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Abstract. In recent years surrogate based otimization (SBO) has been extensively employed for practical engineering 
design mainly  to overcome the drawbacks of  the computational cost required for multiple numerical simulations.  In 
this work a physical based surrogate is proposed for optimum design of space truss. To improve convergence 
corrections to the proposed model are applied. Different forms to represent the corrections are used. Global and local 
approximations are constructed. A sizing structural otimization (SSO) framework considering a SBO algorithm with 
different surrogate correction approaches are implemented. The performance of implemented tools are investigated. 
 
Keywords: Correction, Approximation, Optimization 

 
1. INTRODUCTION 
 

Optimization techniques have been extensively used to obtain economical and reliable structural designs. To apply 
such techniques to real engineering problems could be an issue as the computational cost required for multiple 
numerical simulations could be, in certain cases, prohibitive. In the last decade, approximation concepts (Haftka et al, 
2004) started to be more extensively applied in optimization procedures as a strategy to overcome such drawback. The 
approximations methodologies can be divided into two types: functional and physical (Haftka et al, 2004). While in the 
first an alternate and explicit expression is sought for the objective function and/or the constraints of the problem, the 
focus of the second is on replacing the original problem by one which is approximately equivalent but which is easier to 
be solve. The later captures the behavior of the high fidelity model in global scale with reduced computational cost but 
with lower fidelity (e.q. simplified physics, coarser discretization, looser stopping criteria). 

In the present work, a classical model used in the past mainly for behavior prediction and still extensively used 
today by practical engineers in a predesign stage, is investigated for use as a physical surrogate in sensitivity analysis 
and optimization of large space truss structures. The structural compliance is the objective function to be considered. 
The design variables are the cross sectional areas which are grouped for different regions. The initial total volume is 
kept as a constant. 

For the problem described above a grid analogy is used in substitution to the real truss and correction models are 
used to approximate the difference between the real (truss) and approximate (grid) FE model. Additive and 
multiplicative are the corrections forms to be investigated. Global and local approaches are considered.  

The surrogate model proposed will be used to perform both global and local type of approximation. In the later the 
approximation of the correction can be constructed using data fitting schemes or Taylor series expansion and it will 
require a globalization scheme to ensure convergence. To accomplish that an interactive procedure, such as sequential 
approximated optimization (SAO) (Guinta, 2002), (Afonso, et al., 2005), in which the results of high and low-fidelity 
analysis have to be checked periodically in the course of the optimization process is implemented. A trust region based 
method (Guinta, 2002), (Afonso, et al., 2005), (Alexandrov, et al., 1997) is used to update the design variable space for 
each subproblem (SAO iteration). In this process different levels of consistency between the surrogate and the high-
fidelity model are imposed. 

A sizing structural optimization which integrates geometric definition, structural analysis, sensitivity analysis and 
mathematical programming algorithms considering the surrogate models mentioned above is implemented. The 
sequential quadratic programming algorithm (SQP) (Powell, 1978) is the optimizer of choice. A classical 3D truss 
example will be studied and comparisons between the different approaches will be conducted. 
 
 
 
 
 
 
 



2. PROBLEM DESCRIPTION 
 
2.1. High-fidelity model – Space Truss ( hif ) 
 

Consider the structure shown in Figure 1 which is a two-layer space truss with rectangular mesh in both planes, with 
any node of one plane connected by web members to four adjacent nodes of the other plane. The structural compliance 
(to be approximated) is given by 
 

Fxuf t
hi )(= , (1) 

 
where )(xu  are the displacements, F  is the vector of applied loads and x  defines the areas of top, and bottom chords 
as well diagonal members.  

This sort of structures involves three-dimensional arrangements of thousands of bars and a large number of degrees 
of freedom. Direct use of 3D frame analysis for functions/derivatives evaluations may result in a lengthy optimization 
process. This aspect motivated the study of approximation techniques to shorten the computational times. This is 
discussed the next few sections. 
 

 
 

Figure 1. Brasília exhibition center, Brasília, Brazil. 
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Figure 2. 3D Truss structure. 
 
