
Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF

A HIGH PERFORMANCE IMPLEMENTATION OF THE DISCRETE
ELEMENT METHOD USING MPI

Maria Cecília Rodrigues Sena, mariacecilia@lccv.ufal.br
Eduardo Setton Sampaio da Silveira, eduardosetton@lccv.ufal.br
Laboratory of Scientific Computing and Visualization – LCCV
Center of Technology – CTEC
Federal University of Alagoas – UFAL
Campus A. C. Simões – Tabuleiro do Martins – CEP: 57.072–970 – Maceio – Alagoas – Brazil

Abstract. The Discrete Element Method has been used a lot to simulate the mechanical behavior of discontinuous
bodies. A huge problem associated with its application is the high computational cost to simulate it, because it’s
necessary to discretize the domain in a huge number of particles, which can make the method impracticable in some
applications. In this context, this paper presents a proposal and the computational implementation of a parallel
simulator by using the C++ programming language and the MPI message exchanging library. This paper shows: a
summarized description about the theme, the followed methodology, some aspects about the implementation and the
results achieved.

Keywords: Discrete Element Method, High Performance Computing, Clusters, MPI.

1. INTRODUCTION

The Discrete Element Method (DEM) is a computational technique that simulates, mainly, the mechanical behavior
of discontinuous bodies on the Granular Scale. Modeling it, the Macroscopic Scale answers result from the mechanic
mechanism interaction among the elements that constitutes the studied system (Cundall, 1979). Therefore, the DEM
constitutes a good research tool for the behavior study of these domains in many areas of knowledge. In Engineering,
the method is applied in the simulation of granular material draining, in the modeling of soil and rocks, in fluid
problems, among other applications.

In a simulation using the Discrete Element Method, the analyzed domain is subdivided into a set of particles, which
constitutes the basic unit of analysis. This way, it’s extremely necessary to subdivide the studied domain into a great
number of particles, so it can be represented by the DEM in a satisfactory way, making the DEM simulations extremely
slow. Besides that, the number of particles to be used in a simulation is limited by the memory available in the machine
where the application is being executed. With this, the use of high performance computing appears as an interesting
alternative that can solve the computational performance and the required memory problems which uses the DEM. The
use of computer clusters has grown a lot in recent years as a low cost alternative for the solution of applications that
require a high computational demand, because of a great reduction at the time of simulation and a bigger memory space
for the storage of information can be obtained by using many processors and memory with low cost.

In this context, this paper presents a proposal and an implementation of a C++ object oriented simulator in an
parallel computing environment, using the message passing library MPI (Message Passing Interface), just like some
advantages achieved with the implementation presented in this paper.

2. THE DISCRETE ELEMENT METHOD

The Discrete Element Method consists in the representation of a domain, continuous or discontinuous, by an

extremely great number of individual particles, in which the behavior of the system is determined by the movement and
interaction of these particles.

Normally, these applications involve materials with inherently discrete characteristics, such as granular materials
found in structural engineering problems and geomechanics. However, the use of DEM for the simulation of continuous
bodies and fluids has been growing in a significant way.

The analyzed domain is subdivided in a series of particles with particular mechanical properties and defined
geometries. After the understanding of these properties and the interaction behavior among the particles, the DEM
allows the physical and mechanical behavior of the studied model to be evaluated in a macroscopic way.

Initially, the DEM was conceived as a numerical model capable to describe the mechanical behavior of a set of
particles like disk or sphere shapes (Cundall, 1979). Currently the method is also applied for particles of many shapes
and, even so, agglomerated of particles.

In the DEM, the studied domain is evaluated at each time step required by the time integration algorithm. In a
general way, the method formulation consists on the application of the Newton’s second Law, getting the acceleration
of each particle from the forces that act in the same one, proceeding from the external domain and the interaction
between them. By the integrations, it is possible to obtain the velocities and displacements from the acceleration.

Besides this, Force-Displacement Laws are also applied on the contacts, which calculate the forces in the same
ones due to the relative displacements between particles.

To quantify the interaction forces between the pairs of particles, some techniques are used to allow an optimized
search of contacts. These techniques must be developed in a robust and efficient way (Munjiza, 2004), so that all the
contacts can be found without a high computational cost.

In the Figure 1 is presented a summarized project of the main calculation stages of the Discrete Element Method.

