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Abstract. This paper proposes an elastoviscoplastic model for the finite deformation of crushable polimeric foams, 
which incorporates the phenomena of creep, relaxation and deformation rate sensitivity. Moreover, the model 
considers the deformation measure to be given by the logarithm or Henchy strain tensor, whose conjugate stress is the 
rotated Kirchhoff stres, and considers the elastic response to depend on the relative density of the material. The 
material is assumed to have a hardening behaviour which is characterized by two curves: one for the compaction 
response and one for the uniaxial compressive test. These hardening curves must be determined experimentally and 
introduced into the model. The evolution of the accumulated viscoplastic strain, which enables the determination of the 
viscoplastic multiplier, is based on a model that accounts for a saturation of the material response to the increase of 
the applied rate of deformation. The problem is formulated within a Total Lagrangian framework and is solved by the 
Galerkin finite element method. A set of simple problems is solved with the aim of attesting the proposed model and the 
robustness and performance of the algorithms employed in the discretization of the problem. 
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1. INTRODUCTION 
 

Polymeric foams are made of a skeleton composed of open or closed cells, which represent the basic unit of these 
materials. The mechanical response of polymeric foams depend on the cells geometric characteristics, such as cell wall 
thickness, shape and size distributions, and on the intrinsic properties of the polymer in the cell wall. In order to model 
such complex materials, different constitutive relations have been proposed in the literature and are basically divided 
into two groups: complex modeling approaches that proposes constitutive relation which describe the average behavior 
of the foam or simpler models that try to represent the cells as an assemblage of structural elements, see Gibson and 
Ashby (1997) and Landro et al.(2001). 

In this work we consider a complex modeling approach and propose a hyperelastic-viscoplastic constitutive relation 
for modeling the behavior of open cell foam materials. Moreover, based on experimental results, we consider the 
hyperelastic response to depend on the relative density of the material. See Roberts and Garboczi (2001, 2002). 

Among the various proposed constitutive relations, one can cite the power-law model, described in Chaboche and 
Rousselier (1983), that is generally accepted to give good predictions for low strain rates. However, as the strain rate 
increases, such a model is unable to describe the observed decreasing strain rate dependence. Also, in the limit, with the 
increase of the strain rate, the model should be capable to account for a saturation of the material response, as observed 
experimentally. With the aim of incorporating this material behavior in a unified viscoplastic model, other propositions 
for the flow rule have been used in the literature. Examples include a hyperbolic sine function, see Miller (1987), an 
exponential function or the addition of a second power-law function to the flow law, as proposed by Chaboche (1989, 
1996). Some models even combine plasticity with viscoplasticity in order to achieve these goals, as seen in Almroth et 
al.. (2004). Here, we make use of the constitutive equation proposed by Benallal, see Lemaitre (1996), which can be 
applied for large strain rates and account for the saturation of the overstress where the strain rate is very high. 

The consideration of a viscoplastic model for the modeling of polymeric foams enables the incorporation of the 
following observed phenomena: 

• Creep 
• Relaxation 
• Rate sensitivity 

Creep phenomena is illustrated in Figure 1, in which Curve (abcd) represents the increase of the strain as a function 
of time as a result of a constant applied load. Also, Fig.1 shows that the creep response may be divided into 3 stages, 
given by: 

1. Primary creeping, in which one observes a decreasing in the deformation rate due to the hardening of the 
material; 

2. Secondary creeping: in which the strain rate is approximately constant, i.e., ε ≃cte; 



3. Terciary creeping, in which one sees a fast increase in the deformation rate due to, 
• A reduction of the transversal area, 
• The damage effect due to the nucleation, growth and coalescence of microvoids. 

Figure 2 illustrates the influence of the stress-strain relation as a function of the applied strain rate. Also, it shows 
the existence of a linear elastic response of the material. However, in order to have an elastic response and recovery, 
one must have that 3 110 secε − −> . Such elastic response precludes the existence of a yield function. Now, it is important 
to observe that, if the temperature of the body is too elevated, the existence of a yield function may be questioned, since 
the material starts to behave more like a viscous fluid. In this work, we consider the temperature to be low and the 
deformation rate to be sufficiently high in order to consider the existence of an elastic response and a yield function. 
 

