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Abstract. The lunar sphere of influence, whose radius is some 66300km, has regions of stable orbits around the Moon 
and also regions that contain trajectories which, after spending some time around the Moon, escape and are later 
recaptured by lunar gravity. Both the escape and the capture occur along the Lagrangian equilibrium points L1 and 
L2. In this study, we mapped out the region of lunar influence considering the restricted three-body Earth-Moon-
particle problem and the four-body Sun-Earth-Moon-particle (probe) problem. We identified the stable trajectories, 
and the escape and capture trajectories through the L1 and L2 in plots of the eccentricity versus the semi-major axis as 
a function of the time that the energy of the osculating lunar trajectory in the two-body Moon-particle problem remains 
negative. We also investigated the properties of these routes, giving special attention to the fact that they supply a 
natural mechanism for performing low-energy transfers between the Earth and the Moon, and can thus be useful on a 
great number of future missions. 
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1. INTRODUCTION  
 
     Generally, a lunar trajectory is initially planned based on the Hohmann or Patched-conic approximations (Bate et al., 
1971). Both are completely described by the dynamics of the two-body, Earth-vehicle on takeoff, and Moon-vehicle on 
arrival and capture by the Moon. Keeping in mind the differences between these two transfers, we can say from an 
analytical standpoint that they require two impulses. The first impulse transfers the ship from a terrestrial parking orbit 
to a geocentric transfer ellipsis of high eccentricity towards the Moon The second impulse is applied to stabilize the 
vehicle in a circular orbit around the Moon exactly when it reaches the altitude planned for this orbit. From the practical 
standpoint, there is always a need to apply a midway impulse to correct deviations caused to the transfer trajectory by 
the effect of the Sun’s and Moon’s gravitational fields. The sum of the magnitudes of these three ∆V exceeds 
4.000km/s, and typical flight time (TOF) of these transfers is approximately 5 days. The dynamics of the two-body 
problem do not allow gains in inclination without the application of extra impulses for this purpose. But, in spite of 
some limitations, the two methods provide the first analytic approximation for an Earth-Moon transfer. 
     The transfers between the Earth and the Moon can also be considered in the context of the restricted three-body 
problem (R3BP). By doing so, because of the richness of the dynamics of this system, several different approaches have 
been proposed over the years. As example, we can mention the analytical and numerical works of Arenstorf (1963a, 
1963b), Arenstorf and Davidson (1963) and Davidson (1964), that exploit special trajectories of the R3BP with small 
mass ratio that pass near the primary bodies and whose periods are commensurable with the primary with small mass 
(the Moon, for instance). Belbruno (1987) and Belbruno and Miller (1990, 1993) introduced the bases for low-energy 
lunar transfers through the mechanism of ballistic capture through the Hill regions based on the dynamics of the 
restricted three-body Sun-Earth-particle problem and the Earth-Moon-particle problem. In 1991, the mission by 
Japanese lunar probe Muses-A, renamed Hiten, was saved with the application of these new techniques (Belbruno and 
Miller, 1990). Since then, this approach has been much explored in the literature; see for example, Koon et al. (2000, 
2001), Villac and Scheeres (2003), Dahlke (2003) and Macau and Grebogi (2006). Transfers involving ballistic capture 
offer significant reduction in ∆VTotal of the maneuver, but they require longer times.   
     In this work, we consider another approach to get low-energy transfer from Earth to the Moon: we explored the 
Moon’s sphere of influence, whose radius is approximately 66300km, considering the restricted three-body Earth-
Moon-particle problem, R3BP, and investigated the evolutions of the trajectories whose periseleniums, in t = 0, are 



