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Abstract. This work proposes a constitutive model and a numerical scheme, based on the element free Galerkin 
method,  for the simulation of the finite deformation of polimeric foams. The deformation process is subjected to a 
unilateral contact with friction condition. The proposed model assumes a multiplicative decomposition of the 
deformation gradient into an elastic and a plastic part, which incorporates a nonlinear hardening behaviour. The 
constitutive model is written in terms of the logarithm strain and rotated Kirchhoff stress measures. A total Lagrangian 
formulation of the problem is considered in order to improve the computational performance of the proposed algoritm. 
The imposition of the essential boundary condition and also of the unilateral contact with friction condition are made 
by the application of the Agmented Lagrangian method. Some numerical results are presented; under axisymmetric 
and plane strain conditions, in order to attest the performance of the proposed numerical scheme. 
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1. INTRODUCTION  
 

The polymeric foams are more and more used in industry and in domestic applications. Made of a skeleton of more 
or less regular open or closed cells, here cells are the basic unit of these materials; they have a high energy absorption 
capacity, particularly useful for shock applications, acoustic and thermal insulating properties, and in some cases, for 
filtering applications. For these reasons, they are widely used in aircraft and automotive industry, buildings and 
packaging. Combining good mechanical properties with a low density, rigid polymer foams can also be used as 
structural materials. Whatever their use, their optimization needs the understanding of their microstructure/macroscopic 
mechanical property relationships. Indeed, the mechanical response of these materials depends on their architecture, and 
on the intrinsic properties of the polymer in the cell wall. The architecture is determined by the cell wall thickness, the 
size distribution and the cells shape. A typical polymeric foam material is illustrated in Fig. 1 

 

 
Figure 1. Typical polymeric foam with open cells 

 
Theoretical studies on foam have mainly addressed the behavior of low density foams. The structures of these foams 

are simulated by a compact assembly of walls and struts. All these models can be divided into two groups: complex 
modeling approaches based on finite element method which try to describe as finely as possible the foam 
microstructure; or simpler and more numerous models which largely simplify this microstructure such as Gibson and 



Ashaby (1997) and Landro et al.(2001). These models are based on the assembly of geometric symmetric cells and 
relate analytically the elastic material properties and yield stress to the foam relative density. In the case of very high 
density foams, made of spherical cells that are closed and isolated ones from the others, the materials can be considered 
as porous.  

The useful properties of cellular solids depend on the material from which they are made, their relative density, and 
their internal geometrical structure. It is important to link the physical properties of cellular solids to their density and 
complex microstructure, in order to understand how such properties can be optimized for a given application. Thus, for 
this class of material we consider an elasto-plastic model that incorporates a hyperelastic constitutive relation which 
depends on the relative density of the material. This dependence is justified for foam structures that experience a large 
volumetric reduction in a usual compressive process, as show in Roberts and Garboczi (2001, 2002). The plastic phase 
is described by a modified J2 model that accounts for the influence of the hydrostatic compression and considers a 
volumetric and uniaxial compression hardening law.  

The adopted formulation considers: a total Lagrangian description of the finite deformation problem; a 
multiplicative decomposition of the deformation gradient, into a plastic and an elastic part; and a constitutive 
formulation, given in terms of the logarithmic deformation measure, or Hencky measure, and the rotated Kirchhoff 
stress. 
 
2. THEORETICAL DEVELOPMENT 
 

Here, we consider a rate-independent plasticity model for the simulation of isotropic polymeric foam materials. Due 
to experimental observation, a volumetric and a uni-axial compression hardening law is accounted by the model, which 
also incorporates a different response in compression and tension. In compression the ability of the material to deform 
volumetrically is enhanced by cell wall buckling processes as described by Gibson & Ashby (1997). It is assumed that 
the foam cell deformation is not recoverable instantaneously and can, thus, be idealized as being plastic for short 
duration events. In tension, on the other hand, cell walls break readily; and as a result the tensile load bearing capacity 
of crushable foams may be considerably smaller than its compressive load bearing capacity. The hardening laws 
considered by the proposed model assume the evolution of the yield surface is controlled by the volumetric plastic 
strain experienced by the material. 
 