 
Figure 1 - Creep and relaxation tests 

 
Figure 2 – Rate of deformation sensitivity of the material response 

 
2. THEORETICAL DEVELOPMENT 
 

This paper proposes an elastoviscoplastic constitutive relation for the finite deformation of isotropic crushable 
polymeric foams, which incorporates the phenomena of creep, relaxation and deformation rate sensitivity in the 
response of the material. The model considers the material to have a hardening behavior that is characterized by two 
curves: one for the compaction response and one for the uniaxial compressive test, which must be determined 
experimentally. In addition, as a result of experimental observation, the model incorporates a different response in 
compression and tension and assumes the hyperelastic behavior to depend on the relative density of the material. In 
compression the ability of the material to deform volumetrically is enhanced by cell wall buckling processes as 
described by Gibson & Ashby (1997) and Girson et al. (1989). It is assumed that the foam cell deformation is not 
recoverable instantaneously and can be seen as being viscoplastic. Under tension loading, the cell walls break readily so 
the tensile load bearing capacity of crushable foams may be considerably smaller than its compressive load bearing 
capacity. 
 
2.1. Multiplicative decomposition of the deformation gradient 
 

Here, we assume the deformation gradient F to be decomposed into an elastic deformation, eF , and a viscoplastic 
deformation, vpF  as follows 
 

e vp= F FF  (1) 
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with 
( ), t= ∇F

X
Xϕ , (2) 

 
in which ( ), tx X= ϕ  denotes the deformation function. In addition, we define the deformation measure to be the 

logarithmic or Hencky strain tensor, given by ( )lne e=E U , where e e e=F R U . Since the material is isotropic, the 

associated conjugate stress measure is given by the rotated Kirchhoff stress τ , given by 
 

e T e(R ) (R )=τ τ , (3) 
 
where τ  is the Kirchhoff stress, det(F)=τ σ , with σ  denoting the Cauchy stress. See Peric and Owen (1998) and 
Weber and Anand (1990). 
 
2.2. Definition of the yield surface 
 

In order to define the yield function, we introduce the following basic definitions:  
• The deviatoric rotated Kirchhoff stress, given by: 

 

( )1
tr

3
Dτ τ τ= − I  (4) 

 
• The von Mises effective rotated Kirchhoff stress, given by 

 

3
:

2
D Dq τ τ=  (5) 

 
• and the hydrostatic pressure stress, given by 

( )1
.

3
p tr τ= −  (6) 

 
Thus, from Eq. (4) and Eq.(6) we may express the rotated Kirchhoff stress as D pτ τ= − I . 

Here, we consider the yield function for crushable foam materials, shown in Fig. 3, to be defined in terms of the 
Kirchhoff stress measure and given by  
 

( ) ( )22 2, , ( ) ( )( )o kk k kq p q p p Bε α ε ε ε= + − −F , (7) 

 
in which ( )kα α ε=  and ( )o o kp p ε=  are functions of the internal variables kε . The parameters op  and B of the 

yield ellipse are related to the yield strength in hydrostatic compression, cp , and to the yield strength in hydrostatic 

tension, tp , by 
 

0.5( )o c tp p p= − ,       B=αA    and     A= 0.5( )c tp p+ , (8) 
 
where cp  and tp  are positive numbers and A is the length of the (horizontal) p−axis of the yield ellipse. The evolution 

of the yield ellipse is controlled by the volumetric compacting viscoplastic strain, 1
p

vε ε≡ , defined as 
 

( )lnp p
v Jε = − ,            with              ( )detp pJ F= , (9) 

 
employed in the volumetric hardening model, and by the axial viscoplastic strain, 2

p
aε ε≡ , defined, in a unilateral 

compression test, as 



ln
p

p

a

o

L

L
ε = −

⎛ ⎞
⎜ ⎟
⎝ ⎠

,                                                                                                                                                       (10) 

 
in which pL  is the unloaded length of the specimen, after the deformation has been applied, and oL  is the length of the 
initial configuration of the reference specimen. 