located between the Moon and L1, and between the Moon and L2 (Fig. 1). In this way, it is possible to identify, within 
the lunar sphere of influence, regions of direct stable orbits around the Moon that are derived from the periodic orbits of 
the Family H2 (Broucke, 1968) and of the quasi-periodic orbits that oscillate around them, which have already been 
described by Winter and Vieira Neto (2002). We also identified regions containing trajectories which, after remaining 
around the Moon for some time, escape through L1 or L2, and later are recaptured by the lunar gravitational field 
(ballistic capture). These last two types of trajectories define at least four natural escape and capture routes by the 
Moon. Two of these routes are defined by the trajectories that first escape from the Moon through L1 to area around the 
Earth and later are also recaptured by the Moon’s gravitational field through L1. These are the escape and capture 
internal routes, respectively. Similarly, the other two routes are defined by those trajectories that escape from the Moon 
through L2 to area beyond the Earth-Moon System and after are recaptured by the Moon also through L2. These are, 
therefore, the external routes of escape and capture, respectively. All four routes mentioned penetrate each other in the 
lunar sphere of influence. We classified these routes based on the sets of value of their Jacobi constants, CJ. Thus, with 
this investigation, we are able to present the region within the sphere of influence of the Moon through maps (Fig. 2 and 
4) in plots of the eccentricity versus the semi-major axis, as a function of the time that the energy of the osculating lunar 
trajectory, in the two-body Moon-particle problem, remains negative, that is, as a function of the capture time. In 
practical terms, this allows us to choose the best transfer and capture trajectory for a specific mission, thus minimizing 
costs. This is possible because a probe placed in one convenient capture trajectory can be led naturally to a lunar orbit 
without the need for the application of insertion impulses and would remain captured for periods that would be 
sufficient to complete a vast number of missions. Besides, these trajectories can be transferred to stable orbits with the 
application of a small ∆V, and then remain around the Moon for 1000 days. For this reason, we investigated ways to 
acquire these trajectories, however, unlike Belbruno and Miller (1993) and Koon et al. (2000, 2001), we opted to 
conduct the probe to the capture routes through intermediate trajectories conceived initially with geocentric ellipses, but 
which in fact serve as a reference for the construction of intermediary trajectories in the three and four-body problems. 
     In order to verify the robustness of the routes, we investigated the evolutions of the trajectories, considering a more 
complex and realistic system, the four-body Sun-Earth-Moon-particle problem, which takes into account, in addition to 
the mutual attractions among the bodies, the eccentricity of the Earth’s orbit, the eccentricity and inclination of the 
Moon’s orbit. Even so, the routes continue to exist, but with evolution in three-dimensional space. In spite of the loss of 
analytical solutions, which also occurs for the R3BP, the orbital parameters of the trajectories can be defined as a 
variation of an osculating Keplerian orbit. On the other hand, even being governed by Newton’s law of gravitational 
attraction, the two dynamical systems considered present chaotic behavior, a fact that also can be examined during the 
acquisition of these trajectories and during the final trip to the Moon, applying targeting techniques and control chaos 
(Macau and Grebogi, 2006) to reduce the transfer time even more.   
 