2.1. Multiplicative decomposition of the deformation gradient 
 

Here, we assume the deformation gradient F to be decomposed into an elastic deformation, Fe, and a plastic 
deformation, Fp,  as follows 
 
 e p= F FF  (1) 
 with 
 ( ), t= ∇F X Xϕ , (2) 
 
in which ( ), tx X= ϕ  denotes the deformation function. At this point, we define the deformation measure to be the 

logarithmic or Hencky strain tensor, given by ( )lne e=E U , where e e e=F R U . The conjugate stress measure, for 
isotropic materials, is given by the rotated Kirchhoff stress τ , 
 
 e T e(R ) (R )τ τ= , (3) 
 
where τ  is the Kirchhoff stress, det(F)=τ σ , with σ  denoting the Cauchy stress, see Peric and Owen (1998). 
 
2.2. Definition of the yield surface 
 

In order to define the yield function, we must introduce the deviatoric rotated Kirchhoff stress, the effective rotated 
Kirchhoff stress, and the pressure stress, which are respectively as 
 

 ( )1
tr

3
Dτ τ τ= − I ,   

3
:

2
D Dq τ τ= , and  ( )1

.
3

p tr τ= −  (4) 

 
The yield function for crushable foam materials, defined in terms of the Kirchhoff stress, shown in Fig. 2, is given  
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where ( )kα α ε=  and ( )c c kp p ε=  are a function of the volumetric compacting plastic strain, 1

p

vε ε≡ ,  
 
 ( )lnp p

v Jε = −  (6) 
 where 
 ( )detp pJ F= ,  (7) 
 
and the axial plastic strain, 2

p

aε ε≡ , whose definition, in a unilateral compression test, is given by, 
 

 ln
p

p

a

o

L

L
ε = −

⎛ ⎞
⎜ ⎟
⎝ ⎠

,           (8) 

 
in which pL  is the unloaded length, after the deformation has been applied, and oL  is the length of the initial 
configuration of the reference specimen.  

Here, we consider the hydrostatic tension strength, tp , to be proportional to the compressive hydrostatic yield stress 

as t cp pζ= , where ζ  represents a constant of proportionality. In general tp  is around 5% to 10% of cp , see Hanssen 

et al. (2001) and Hallquist (1998).. Moreover, we assume the hydrostatic compression strength, cp , to evolve as a result 

of compaction (increase in density) or dilation (reduction in density) of the material, i.e. ( )p

c c vp p ε= . Also, the 

parameter α  is considered to depend on the volumetric compacting plastic strain p

vε  and also on the axial plastic strain 
p
aε  , i.e. , ( , )p p

v aα α ε ε= , given in a uniaxial state by 
 

 
( ){ }

1

221 1
3 9

y

t c y t c yp p p p

τ
α

τ τ
=

− − −
. (9) 

 
Thus, the parameters, ( )p

c vp ε  and ( , )p p

v aα ε ε , are sufficient to define the center and the lengths of the major and 
minor axes of the yield ellipse. These parameters are variables which are functions of the volumetric compacting plastic 
strain p

vε , which describes the so-called consolidation phenomenon, Zhang et al. (1998), and on the effective axial 

plastic strain p

aε . The two consolidation variables ( , )cpα  are uniquely determined by the knowledge of two 

experimental tests, given by the uniaxial and hydrostatic compression tests. Thus, ( , )cpα=F F  where α  and cp  are 
material parameters. Other yield functions have also been proposed in the literature, see Hallquist, (1998) and 
Deshpande and Flake (2000) for aluminum foams. 
 
2.3. The non-associative plastic flow potential 
 

The plastic modified strain rate for the non associative volumetric hardening model, see Fig. 1, is assumed to be  
 

 D p λ
∂

=
∂

G

τ
,            (10) 

with 
2 2 2( , )q p q pβ= +G            (11) 

 
where β  is related to the plastic Poisson's ratio pν  by 



 

 
1 23

.
12

p

p

ν
β

ν

−
=

+
 (12) 

 
complemented by postulating a null plastic spin, compatible with plastic isotropy, W 0p = . Here, λ  is the plastic 
multiplier which must satisfy the Kuhn-Tucker conditions: 0≤F , 0λ ≥ and 0λ =F� . 

The usual assumption, for polymeric foams is to consider pν = 0.0. In the absence of the knowledge of the plastic 
Poisson's ratio, the consideration of a zero plastic Poisson's ratio is a reasonable assumption, as shown in Zhang et al. 
(1998), Gibson & Ashby (1997) and Gilchrist & Mills (2001). 
 