To define the hardening behavior, some experimental test data must be obtained, which comprise: 
• A uniaxial compression test data 
• A hydrostatic compression test data 

These hardening curves must be experimentally evaluated and incorporated to the model. Here, we assume the 
hydrostatic tension strength, tp , to be proportional to the hydrostatic compression strength, i.e., 
 

t p cp pα=                                                                                                                                                                 (11) 
 
for some constant value pα , [0.05, 0.10]pα ∈ , see Hanssen et al. (2001) and Hallquist (1998). In addition, we assume 

the hydrostatic compression strength, cp , to evolve as a result of compaction (increase in density) or dilation (reduction 
in density) of the material, i.e. 
 

( )o p
c c p vp p H ε= +                                                                                                                                                   (12) 

 
where o

cp  is the initial hydrostatic compression yield strength and ( )p
p vH ε  is the hydrostatic compression strength 

hardening law, given in terms of the volumetric compacting viscoplastic strain. 
In order to compute ( , )p p

v aα α ε ε=  a different independent experimental test is required. Here, we employ a 
uniaxial compression tests. Notice that, different tests could also have been considered. Now, since the type of impact 
loading that we want to simulate is dominated by a uniaxial compression type of loading, the best result for the analysis 
may be probably obtained by using a uniaxial compression test. From a uniaxial compression test we obtain 
 

( )o p
y y aHτ τ ε= +                                                                                                                                                     (13) 

 
where o

yτ  is the initial yield stress, ( )p
aH ε  is the strain hardening function and p

aε  is the equivalent viscoplastic 
strain. Now in a general 3D case, the axial viscoplastic strain is not well defined. However, the uniaxial test response 
may be incorporated indirectly by using the uniaxial relation 
 

(1 2 )

p
p v

a
p

ε
ε

ν
=

−
.                                                                                                                                                         (14) 

 
Now, using (11-14), we can compute ( , )p p

v aα α ε ε= , as follows 

( ){ }
1
221 1

3 9

y

t c y t c yp p p p

τ
α

τ τ
=

− − −
.                                                                                                                (15) 

 
2.3. Visco plastic flow potential 
 

The viscoplastic strain rate for the volumetric hardening model is assumed to be given by 
 

D p λ
∂

=
∂

G

τ
,                                                                                                                                                              (16) 

 
complemented by postulating a null viscoplastic spin, compatible with viscoplastic isotropy, i.e., W 0p = . 
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Here, λ  is the viscoplastic multiplier which must satisfy: λ ≥0, which is given by a constitutive relation. The 
evolution of the viscoplastic deformation is computed as 
 

p p p=F L F                                                                                                                                                                (17) 
where 

( ) ( ) 1
p pe e −
=L U L U ;                                                                                                                                            (18) 

( )1
2

p p p T
= ⎡ ⎤⎣ ⎦+D L L ;                                                                                                                                          (19) 

and 

( ) ( )1
0p pe e−

= =W U W U .                                                                                                                                (20) 

 
The viscoplastic flow potential for this model is given by 
 

( ) 2 2 2,q p q pβ= +G                                                                                                                                            (21) 
 
In which β  is related to the plastic Poisson's ratio pν  by 
 

1 23

12
.p

p

ν
β

ν

−
=

+
                                                                                                                                                   (22) 

 
The usual assumption, for polymeric foams is to consider pν = 0.0. In the absence of the knowledge of the plastic 

Poisson's ratio, the consideration of a zero plastic Poisson's ratio is a reasonable assumption, as shown in Zhang et al. 
(1998), Gibson & Ashby (1997) and Gilchrist & Mills (2001). 
 

 
Figure 3 - Yield surface and flow potential on qp −  stress space. 