2. DYNAMICAL SYSTEMS 
 
2.1. The Restricted Three-body Earth-Moon-Particle Problem R3BP 
 
     This problem can be defined by considering the Earth, with mass MEarth, and the Moon, with mass MMoon, called 
primaries, and a particle of very small mass in relation to the primaries so that it does not influence their motion. 
Furthermore, the primaries move in circular and coplanar orbits about their common centre of mass. The particle motion 
occurs in the plane defined by Earth and the Moon orbits and under their gravitational attraction. These hypotheses 
permit us to introduce a system of coordinates, called synodic system, in which the primaries MEarth and MMoon remain 
fixed over the x axis. This system can be normalized considering its reduced mass µ, as unitary mass, that is, µ = µEarth 
+ µMoon = 1, with µEarth = MEarth/(MEarth+MMoon) = 0.9878494 and µMoon = MMoon/(MEarth+MMoon) = 0.0121506. The 
constant distance between the Earth and Moon (384400km) is also considered the unit of length, thus their coordinates 
are (-µMoon, 0) and (µEarth, 0), respectively. The mean motion n of MEarth and MMoon is considered equal to 1, and, 
therefore, their orbital period around the center of mass is equal to 2π, and the unit of time is 4.348days. In this system, 
the particle equations of motion can be uncoupled from the primaries, and given in components, in this system by (e. g. 
Murray and Dermott, 1999) 
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where rEP = [(x + µMoon)2 + y2]1/2 and rMP = [(x – µEarth)2 + y2]1/2 are the distances between the Earth and particle, and 
Moon and particle, respectively. In this system the energy and the angular momentum are not conserved. 
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     The R3BP has five equilibrium points, known as Lagrangian points. Three of them, L1, L2 and L3 are aligned with 
the primaries and called collinear or Euclerian points; the other two points, L4 and L5, are at the vertex of two 
equilateral triangles with the primaries and are called triangular points (Fig. 1). 
     The R3BP has a first integral of motion called the Jacobi integral, or simply Jacobi constant, Cj, given by 
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     Putting 022 =+ yx &&  for a given value of Cj, Eq. (2) defines the zero velocity curves, and can be interpreted as the 
borders that limit the regions of this plane that are free or forbidden for the particle to move in.  
     Figure 1 also shows the zero velocity curves for Cj = Cj(L1), Cj = Cj(L2) and Cj < Cj(L2). As the value of Cj 
determines the forbidden areas for particle motion, a decrease in the value of Cj, will increase the region in which the 
particle can move. For example, if the value of Cj related to the motion of a particle is such that Cj ≥ Cj(L1) = 3.18834, 
its orbit will always be around one of the primaries only. If Cj(L2) ≤ Cj < Cj(L1), the particle will be able to move 
around the two primaries, since the passage through L1 is open for Cj < Cj(L1) = 3.18834. Now, if Cj < Cj(L2) = 
3.17216, the particle will be able to move around the two primaries and still escape from the Earth-Moon system 
through L2, since the passage through L2 is open for Cj < Cj(L2).       
 

 
  
Figure 1. Lagrangian equilibrium points associated with the Earth-Moon-particle system in the frame rotating, and zero 
velocity curves for Cj = Cj(L1), Cj = Cj(L2) and Cj = 3.1250 < Cj(L2) .  
  
2.2. The Four-body Sun-Earth-Moon-particle Problem 
 
     In a real mission, the Sun’s gravitacional field, the eccentricity of the Earth’s orbit, the eccentricity and the 
inclination of the Moon’s orbit influence the probe’s motion in transfer maneuvers between the Earth and the Moon. To 
assess these influences, the four-body Sun-Earth-Moon-probe problem must be considered. 
     If we associate the indexes 1 to the Sun, 2 to the Earth, 3 to the Moon and 4 to the particle of mass MP such that, µ1 = 
MSun/(MEarth+MMoon), µ2 = µEarth, µ3 = µMoon and µ4 = MP/(MEarth+MMoon) are theirs reduced masses. Assuming that these 
four bodies move in three-dimensional space under only the action of their mutual gravitational attractions and an 
inertial Cartesian coordinate system (x, y, z) with origin in a fixed point of the space. Then, with ri = (x, y, z) the vector 
position of one of the bodies in this system, the equations of motion of its are given by 
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where rij = |rj – ri| = [(xj – xi)2  + (yj –yi)2 + (zj – zi)2]1/2, with  j ≠ i, are the distance between ith and jth bodies. The Eq.(3) 
represents 12 second order differential equations and expresses the fact that the acceleration of a given body is the result 
of the of the sum of the forces exercised by the other three bodies. However, we assume that the particle not influences 
the motion of the other bodies. For this reason, the terms of Eq. (3) which contains µ4 can be suppressed. We considered 
for four-body Sun-Earth-Moon-particle problem the same parameter of normalization of the previous subsection.  
     The eccentricity of the Earth’s orbit (eEarth = 0.0167), the eccentricity (eMoon = 0.0549) and the inclination (iMoon = 
5.1454o, relative to the ecliptic) of the Moon’s orbit are introduced to the system via initial conditions, thus bringing it 
ever closer to reality. 