 
Figure 2. - Yield surface and flow potential on qp −  stress space. 

 
2.4. Hyperelastic response 
 

Here, we consider the elastic response to be given, in terms of the logarithmic or Hencky strain tensor and the 
rotated Kirchhoff stress, as 
 
 ( ) eρ ∗= EDτ ,  (13) 
where 

 ( )2
( ) 2 ( ) ( ) ( )

3
Kρ µ ρ ρ µ ρ∗ ∗ ∗ ∗= + −⎛ ⎞

⎜ ⎟
⎝ ⎠

I ID I ⊗  (14) 

 
where ( )ρ ∗D  is the fourth order elasticity tensor, I  is the fourth order identity tensor, I is the second order identity 

tensor, ( )K ρ ∗  is the bulk modulus, ( )µ ρ ∗  is the Lamé's coefficient or the shear modulus and ρ∗  denoting the relative 
density, which is defined by the ratio of the foam density, ρ , by the fully compact material density, Mρ , i.e., 
 

 .
M

ρ
ρ

ρ
∗ =  (15) 

 
At this point, writing the continuity equation with relation of relative density we obtain 
 
 [ ]detoρ ρ∗ ∗= F , (16) 
 
in which ( )o oρ ρ∗ ∗= X  denotes the initial relative density, defined in the reference configuration, and ( , )tρ ρ∗ ∗= X  the 
actual relative density, defined at the reference configuration.  Now, the proposed model considers 
 
 *( ) cte.oν ρ ν= =  (17) 
and 
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 ( ) ( ) ME Eγρ ρ∗ ∗=  (18) 
 
with Mν  representing the Poisson's ratio and ME  the Young's modulus of the fully dense material. 
 
2.5. Hardening Rules 
 
 The scalar valued functions ( )p

a aH ε  and ( )p

p vH ε  are the hardening functions determined in a uniaxial and 
hydrostatic compressive tests respectively. 
 
 ( )o p

y y a aHτ τ ε= +  (19) 
and 
 ( )o p

c c p vp p H ε= +  (20) 
 
where, o

cp  is the initial yield compression stress obtained in a hydrostatic test and o

yτ  is the initial yield stress obtained 

in a uniaxial compression test. Notice that, in a general multiaxial loading we are not able to identify p

aε . Thus, the 
axial plastic strain measure must be modified in terms of a new plastic measure that is computable in a general loading 
case. Now, in a uniaxial compression test we have 
 

 
(1 2 )

p
p v

a
p

ε
ε

ν
=

−
, (21) 

 
which will be used in a general framework in order to account for the uniaxial compression hardening test. 
 
2.6. Incremental weak form of the problem 
 

Let ( ){ }1 ,   on u

i s ou W= ∈ Ω = ΓK u u u , for a sufficiently large s, denote the set of admissible displacements and 

( ){ }1 ,   on u

i s ou Wδ δ δ= ∈ Ω = ΓV u u 0  the set of admissible variations. The weak formulation of the problem may be 

stated as: Find 1n+ ∈Ku  so that ( )1 ; 0n δ δ
+

= ∀ ∈Vu u uF , i.e.,  
 

 ( ) ( ) ( )1 1 1 1 1; ,
k

t
o o o

k h h h h k

n n X o o n o n o nd d dAδ δ ρ δ δ δΩ Ω Γ+ + + + +
= ⋅∇ Ω − ⋅ Ω + ⋅ +∫ ∫ ∫

uPu u u u b u t u u uF F  (22) 

 
The imposition of the essential boundary condition is done by the application of the Augmented Lagrangian method, 

where the term associated with the imposition of the essential boundary conditions is given by 
 
 ( ) ( )1 1, , ,

u
o

k k k u

n n odδ δ
+ +Γ

= − ⋅ Γ∫ n+1

u

u uεuu u q u uλF  . (23) 

 
where uq  is given by 
 

 ( ) ( )1 1 1

1
, ,k k k k

n n n+ + +
= − + −

⎡ ⎤
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u

ε
ε
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The Lagrange multipliers are updated as 
 

 ( )1

1 1

1k k k

n n

+

+ +
= − + −

⎡ ⎤
⎢ ⎥⎣ ⎦n+1 n+1u u

uε
u uλ λ  (25) 

 



which shows that the lagrangian multiplier represents physically the traction acting at the essential boundary condition 
due to the reaction force. 
 