 
2.4. Evolution law for the accumulated viscoplastic strain 
 

In the case of viscoplastic materials, the viscoplastic multiplier λ is computed by solving a constitutive evolution 
equation. Here, we make use Benallal’s model, see Lemaitre (1996), given by 
 

( ), ,
ln 1

Mp
vp q p

e
K

ε
−

∞

= −
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

F
                                                                                                                            (23) 

where 
1
2

D D
2 .
3

p ppe ⎧ ⎫
⎨ ⎬
⎩ ⎭

=                                                                                                                                                  (24) 



 
Notice that, the evolution of the accumulated viscoplastic strain, which enables the determination of the viscoplastic 
multiplier, is based on a model that accounts for a saturation of the material response to the increase of the applied rate 
of deformation. In fact, we have that 
 

( ), , 0v
kq p ε σ= ≥F                                                                                                                                              (25) 

 
where we denote vσ  as the over stress measure, we obtain 
 

1 exp
p

v e
K

M
σ

∞
= − −

⎡ ⎛ ⎞⎤
⎜ ⎟⎢ ⎥⎣ ⎝ ⎠⎦

.                                                                                                                                     (26) 

 
2.5. Hyperelastic response 
 

Here, we consider the elastic response to be given, in terms of the logarithmic or Hencky strain tensor and the 
rotated Kirchhoff stress, as 
 

( ) eρ ∗= EDτ ,                                                                                                                                                           (27) 
where 

( )( )2
( ) 2 ( ) ( ) ( )

3
Kρ µ ρ ρ µ ρ∗ ∗ ∗ ∗= + − I ID I ⊗                                                                                                            (28) 

 
where ( )ρ ∗D  is the fourth order elasticity tensor, I  is the fourth order identity tensor, I is the second order identity 

tensor, ( )K ρ ∗  is the bulk modulus, ( )µ ρ ∗  is the Lamé's coefficient or the shear modulus and ρ∗  denoting the relative 
density, which is defined by the ratio of the foam density, ρ , with the fully compact material density, Mρ , i.e., 
 

.
M

ρ
ρ

ρ
∗ =                                                                                                                                                                    (29) 

 
The continuity equation may be written in terms of the relative density as 

 
[ ]det

o
ρ ρ∗ ∗= F ,                                                                                                                                                          (30) 

 
in which ( )

o o
ρ ρ∗ ∗= X  denotes the initial relative density, defined in the reference configuration, and ( , )tρ ρ∗ ∗= X  the 

actual relative density, defined at the reference configuration. Here, it’s important to notice that the set of physical 
allowable relative densities, related to physical admissible deformation processes, is given by { }* *|0 1ρ ρ= < ≤K . 

In order to impose implicitly these constraints, we will rewrite the Young modulus as 
 

( ) ( )( ) M KEE Ic γρ ρ ρ∗ ∗ ∗= +                                                                                                                               (31) 
 
where ( )KI ρ ∗  represents the indicator set of K, i.e., 
 

( )
0,

,KI
if
if
ρ

ρ
ρ

∗

∗

∗
=

∈

+∞ ∉

⎧
⎨
⎩

K
K

                                                                                                                                        (32) 

 
This expression may be regularized by using a combined internal and external penalty approaches, i.e., we consider 

a differentiable function ( )η ρ ∗Ψ  such that 
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0 ( )lim ( ) KIη η ρρ ∗∗
→ Ψ =                                                                                                                                     (33) 

 
Given by  
 

( )2

( )
1 1

1η ρ η ρ
ρ η

∗ +∗

∗
=Ψ + − .                                                                                                                         (34) 

 
Based on the above results, we consider the following constitutive relations 
 

*( ) cte.Mν ρ ν= =                                                                                                                                                      (35) 
and 

( )2

( ) ( )
1 1

1
M

E c Eγρ ρ ρ
ρ

η
η

∗ ∗ ∗

∗

+
= + + −
⎧ ⎫
⎨ ⎬
⎩ ⎭

                                                                                                       (36) 

 
with Mν  and ME  representing the Poisson's ratioand the Young's modulus of the fully dense material respectively and 
η  a penalty parameter. 
 
