transient penfiance,

due to the cross dependence between some design parametemyrasns(22). Then, an extensive trial and error
procedure may be needed.

5. SIMULATIONS

In this Section simulations are presented to show the appficatid the performance of the proposed method. We
select @ as being a square wave with amplitudé, Zfequency 0.25 rad/sj as a sine wave with amplitude °30

frequency 0.5 rad/sl, as a sawtooth wave with amplitude 10 N.m, frequencya@i&, 7 =0, and x(0)=[10 500]" .

The measurements BfandN are contaminated with two square waves of 1 Hz and amdestof 0.5 kPa and 10 rpm
respectively. The performance in the estimation of the wiangressure and engine speed are shown in Figures 2-3.
We can see that the simulations confirm the theoretical restsst the algorithm is stable and the residual state error
is small.
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Figure 2- Performance in the estimatiorPof
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Figure 3- Performance in the estimatiorNof

6. CONCLUSIONS

In this paper we have proposed an identification model andsaciated parameter adaptation law for identifying
the manifold and rotational constants and estimating tbedspnd manifold pressure of a 1.6 liter, 4-cilinder fuel
injected engine. It was proved, by using Lyapunov argumamdisan adaptive bounding technique, that the entire
identification process is stable, ensuring both the estimatitimn bounded errors of the engine parameters and the
convergence of the speed and manifold pressure estimatiaheitotrue values. Further results aiming adaptive
observation and control are under investigation and will ipeidpnely reported.
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