 



Proceedings of COBEM 2007  19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM  November 5-9, 2007, Brasília, DF 
2.2. Low-fidelity model – Grid analogy ( gf ) 
 

For the problem shown in Figure 2, it has been shown that (Flower and Schmidt, 1971) in the interior of the truss the 
vertical deflection, w  satisfies: 
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when mesh size goes to zero. This is the differential equation of a plate with zero torsional rigidity. Flexural rigidities 

xD  and yD  are derived from chord areas considered smeared over grid spacing in the plane of upper and lower chords. 
Assuming different sizes for top and bottom chords one gets: 
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where: d  = depth of truss; xa , ya  = chord member spacing in x  and y  directions; xx bt A,A  = cross sectional areas of 
top and bottom chord members in x  direction; yy bt A,A  = cross sectional areas of top and bottom chord members in y  
direction (see Figure 2).  

Numerical experiments show reasonable agreement of equivalent plate solutions in the case of simple supports on 
four sides.  

It has been shown by Renton (1966) that as grid spacing becomes smaller the behavior of beam grillages can be 
described by the following differential equation: 
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where: xEI  and  xGJ  = flexural and torsional rigidities of beams of span xb  in x  direction; yEI  and yGJ  = flexural 
and torsional rigidities of beams of span yb  in y  direction; W  = total load over area yxbb  (see Fig. 3). Comparing 
Eq. (2) and (5) it can be seen that a reasonable physical model for a space truss is a grillage whose members have the 
follow properties: 
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Figure 3. Equivalent grid model. 



3. MODEL CORRECTIONS 
 

Correction models are proposed to be constructed to ensure matching between the fidelity models. In this work 
additive and multiplicative correction approaches will be considered. Any of these models can employ Taylor series 
functions or data fitting polynomials. The surrogate models employed in this work considering both forms of 
corrections with its respectively gradients are written as follows 
 

)()()(ˆ xxfxf ag δ+= , )()()(ˆ xxfxf ag δ∇+∇=∇  (7) 
 

)()()(ˆ xxfxf mg δ= , )()()()()(ˆ xxfxfxxf mggm δδ ∇+∇=∇  (8) 
 
in which )(xfg  is the function calculated from grillage analysis, )(xaδ  is the additive applied correction and )(xmδ  is 
the multiplicative applied correction. Both forms are evaluated using one of the schemes presented below. 
 
3.1. Data fit based corrections 
 

Data fit type approximations typically involve interpolation or regression (polynomial) of a set of data generated 
from the true model. Interpolation models commonly used as approximation forms are based on techniques known as 
kriging, a well-known tool in the field of statistics and geostatistics. The main advantage of data fit schemes is that there 
is no need to compute sensitivities for the high-fidelity model. So for complex problems involving high simulation cost 
and noisy functions this will be an appropriate choice. 

In the present work this strategy will combine high-fidelity (space truss) and low-fidelity (grid) analysis to construct 
the correction approximated terms of Eqs. (7) and (8).  

The sampling considered in this work can be generated considering two classical DOE techniques that are the 
Rectangular Grid (deterministic) and Latin Hypercube (stochastic) (Guinta and Watson, 1998). 
 
3.1.1. Response surface correction 
 

For general purpose applications, this scheme is suitable to build local approximations only. For an input vector x  
the approximated correction term of Eqs. (7) and (8) will be a regression model such as 
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in which the regression model involves a function )(xN  with p  chosen terms such as 
 

[ ])()()( 1 xNxNxN pK= , (10) 
 
and the unknown coefficients β . 

Coefficients Prediction 
Considering a sampling with m  design points [ ]mxxS K1=  the polynomial forms of the regression terms build the 

design matrix N  given by 
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Considering )( ixδ  mi K1=  the true error in the m  samplings, the unknown coefficients are obtained using a least 

square method to solve the following equation 
 

βδ N= , (12) 
 
in which δ  is a vector of m components and N  is the regression terms computed in the samplings, pm×ℜ∈  (with 

mp < ). 
In this work, a regression model with polynomials of order two is considered. For a two design variable problem 

( )21, xx  this implies: 
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3.1.2. Kriging surface correction 
 

Kriging models [1, 3-6] differ from regression models presented before in the sense that they in general give a 
global approximation to the response and also can capture oscillatory response trends. Moreover, the sample values are 
assumed to exhibit spatial correlation with response values modeled via a Gaussian process around each sample 
location. 