 Figure 1. Algorithm for the Discrete Element Method

3. PARALLEL PROCESSING

The increasing number of computational systems that have been developed to solve Engineering problems has
demanded the use of faster processors and a great capacity of computer memory. However, the required processing
speed hardly can be reached with the conventional processors, with the use of only one processor and with the amount
of memory available in a single machine. Generally, these simulations involve the processing of an enormous quantity
of data and execute a great number of iterations. The parallel computing many times makes available some of these
applications, reducing the computational time of the simulation.

Generally, two types of parallel architectures are used: machines with shared memory and machines with
distributed memory. In the first type, the processors operate independently, but they share the resource of only one
memory. In the second type, each processor has its own memory and the data are shared through the network, using a
mechanism of message exchange (Message Passing). Currently, the distributed memory architecture has been used
more in the industries and scientific communities, in virtue of the low cost of clusters of computers that use this type of
architecture.

The MPI (Message Passing Interface) has become a standard when the mechanism of message exchange is used for
parallel environments, especially those ones with distributed memory. In this model, generally, the execution of an
application consists on the execution of many processes that communicate with each other through the library’s routines
that manage the sending and receiving messages process among the processes.

The performance of a parallel program is analyzed by a series of metric, such as speed-up and efficiency. Speed-up
is a measurement that indicates the relative benefit when a parallel program is executed and is defined as the ratio
between the wasted time in solving a problem with only one processor (T) and the required time to solve the same
problem in p processes (TP).

Speed-up =
Tp
T

 (1)

Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF

Efficiency (η) is defined as the ratio between speed-up and the number of processes (Np), corresponding to the
measurement of the total execution time fraction that each process consumes to execute the application.

 η=
Np

Speedup (2)

4. COMPUTATIONAL IMPLEMENTATION

3.1. Demoop

The computational implementation taken as the basis for the development of this application was the Demoop
program (Discrete Element Method Object Oriented Programming) (Carvalho Jr. et al, 2005). This system is divided
into three distinct parts which are responsible for the phases of pre-processing, processing and visualization, which
offers some advantages related to the relationship between the system and the users or programmers.

In the processing stage, the solution algorithm used in the Demoop shows a repetition routine of processes which
includes the checking of contacts between particles; the determination of the forces acting on particles, which are
provoked by the contacts with the other particles and by the external actions; and the calculation of the internal forces
from the linking elements (Carvalho Jr. et al, 2005).

The Demoop was written with the use of the C++ programming language. This choice is based on the presumption
that the program code can receive future implementations and it can easily be expanded, not requiring significant
changes in the content.

In the Figure 2 is shown the classes diagram of the Demoop application, emphasizing, among themselves, the
Demoop class, which is responsible for transforming the analysis information supplied by the Input file into a numeric
model; Model class, which characterizes the numeric model during all the analysis process; TimeIntegration class,
which is responsible for the numeric integration process; ContactSearch class, which is responsible for the checking of
contacts between particles of the analyzed domain; and Particle class, which is responsible for the representation of the
discontinuous body, by the establishment of a formal definition for the entities on which the DEM operates.

Figure 2. Demoop Classes Diagram

3.2. Parallel-Demoop

For the parallel implementation of the Discrete Element Method (P-Demoop) it was used the C++ programming
language, the 7.1.2 LAN/MPI distribution and compiler MPIC++.

In the parallel version, an additional class was created (cMPI), responsible for the sending and receiving of data and
for the information related to the parallel processing. The cMPI class has as its attributes the identification of each
process and the total number of processes. It has also methods that control the sending and receiving of messages in the

Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF

various stages of the simulation. The parallel implementation uses the master-slave mechanism, in which the process
master is responsible for the initial tasks of the application and for the distribution of some information to the slave
processes. The parallel algorithm was developed through the decomposition of the domain in n-1 sub-domains, where n
is the number of processes (Figure 3).

Figure 3. Domain decomposition among the processes

After the reading of the Input data, each process essentially executes the same tasks that the sequential algorithm

does, however only on the particles that are found in the region of its sub-domain. To print the results at each step of
impression, each process creates an Output archive and writes the positions of the particles that are in its domain.