2.7. Discretization by the Element Free Galerkin Method 
 
Recently, a considerable attention has been given to the so-called “meshless methods”, which has been applied where 
the traditional finite element method face difficulties, such as in large deformation problems. Naturally, despite the 
advantages of these methods, some new problems have originated, such as the need to: implement appropriate 
numerical integration schemes and enforce essential boundary conditions. 

Here, we employ a conventional Gauss-Legendre integration scheme, as use in the finite element method and apply 
the Augmented Lagrangian method, for the imposition of both the unilateral contact with friction and the essential 
boundary conditions. 
 
2.7.1. Moving least square approximation 
 

The usage of the Moving Least Square Approximation enables the construction of an approximate function uh(X) 
that fits a discrete set of data {uI, I=1…n}, where: 
 
 ( ) ( )

1

nh

I II
u u

=
= Φ∑ XX  (26) 

 
 ( ) ( ) ( ) ( )1

I I

−
Φ = ⋅AX p X X b X  (27) 

 

 ( ) ( ) ( ) ( )[ ]
1

n

I I II
w

=
= − ⊗∑A X X X p X p X  (28) 

and 
 ( ) ( ) ( )I I Iw= −b pX X X X ,         (29) 

 
in which: {pj(X), j=1…m} represents the set of intrinsic base functions; ( )Iw −X X  is a weight function centered at 
XI; ΦI(X) is the derived global shape function, defined at particle XI; and A(X) is the moment matrix, see Liu (2002) 
and Belytschko et al. (1994). 
 
2.7.2. Element-free Galerkin 
 

The objective of the EFG method is to construct a set of global shape functions, ΦI(X) defined at each particle XI 
that defines the approximation space. These global shape functions are then used together with the Galerkin method to 
solve boundary value problems. The particle distribution and the definition of the size of the support of the global base 
functions aren’t arbitrary since they must satisfy the stability condition: 
 
 ( ){ } ( )[ ]0 dimJ Jcard Φ ≠ ≥ AX X X  (30) 
 
,i.e., the number of particles XJ whose associated shape function ΦJ(X) have a nonzero value at X, must be larger than 
the size of A(X), which is given by the number of intrinsic base functions in p(X). Moreover, for X∈Rn, there must be 
n+1 particles, whose position vectors form a nonzero n-th rank simplex element, Liu et al. (1997). In this work, X∈R2, 
with X=(X,Y), and the intrinsic base functions is pT(X)=[1,X,Y]. Notice that, since the MLSA reproduces exactly the 
intrinsic base functions in p(X), the consideration of a linear intrinsic base ensures the satisfaction of the classical patch 
test.  

In order to obtain a particle distribution that comply with (30), one performs a partition of the domain, Ω, into a 
triangular integration mesh, where one considers each triangular partition/element to be an integration cell and each 
vertex node to be the position of a particle. 
 
2.7.3. Element-free Galerkin weight functions 
 

One of the most used weight function is the quartic-spline function, which is given as: 
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in which I Ir r r=  with I Ir = −X X . The radius Ir , defining the support of ( )Iw −X X , is determined by 
 
 max , 1,I Ir s r s s R= ⋅ > ∈  (32) 
with 
 max max ,I i I I

i
r i J= − ∈X X , (33) 

 
where JI represents the set of adjacent nodes associated with XI. Here, the “optimal” value of s =1.5, was determined 
from a parametric analysis performed in Rossi and Alves (2004, 2005). An example of the covering of a given domain 
is illustrated in Fig. 3. 

conditions

t Natural boundary

u

conditions

Essential boundary

wEFG( )X X - I

X

Y

 
Figure 3 - An example of body coverage by the EFG 

 
Notice that, the EFG global shape functions {ΦI(X), I=1…n} do not satisfy, in general, the kronecker delta property, 
i.e., ΦI(XJ) ≠ δIJ. As a result, it is not possible to enforce the essential boundary conditions, by directly prescribing nodal 
values, as done in the FEM. However, there are many possible ways, proposed in the literature, to enforce the essential 
boundary condition. Among the various possibilities one may mention: 

• the usage of Lagrange multiplier methods; 
• the usage of collocation methods; 
• the formulation of modified variational principles; 
• the combination of EFG with FEM; 
• the usage of singular weight functions; 
• the application of penalty methods; 
• the usage of special weight function. 
Here, since the most robust strategy presented in the literature to enforce an unilateral contact with friction 

condition employs the Augmented Lagrangian method, the most natural approach, employed in this work, is to extend 
the Augmented Lagrangian method to additionally impose the essential boundary condition. 
 