The approximated form for this particular model has an additional term, a random function which in general follows 
a normal Gaussian distribution with zero mean, variance 2σ  and non-zero covariance. Under consideration of such 
approach the estimates for )(ˆ xδ  are obtained by 
 

)ˆ()(ˆ)()(ˆ 1 ββδδ N−Δ+= −Rxrxx t , (14) 
 
where β̂  is unknown, T

m ],,[ 1 δδ K=Δ i.e. the true error ( ghi ff − ) at the sampling and N  is a km×  design matrix 
defined before Eq. (11). For the particular case of ordinary kriging N  is a column vector of length m  filled with ones. 

The above equation requires calculation of the correlation vector )(xr , which correlates an untried x  and the m  
sampled data points, such as 
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The values for β̂  and estimated variance are obtained using generalized least squares as  
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and the estimate variance is given by 
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In Eq. (15) both r  and R  depend on the unknown parameter kθ . This is found using maximum likelihood 

estimation which is a m dimensional minimization problem (best guesses as described (Keane and Nair, 2005)). 
In kriging models some assessment strategies are required to check a priori if a generated model is adequate. 

Previous work from the authors (Afonso, et al., 2007) investigated the RMSE (Root Mean Square Error) and PRESS 
(Predicted Error Sum of Squares) as guidance for selecting the best model from the existing model construction 
possibilities. For the particular problem addressed here the best kriging model was found considering ordinary kriging, 

*θθ = , (obtained by maximum likelihood estimation) and LHS sampling distribution as DOE approach. Such kriging 
form is considered in the present study to build the model correction when interpolation is the choice. 
 
3.2. Taylor series based corrections 
 

These classes of functions are valid in the neighborhood or the point at which they are generated. Several orders of 
local approximations can be constructed. Linear approximation is the form used in this work. Under such consideration 
the approximated additive ( aδ̂ ) and multiplicative ( mδ̂ ) correction terms are respectively written as 
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in which 
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and 
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4. SAO SCHEME 
 

As already pointed out, SAO (Guinta and Eldred, 2000) methods are necessary when using local type of 
approximations forms. Typically, a SAO methodology decomposes the original optimization problem into a sequence 
of optimization subproblems, confined to a small subregion of the optimization design space. Surrogate functions (low-
cost) are created and used by the optimizer. In the present work, either first-order approximations or analytical functions 
built from data fit schemes over pre-selected sampling of points are used to create explicit approximations for the 
correction term and its gradients used in the proposed surrogate model Eqs. (7) and (8). The different models are here 
named for reference SAO_TS (Taylor Series), SAO_RS (Response Surface) and SAO_K (Kriging), respectively. 
 
4.1. Mathematical formulation 
 

Typically, a SAO methodology decomposes the original optimization problem into a sequence of optimization 
subproblems, confined into small subregion of optimization design space. Surrogate functions (low-cost) are created 
and used by the optimizer. A trust region based method is used to update the design variable space for each subproblem 
(SAO iteration). Mathematically each subproblem k  is defined as 
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In above equations, )(ˆ xf k  and )(ˆ xg k  are respectively the approximated (surrogate) objective and constraints 

functions, k
cx  is the center point of the trust region, kΔ  is the width of the trust region and k

lx , k
ux  are respectively the 

lower and upper bounds of the design variables for a SAO iteration k  (Eldred, et al., 2004). 
 
4.2. SAO algorithm 
 

Each subproblem described before define a SAO iteration. The total number of iteration is maxk . Each iteration 

starts with a trust region kt  of size kΔ  and an initial design kx0 . Solving Eq. (24) an approximate optimum kx*  is found. 