3. DEFINING THE ESCAPE AND CAPTURE ROUTES 
 
3.1. Definition for the R3BP 
 
     According to the previous section, for the R3BP, the value of Cj of a given trajectory determines in the xy plane in 
synodic coordinate system allowed regions to the particle motion. Our goal is to consider this property to find sets of 
trajectories, which, upon escaping from the Moon, or being captured by it, through L1 and L2. These paths define 
natural routes that can be used in low-energy Earth-Moon and Moon-Earth transfers. For this purpose, we examined the 
lunar sphere of influence integrating trajectories in 1000 day periods (appropriate time for practical purposes) whose 
initial conditions in the synodic coordinate system have the following form  
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     In order to determine the values of x0 e 0y&  we consider firstly another Cartesian coordinate system with origin fixed 
in the Moon centre of mass (Selenocentric system), such that in t = 0, the x axis of this system coincides with x axis of 
the synodic system. Then, we define x0 e 0y&  starting from four osculating orbital elements relative to the Moon in t = 0: 
semi-major axis a0, eccentricity e0, argument of periselenium w0 measured in the xy plane starting from the x axis in 
direction of the probe’s motion, and time of periselenium passage T0. The other orbital elements: inclination i0 relative 
to the Moon’s orbital plane is equal to zero. As the orbits are coplanar, it is not necessary to define the longitude of the 
ascending node Ω0, but it can be considered equal to zero and also measured starting from x axis in clockwise. Thus 
considering 1750km ≤ a0 ≤ 66650km, 0 ≤ e0 < 1 and T0 = 0 we can define two sets of direct trajectories. The first has w0 
= 180o, therefore, with periselenium between L1 and the Moon, that is,  
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     The second set has w0 = 0o and periselenium between the Moon and L2,  
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where *

MoonR  = (RMoon / 384400km) is the average radius of the Moon (RMoon ≈ 1738km), and a0
* = (a0 /384400km) is the 

semi-major axis of initial osculating lunar orbit, both in dimensionless system. The sets defined by Eq. (5) and (6) and 
by Eq. (7) and (8) were investigated separately. But, for the two sets, the semi-major axis and the eccentricity intervals 
of variation were swept with steps ∆a0 = 550km and ∆e0 = 0.008. In this manner, we integrated 14632 trajectories from 
each of the sets.  
     The energy of two-body Moon-probe does not remain constant in the dynamical systems considered. Even so, 
monitoring of this quantity gives us a clear idea of the influence of the Moon’s gravitational field on the trajectory. So, 
for each integrated trajectory, at each step of integration, we measured the Moon-probe energy. If it became positive 
during the integration, the trajectory is considered an escape trajectory and classified according to its time remaining 
around the Moon with negative energy, or simply capture time (Winter and Vieira Neto, 2002), and to whether its first 
escape occurs after L1 or L2. 
     The results of these integrations, for the R3BP, are shown in the plot of the eccentricity versus the semi-major axis of 
the initial osculating lunar orbit as a function of the capture time in the diagrams of Fig. 2 and 3. Figure 2 corresponds 
to the direct trajectories of the set defined by Eq. (5) and (6) whose periselenium are between L1 and the Moon, while 
the diagram in Fig. 3 corresponds to the trajectories with periselenium between the Moon and L2 defined by Eq. (7) and 
(8). Capture time was represented in different shades of gray, with each shade corresponding to the interval that the 
trajectory remains around the Moon with negative Moon-probe energy. The diagrams also show the initial conditions of 
trajectories that collide with the Moon. 
     In the diagram of Fig. 2(a), it is possible to identify four distinct regions, with three of them directly related to the 
values of Cj of the direct trajectories and, consequently, to the possibility or not of escape and capture through L1 and 
L2, and are shown limited by three lines. The first line, of the left for right, corresponds to the points of the diagram 
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whose initial conditions corresponding to (a0, e0) generate trajectories with Cj = Cj(L1) = 3.18834. So, the points to the 
left (including collision areas with the Moon located to the left of the first line) correspond to the initial conditions of 
the trajectories that have Cj > Cj(L1) and, therefore, cannot escape from the Moon’s sphere of influence. The second 
line, of the left for right, in turn, corresponds to points with Cj = Cj(L2) = 3.17116, thus, the points between it and the 
first line represents the initial conditions of trajectories that have Cj(L2) < Cj < Cj(L1) and can escape from the sphere of 
lunar influence through L1, orbit the region around the Earth, and later be recaptured by the Moon. The third line is in 
the lower far right of the diagram of Fig. 2(a) and the points of this line also correspond to the initial conditions of 
trajectories with Cj = Cj(L2). So, all initial conditions corresponding to (a0, e0) that represent points below this line have 
Cj(L2) < Cj < Cj(L1) and, therefore, they can escape from the sphere of lunar influence through L1 and be recaptured by 
the Moon later. The points to the right of the second line and above the third line represent initial conditions of 
trajectories with Cj < Cj(L2) and which can escape through L2 to outside the Earth-Moon System, or through L1 to the 
region around the Earth as verified in some cases. The fourth region mentioned refers to a region of stable orbits 
associated with periodic orbits of Family H2 and quasi-periodic orbits that oscillate around them (Winter and Vieira 
Neto, 2002; de Melo et al. 2005). This region is shown in the Fig. 2(b). Analysis of the diagram in Fig. 3 is similar; 
however, it does not present any regions of stable orbits of significant size.        
     In this way, we can define the escape and capture routes through L1 and L2 in a simple way based on the values of 
Cj found for initial conditions corresponding to (a0, e0). Thus, all those that have Cj(L2) ≤ Cj  < Cj(L1) are escape and 
capture trajectories through L1. A typical trajectory in this set can be seen in Fig. 4. On the other hand, all those that 
have Cj  < Cj(L2) are escape and capture trajectories through L2, or L1. Figure 5 shows a typical trajectory of this set. 
The trajectories belonging to the region of stability between the first and second lines, showed in zoom in Fig. 2(b), also 
have Cj(L2) ≤ Cj  < Cj(L1), but they do not escape through L1 for any time period below 1000 days (Winter and Vieira-
Neto, 2002).  
     The routes we have just raised can be used as a convenient way to insert probes, without any insertion cost, around 
the Moon, taking advantage of the phenomenon of gravitational capture, or ballistic capture (Belbruno and Miller, 1990, 
1993; Koon et al., 2000, 2001). For example, by leading a probe to the trajectories shown in Fig. 4 or 5, it will be 
captured naturally by the Moon, remaining in this orbit for 700 and 40 days, respectively. These times are sufficient to 
perform a great number of missions. In addition, once captured, a small ∆V is sufficient to transfer the probe to a stable 
trajectory, thus allowing it to remain around the Moon for periods of up to 1000 days. On the other hand, it is possible 
to verify that in the Moon’s sphere of influence, there is a superposition between the escape and capture routes through 
L1 and L2. This fact, in turn, raises the hypothesis that after being captured by the Moon (smaller primary mass) a 
probe can be guided at a low cost to an orbit around the Earth (larger primary mass). In this manner, if a dynamical 
structure similar to those shown in Fig. 2 and 3 repeats itself in other locations in the Solar System, the routes could also 
be used in low energy interplanetary missions.    
 