2.8. Numerical results 
 
2.8.1. Uniaxial compression test 
 

Here, the simulation of a uniaxial compression test is presented and confronted with de experimental data obtained 
in Zhang, J. et al. (1998). The specimen has an initial area of 2500mm2 and 50mm of height. The material parameters 
used in this analysis are described in Table 1. The process consists is prescribing the displacement of the upper part of 
the specimen, with a total upsetting of uy = 30mm, applied in order to compress the body. Due to the axisymmetry 
condition, only half of the domain is modeled. This example uses an integration mesh with 4 triangular cells and 9 EFG 
particles. A support of influence of s=1.5 together with a 7 points integration Gauss-Legendre scheme is employed in 
the analysis. In addition, an external penalty parameter of `uε =10-6.is used in the analysis. 
 

Table 1 – Material Parameters. 
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                                                   (a)                                                                                    (b) 

Figure 4- Uniaxial simulation: (a) Cauchy Stress versus the logarithm strain; (b) Variation of relative density 
with respect the volumetric plastic strain. 

 
2.8.2. Conical slab 
 

This example considers an axisymmetric problem that consists in the upsetting of a conical slab, whose dimensions 
are: r1=90mm; r2=45mm; h=100mm. The analysis consists in prescribing the displacement of the upper wall, with a total 
upsetting of uy=80mm, which was applied in 1000 step-loads, in an integration mesh with 240 cells and 143 EFG 
particles. The parameters used in this analysis are the same presented in Table 1. Again, 7 points integration Gauss-
Legendre scheme is used, as well the support of influence s=1.5 and the penalty parameter `uε =10-6. 
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Figure 5- Fringes results from: (a) displacement on y direction, uy; (b) volumetric plastic strain, p
vε . 

 

 
(a)                                                                                              (b) 

Figure 6- Uniaxial simulation: (a) Cauchy Stress versus the logarithm strain. The indexes A and B refers to the 
points indicated in Figure 5 and the sub indexes 1 and 2 refers to FEM and EFG methods respectively; (b) Variation 

of relative density with respect the volumetric plastic strain. 
 
2.8.3. Indentation 
 

In this example is presented an identation test, under plane strain conditions. The initial dimensions of the body and 
also of the tool are shown in Fig. 7. 

 

 
Figure 7. Definition of the problem (dimensions in mm) 

 
The simulation consists in prescribing a total upsetting of the tool of u  = −15 mm in 1000 displacement increments. 
The upper and lower surfaces are subjected to a unilateral contact with friction condition. The domain is discretized by 
108 cells with 76 particlesusing a 7 points integration scheme. The data employed in the analysis are: 

4 3 60.1, 10 , 10 and 10f v T uc ε ε ε− − −= = = = . 
The deformed configuration together with the displacement field is illustrated in Fig. 8,  

 

 
Figure 8 – Deformed configuration and the displacement field in (mm) 

 



The deformed configuration and the relative density field of the material is illustrated in Figure 9,  

 
Figure 9 – Distribution of the relative density of the material 

 
2.9. Discussion and conclusion 
 

Polymeric foam constitutive behavior is extremely complex on the microstructural scale. Cellular buckling under 
compression initiates a long stress plateau. Further compression causes stress bottom up due to foam consolidation. 
Thus, adequate modeling of foam materials is still a challenge. Most of the problems are due to inadequate modeling of 
the elastic behavior of the material. The proposed model showed reasonably prediction for the responses of rigid 
polymeric foams under the monotonic loading conditions. Non monotonic loading must be further investigagted. 

One of the most relevant advantages in use the element-free Galerkin method, compared with the FEM, is the ability 
of the method to withstand the analysis of very large deformation processes, with no remeshing, without breaking up. In 
addition, EFG method showed to be more robust to capture high deformation and deformation gradients, in which the 
material is subjected to a huge densification process, as shown in curves B1 and B2 in Fig. 6, where the FE solution 
breaks up before the EFG solution. 
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