2.6. Incremental weak form of the problem 
 

Let ( ){ }1 ,   on u

i s ou W= ∈ Ω = ΓK u u u , for a sufficiently large s, denote the set of admissible displacements and 

( ){ }1 ,   on u

i s ou Wδ δ δ= ∈ Ω = ΓV u u 0  the set of admissible variations. The weak formulation of the problem may be 

stated as: Find 1n+ ∈Ku  so that ( )
1
; 0

n
δ δ

+
= ∀ ∈ Vu u uF , i.e., 

 

1 11 1; t
o o oX o o n o n o

k k
n n d d dAδ ρ δ δδ Ω Ω Γ+ ++ += ⋅∇ Ω − ⋅ Ω + ⋅∫ ∫ ∫( ) P( ) u b u t uu u uF                                                        (37) 

 
2.8. Numerical results 
 
2.8.1. Uniaxial compression test 

Here, the simulation of a uniaxial compression test is presented. The specimen consists of a cylindrical bar with a 
radius R=28mm and a height of 50mm. The material parameters used in this analysis are described in Table 1. The 
process consists is prescribing the displacement of the upper part of the specimen, with a total upsetting of yu = -32mm, 
applied in order to compress the body. Due to the axisymmetry condition, only half of the domain is modeled. Figure 4 
shows the displacement field, in the y-direction. 
 

Table 1 – Material Parameters. 
928, 092mE MPa=  0, 049oρ

∗ =  0, 30c =  

82, 034o

y KPaτ =  0, 00pν =  η= 0,00001 

40, 470o

cp KPa=  0, 25ν =  M=4 

α=0,05 1, 54γ =  K∞  =20,0KPa 
 

  
Figure 4 - Uniaxial compression test: Displacement field in the y-direction 



Figure 5 shows the evolution of the volumetric plastic strain, associated with the homogeneous deformation 
process, as a function of the fraction, uα , of the total applied upsetting. The total upsetting was applied 

incrementally, with constant increments, i.e., *y u u yu ( ) = uα α . 

 
Figure 5 - Volumetric plastic strain versus uα , fraction of the total applied upsetting. 

 
Figure 6 shows the evolution of the relative density *ρ  as a function of uα . 

 
Figure 6 - Relative density versus fraction of the total applied upsetting 

 
Figure 7 shows the evolution of the von Mises equivalent stress as a function of uα . 

 
Figure 7 - von Mises stress (Cauchy) versus fraction of the applied upsetting 

 
2.8.2. Conical slab 
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This example considers an axisymmetric problem that consists in the upsetting of a conical slab, whose dimensions 
are: r1=90mm; r2=45mm; h=100mm. The analysis consists in prescribing the displacement of the upper surface, with a 
total upsetting of uy=-51,25mm, which was applied in 1000 step-increments, in an integration mesh with 240 Tri 6 
elements. The parameters used in this analysis are the same presented in Table 1. Figure 8 depicts the level planes 
showing the displacement field, in the y-direction. 
 

  
Figure 8 – Level planes representing the displacement field, in the y-component. 

 
Figure 9 depicts level planes showing the distribution of the relative density of the foam material. 

 

  
Figure 9 – distribution of the relative density field. 

 
Figure 10 depicts level planes showing the distribution of the von Mises stress of the Cauchy Stress tensor. 

 

  
Figure 10 – distribution of the relative density field. 

Figure 11 depicts level planes showing the distribution of the volumetric plastic strain measure, p
vε . 

 

  
Figure 11 – Distribution of the volumetric plastic strain measure. 

 
 
 



2.9. Discussion and conclusion 
 

Polymeric foam constitutive behavior is extremely complex on the microstructural scale. Cellular buckling under 
compression initiates a long stress plateau. Further compression causes stress bottom up due to foam consolidation. 
Thus, adequate modeling of foam materials is still a challenge. Most of the problems are due to inadequate modeling of 
the elastic behavior of the material. The proposed model is able to represent some of the complex phenomena that 
occurs with crushable polymeric foams, which are: Creep, relaxation and rate sensitivity response. Moreover, the 
proposed model accounts for a saturation of the material response to the increase of the applied rate of deformation, as 
observed experimentally. Also, the paper addresses a complex problem that is the determination of non physical 
deformation processes, i.e., the determination of solutions that violates the model internal constraints. However, more 
testing is still necessary in order to verify the adequacy of the proposed model to simulate the deformation of real 
polymeric foam materials. 
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