A comparison between the high and low fidelity response at kx*  and kx0  dictates the next center point cx  and the next 
trust region size Δ  of iteration 1k+ . The consistency requirements are imposed before starting iteration 1k+ . This 
process continues until convergence is reached. In short, the main steps involved in the computations are: 

1. Compute the expensive and/or nonsmooth objective function and constraints at the central point in the subregion, 
2. Construct surrogate model in the subregion, 
3. Optimize within the subregion using the surrogate objective function and constraints, 
4. Compute the true objective function and constraints at the optimum identified in Step 3, 
5. Check for convergence, 
6. Move/shrink/expand the subregion according to the accuracy of the approximated model compared to the true 

function and constraint values 
7. Impose local consistency, and 
8. Check for overall optimization convergence. If it is achieved stop the SAO procedure; otherwise return to Step 3. 

 
4.3. Trust Region Update Scheme 
 

To update the trust region size kΔ  for each optimization subproblem we considered the approach described in 
reference (Eldred, et al., 2004). A parameter kρ  controls the trust region size. This parameter measures the accuracy of 

the surrogate function at kx*  and is calculated as 
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The next trust region size is updated as follows: 
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The next iterate 1+k

cx  is obtained according to 
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In which hihi gf   ,  are the high fidelity objective and constraints functions. 

 
4.4. Consistency requirement 
 

In this work C0 and C1 local consistency are imposed in our surrogate models. For data fit schemes, SAO_RS and 
SAO_K, only zeroth order consistency is enforced. Zeroth and first-order consistency at cxx =  

( ( ) ( ) ( ) ( )chicchic xfxfxfxf ∇=∇= ˆ  ,ˆ , respectively) can be demonstrated for additive corrections by substituting Eqs. (20) 
and (21) into Eq. (18), substituting resulting expressions into Eq. (7), ant then evaluating at cxx = . Similarly, 
consistency for multiplicative corrections can be demonstrated by substituting Eqs. (22) and (23) into Eq. (19), 
substituting resulting into Eq. (8), and then evaluating at cxx = . 
 
4.5. Convergence Criteria 
 

Prior to carry out to the next iterate the SAO procedure checks if the design has converged to a stationary solution. 
In this situation the following convergence condition have to be met: 

• A better design can not be found for the last specified number of iterations (3). 
• The design shows minor improvements for the last iteration. This is measured if the following condition is met: 
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5. EXAMPLES 
 

A space truss with geometry shown in Figure 2, is considered to analyze the approximation strategies presented 
here. The number of meshes is 16 in both directions. Cross-section of bottom chord and diagonal bars are 75% of those 
of the top chord. This models the fact that bars in compression tend to be heavier than those in tension. Two design 
variables ( 21, xx ), are considered for optimization. Cross-section of bars are linked to those as shown in Figure 4. 
Vertical displacement of nodes in the four sides is set to zero. Enough degree of freedom are additionally constrained to 
eliminate rigid body motions. A distributed load of 80 kN/m2 is acting on the structure and is applied as concentrated 
forces at nodes of top chord. The objective is to minimize compliance subjected to volume corresponding to initial 
design 9973.31 =x ; 9973.32 =x  cm2. Side constraints imposed are 15,2 21 ≤≤ xx . The grillage model considered is 
illustrated in Figure 5 where the linkage of the design variables is highlighted. The strategies used to obtain optima are 



show in Table 1. The global data fitting models employs 25 sampling obtaining by LHS distribution. The time required 
to obtain the high-fidelity functions at the samplings are 20.77 seconds. 

Local data fitting strategies consider six samplings for each SAO iteration confined to the trust region of the 
particular subproblem. The initial trust region size was 10% of the space design domain. 
 

  
  

Figure 4. Space truss analyzed: Linkage of the design 
variables 

Figure 5. Equivalent grid analyzed: Linkage of design 
variable 

 
Table 1. Optimization strategies considered 

 
Strategy Description 
High-fidelity Full 3D Truss model 
  

Global  
Grid Grid analogy without correction 
Grid_K_A Grid analogy with additive kriging correction 
Grid_K_M Grid analogy with multiplicative kriging correction 
  

Local  
SAO_TS_A Grid analogy with additive Taylor series C1 consistency 
SAO_TS_M Grid analogy with multiplicative Taylor series C1 consistency 
SAO_K_A Grid analogy with additive kriging correction 
SAO_K_M Grid analogy with multiplicative kriging correction 
SAO_RS_A Grid analogy with additive quadratic response surface correction 
SAO_RS_M Grid analogy with multiplicative quadratic response surface correction 

 
For the study conducted here, the main observations can be made (see Tab. 2): 
• All strategies save CPU time with respect to full high-fidelity optimization except for local strategy with data 

fit. 
• Physical surrogate by itself is capable of producing a good solution with 6.3% error on the objective function. 