3.2. Route analysis for the four-body problem 
  
     The properties of the escape and capture trajectories through L1 and L2 for the R3BP dynamics, especially the value 
of Cj, allow the definition of the routes. But, thinking about the use of the routes in real missions, it is important to 
verify which are the influences of the Sun’s gravitational field, of eccentricity of the Earth’s orbit and of the eccentricity 
and inclination of the Moon’s orbit on them. So, we consider the four-body Sun-Earth-Moon-probe problem, as 
described in subsection 2.2, and we repeat the numerical simulations of the previous subsection. The influence of the 
Sun’s gravitational field and the Earth and Moon’s orbits were investigated together and also separately. 
The results of these investigations show that the eccentricity of the Earth’s orbit and the inclination of the Moon’s orbit 
do not alter  the structure  of the points  distribution of the graphs of Fig. 2 and 3.  Therefore, they  do not interfere in the 
 
 

             
                                                 (a)                                                                                              (b)                                                       
Figure 2. (a) Eccentricity versus semi-major axis of the initial osculating lunar orbit in terms of capture time indicated 
by the gray code for direct trajectories with periselenium between L1 and the Moon. (b) Zoom of the region of stable 
orbits associated with periodic orbits of Family H2 and quasi-periodic orbits that oscillate around them. 



 
 

Figure 3. Eccentricity versus semi-major axis of the initial osculating lunar orbit in terms of capture time indicated by 
the gray code for direct trajectories with periselenium between the Moon and L2, for R3BP. Consider the same legend 
of de Fig. 2. 
 