When a particle leaves the region associated to a process and enters in another sub-domain controlled by another
process, the information of this particle (position, velocities, acceleration and force) are sent from a process to another,
by the MPI basic functions of sending and receiving messages (MPI_Send and MPI_Recv). From then on, the data of

this particle are updated and it starts to be treated by the process in which it just entered.
The particles that are found in the contour of the domain of each process can be in contact with particles of the same

process just as with particles from the neighboring process. However, in accordance with the scheme of the domain
division presented, each process would possess the information of the particles that are in its domain, leaving, this way,
to compute the contacts between particles of different processes. To solve this problem, each process sends to the
neighboring process on its right side the particles that are in the right contour of the subdivision (particles that are in the
colored bands in Figure 3). Then, the process that receives these particles, checks the contacts between them and the
other particles of its domain, calculates the corresponding forces, in the case of having contacts, and it sends them to the
neighboring process on its left side.

4. RESULTS

The Cluster of The Laboratory of Scientific Computing and Visualization of The Federal University of Alagoas

(Figure 4) was used to evaluate the parallel program performance. This Cluster has 44 nodes, based on shared memory
architecture and with the following configuration: Core 2 Duo, 1GB of Ram, HD 80GB, Linux Operational System,
Fedora distribution. The Cluster nodes are connected by a Gigabit Ethernet.

Figura 4. Cluster of the Laboratory of Scientific Computing and Visualization

This section presents the results obtained with the simulation of mechanical behavior of the soil-duct system
submitted to a service load (q) and the covering layers weight, as can be seen on the idealized model of the figure 5. The
soil was discretized in 5000 and 10000 circular particles and the total simulation time was 2 seconds, with time step of
0.0002 seconds.

Figure 5. System soil-duct model

The analyzed examples were generated by the pre-processor Pre-Demoop (Cavalcante et al, 2006) and the results of
the simulations can be visualized on the pos-processor DemoopView (Amorim et al, 2006).

Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF

Time = 0.0 seconds

Time = 0.5 seconds

Time = 1.25 seconds

Time = 2.0 seconds

Figure 6. The soil-duct system simulation

The mechanical properties of the contacts among particles used in the soil-duct modeling, such as: normal stiffness

(kn), tangential stiffness (kT), normal viscous damping (cn), tangential viscous damping (cT) and attrition coefficient (μ),
are all described in Table 1.

Table 1. Mechanical properties of the discrete elements

Meio kn - (kN/m) cn- (kN.s/m) kt – (kN/m) cT – (kN.s/m) µ
Duto 65,00 0,75 0,09 0,11 0.6
Solo 55,00 0,65 0,07 0,09 0.5

The execution time of the applications on the serial program and on the parallel program with p processors are

shown on the Table 2 and on the Figure 7.

Table 2. Tempo de processamento em segundos para n particulas e p processadores.

 p = 1 p = 5 p = 10 p =15 p = 20 p = 25 p = 30 p = 35
n = 5000 286,00 73,97 47,00 40,00 36,00 34,00 35,20 33,70

n = 10 000 677 129,80 70,60 55,80 47,50 43,90 42,80 41,70

Figure 7 . Processing Time versus number of particles for 10 seconds of simulation

Analyzing the Table 2 and the Figure 7, it can be observed how much the execution time is reduced when the
simulation is executed on the parallel version. The greater is the number of particles, greater will be the time reduction.
It is related with the high processing load that is executed in only one processor, when the serial program is being used.
However, when the number of process reaches a limit, the processing time starts to grow because of the increase on the
data traffic through the net.

In order to have a better idea of the parallel code performance, the table 3 shows the speed-up values obtained with
the simulations.

Table 3. Speed-up for n particles e p processors

 P = 5 p = 10 p =15 p = 20 p = 25 p = 30 p = 35
n = 5000 3,87 6,09 7,15 7,94 8,41 8,69

n = 10 000 5,22 9,59 12,13 14,25 15,42 15,82 16,24

The speed-up graphs are shown on the Figure 8.

Figure 8. Speed-up versus number of particles for 2 seconds of simulation.

For the analyzed example, the greater is the number of particles, the better is the parallel processing performance, as
can be observed on the speed-up graphs of the Figure 8. This computational profit is due to the fact that how much
bigger the number of particles is, greater are the tasks that each process has to do, what compensate the time that is
spent on the traffic of information among the processes through the network. Another point that can be observed from
the graphs on Figure 8 is that when the number of processes increases, the value of speed-up grows until reaching a
maximum value and later it becomes to decrease. The bigger is the number of processes, the smaller are the tasks that
each process will do and greater is the traffic in the network, since more processes will join this communication.
Therefore, there is a moment where the profit time with the parallel processing is not enough to compensate the spent
time on the data transmission among the processes.

Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF

Figure 9. Efficiency versus number of particles for 10 seconds of simulation

The parallel processing efficiency (Figure 9) grows when the particle number becomes bigger, what was expected,
since the speed-up also grows in this exactly direction. Analyzing the graphs, it is observed that when the number of
processes increases, the algorithm efficiency decreases, showing that when speed-up is growing, this growth is given in
a lesser ratio than the growth of the number of processes.

When the serial code performance is analyzed, it can be observed that 75% of the simulation time is spent in the
search of contacts between the particles (Table 4), since this stage of the processing can have operations proportional to
N², where N is the number of discrete elements.

Table 4. Time Percentage spent on the simulation stages

Function Time (%)

Contact Search 75,0
Numeric integration 9,0

Forces Update 9,0
Accelerations Update 2,0

Positions Update 2,0
Velocities Update 1,0

In the parallel code, as the particles are distributed among the processes, the number of contacts to be checked

can be reduced to the ratio of ()2/ NpN , where Np is the number of processes. However, the greater is the number of
process, the bigger is the communication time between them. The Figure 10 shows the time percentage that is spends in
the search of contacts and in the communication among the processes for the 5000 particles case.

Figure 10. Time spent in Communication and Contact search.

7. CONCLUSIONS

The achieved results show a significant reduction on the execution time when the parallel implementation developed
in this work is used, in comparison with the same code on its sequential version. The maximum speed-up obtained was
about 16 and happened for the example in which the domain was subdivided in 10.000 particles. Although, speed-up’s
even greater can be obtained if problems with a bigger number of particles were simulated, because in this case the time
spent in communication would be compensated by the division of a huge amount of data among the processes.

As can be observed on the graph of the Figure 10, when the number of processes increases, there is a reduction on
the time of contact search, which consists on the most delayed stage of the simulation. On the other hand, the
information traffic on the network increases, raising, this way, the communication time. There is a moment when the
increase on the communication time doesn’t compesate the processing reduction time and the speed-up starts to decline.

This Application is still being developed and some aspects that can improve even more the speed-up are being
investigated. Examples with more discrete elements, such as one with one million particles, are also being evaluated.

Besides this, tests with this application are being done using effectivaly the two nucleos of the Core 2 Duo processor
and using a machine with many processors and shared memory archteture.

6. REFERENCES

Cundall, P. A. and Strack, O. D. L., 1979, “A discrete numerical model for granular assemblies”, Geotechnique 29, No.

1, 47-65.
Munjiza, 2004, “The Combined Finite-Discrete Element Method”, John Wiley & Sons, Ltd, England.
Carvalho Jr.H. and Cintra, D.T., 2005, “Desenvolvimento de ferramentas de análise e visualização do método dos

elementos discretos e suas aplicações na engenharia”, Civil Engineering Course, Federal University of Alagoas.
Carvalho Jr.H., Cintra, D.T., and Silveira, E. S. S., 2006, “Desenvolvimento de um sistema orientado a objetos para

análise através do Método dos Elementos Discretos”, XXVII Iberian Latin American Congress on Computational
Methods in Engineering, Belém, PA, Brazil.

Karniadakis, G. E. and Kirby II, R. M., 2003, “Parallel Scientific Computing in C++ and MPI”, Cambridge University
Press, USA.

Stephany, S., Preto, A. J., Granato E. and Ribeiro, J. A. J., “A Parallel Implementation for a drive molecular dynamics
algorithm”, INPE, São José dos Campos, SP, Brazil.

Cleary, P. W., Sawley, M. L., 2002, “DEM modelling of industrial granular flows: 3D case studies and the effect of
particle shape on hopper discharge”, Applied Mathematical Modelling 26, pp.89–111.

Cavalcante, R. B. L., Silveira, E. S. S. da, Lages, E. N. and Lira, W. W. M., 2006, “Um gerador de Elementos
Discretos baseado em uma triangulação de domínio”, XXVII Iberian Latin American Congress on Computational
Methods in Engineering, Belém, PA, Brazil.

Amorim, J. A. de, Cintra, D. T. and Lira, W. W. M., 2006, “Uma interface gráfica-interativa para visualização
dinâmica do Método dos Elementos Discretos”, XXVII Iberian Latin American Congress on Computational
Methods in Engineering, Belém, PA, Brazil.

7. RESPONSIBILITY NOTICE

The authors are the only responsible for the printed material included in this paper.