However the observed error on 2x  is 18.8%. Note that Kriging correction improved substantially the solution. 
• C1 consistency of SAO_TS strategies produces the best approximation models. The difference between additive 

and multiplicative correction alternatives is minor. It is important to emphasize that only four high-fidelity 
function and gradient evaluations were required for convergence. The maximum error found in the solution is 
0.25% in variable 2x . 

• Data fitting local corrections resulted in higher computational times, but it is an adequate choice in case 
gradient are not readily available or the function exhibits numerical noise. 

• Kriging is the technique of choice for global approximation in engineering problems in general (Guinta and 
Watson, 1998). It also outperformed quadratic response surface data fitting for local approximation. 

 
Figures 6 and 7 illustrate the high-fidelity (3D FE Truss) surface and its contour plot over the design domain 

15,2 21 ≤≤ xx . The global Grid_K_M surface and contour are respectively shown in Figs. 8 and 9. As observed the 
approximated model reproduces very well the general trends of the high-fidelity model. 

1x

21, xx

2x

1x

275.0 x
2x

175.0 x
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Figure 10, illustrates the evolution of the SAO trust region based scheme for the best local model constructed 
(SAO_TS_A). The sequence of solutions (dots in the figure) towards the true optimum solution (x symbol) in only four 
SAO iterations can be perceived.  
 

Table 2. Optimization results 
 

x1 x2 Compliance Time Method 
(cm2) error (cm2) error (kN.cm) error HF-eval (s) 

High-fidelity 3.4142 - 11.3833 - 850.0917 - 7 23.73 
         

GLOBAL         
Grid 3.2452 4.95% 13.5235 18.80% 796.6321 6.29% - 1.70 
Grid_K_A 3.4301 0.47% 11.1823 1.77% 841.8784 0.97% 25 21.94 
Grid_K_M 3.4227 0.25% 11.2749 0.95% 848.0865 0.24% 25 21.92 
         

LOCAL         
SAO_Grid 3.2474 4.89% 13.4963 18.56% 796.6380 6.29% - 1.81 
SAO_TS_A 3.4165 0.07% 11.3545 0.25% 850.1105 0.00% 4 14.66 
SAO_TS_M 3.4168 0.08% 11.3501 0.29% 850.1102 0.00% 4 13.72 
SAO_K_A 3.4020 0.36% 11.5382 1.36% 850.1030 0.00% 5x6 29.24 
SAO_K_M 3.4484 1.00% 10.9504 3.80% 850.4689 0.04% 5x6 29.83 
SAO_RS_A 3.4808 1.95% 10.5401 7.41% 859.7370 1.13% 7x6 40.89 
SAO_RS_M 3.4549 1.19% 10.8670 4.54% 847.1564 0.35% 6x6 34.82 
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Figure 6. 3D FE truss surface Figure 7. 3D FE truss contour 
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Figure 8. Grid_K_M surface Figure 9. Grid_K_M contour 
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Figure 10. SAO_TS_A evolution over the 3D FE truss contour 
 
6. CONCLUSIONS 
 

Different correction schemes were implemented and tested to be used with a physical model as a surrogate of a 
classical 3D truss problem. 

Due to the quality of the proposed physical model (grid analogy) all approximated models with corrections converge 
to the true solution. 

When derivatives are available and unimodal functions (as in the presented case) are involved local TS based 
corrections are recommended to be used as very few high-fidelity functions evaluations (and its gradients) will be 
required for convergence. 

In the opposite case, when gradients are unavailable or expensive to be obtained and/or noisy functions are involved 
or when a physical model of good quality is not available local approximations models considering kriging techniques 
should be the strategy of choice. 
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