                                 
                                                      (a)                                                                                 (b) 
Figure 4. Typical trajectory of escape and capture through L1 seen in the coordinate: (a) synodic, and (b) geocentric 
systems. 
 

                                   
                                                      (a)                                                                               (b) 
Figure 5. Typical trajectory of escape and capture through L2 seen in the coordinate: (a) synodic, and (b) Geocentric 
systems. 
 
existence of the routes. On the other hand, the Sun’s gravitacional field and the eccentricity of the Moon’s orbit change 
the points distribution in the graphs, as we can see in Fig. 6 and 7 (de Melo et al. 2005). However, they do not destroy 
the internal and external routes. In general, the affects of the Sun’s gravity and of eccentricity of the Moon’s orbit do 
not impose restrictions to the acquisition maneuvers that we will study in the next section. The trajectories of the 
external route are affected by the Sun’s gravity. After they escape through L2, they enter in heliocentric orbits, different 
from the observed for R3BP. Even so, the acquisition of these trajectories continue being possible.           
     In the diagrams of Fig. 6 and 7 the lines for which the initial conditions corresponding to (a0, e0) generate Cj = 
Cj(L1) and Cj = Cj(L2) are present. The Jacobi constant cannot be defined for the four-body problem. For this reason, 
their purpose is to facilitate the visualization of the differences between the points’ distributions found for R3BP and the 
four-body problem. For R3BP these lines represent the exact borders among the permanent trajectories captured and the 
ones that escape and are recaptured through L1 and L2. For the four-body problem, the lines cannot be considered the 
exact border, but they allow us to understand the influence of the Sun’s gravitational field and the eccentricity of the 
Moon’s orbit on the trajectories while they are captured, especially on those belonging of the stability regions with Cj ≥ 
Cj(L1) and associated to the Family H2. The size of the white area on the left of the diagrams that represents the 
permanently captured trajectories is slightly reduced. The white area corresponding to the stable orbits associated with 
the Family H2 has its size reduced to 1/5 of the original as shown in Fig. 6(b). The escape and capture trajectories 
through L1 continue located between the white area and the area around the line Cj = Cj(L2), and the escape and 
capture trajectories through L2 to the right of the line Cj = Cj(L2). 
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                                                           (a)                                                                           (b) 
Figure 6. (a) Eccentricity versus semi-major axis of the initial osculating lunar orbit in terms of capture time indicated 
by the grey code for trajectories with periselenium between L1 and the Moon considering the four-body Sun-Earth-
Moon-particle problem. (b) Zoom shows the region of stable orbits associated with periodic orbits of Family H2. 
Consider the legend of Fig. 2. 
 

Figure 7. Eccentricity versus semi-major axis of the initial osculating lunar orbit in terms of capture time indicated by 
the gray code for trajectories with periselenium between the Moon and L2, considering the  four-body Sun-Earth-Moon-
particle problem. Consider the same legend of Fig. 2. 
 
4. TRANSFER MEANS 
 
4.1. General Description 
 
     The goal of this section is to present two procedures that allow the analysis of the acquisition costs of the capture 
route through L1 (internal route) and one for acquisition of the capture route through L2 (external route). For the 
internal route, we considered two maneuvers based on the Hohmann and bi-elliptic transfers. Conventionally, both are 
used to perform transfer maneuvers between concentric orbits starting from the application of two and three impulses to 
the space vehicle respectively, and they are totally described by the dynamics of the two-body problem. However, in 
our case, the final orbit will be a trajectory belonging to one of the routes. Figure 8 shows the maneuvers for internal 
route acquisition which will be described in the subsection 4.2. For external route acquisition, we consider a bi 
impulsive transfer initially conceived to be a geocentric ellipse with its apogee in the same area of the apogees of the 
route’s trajectories, as shown in the Fig. 9, which will be described in the subsection 4.3. 
     The first step is to choose which is the best trajectory of the capture routes, or better set of them. This, obviously, 
will depend on the type of mission. It is through this choice that we can find the values of the velocity of the routes 
trajectory(ies) (magnitude and direction) in the area where the acquisition maneuver will be made and the distances 
where this maneuver will be made. With these information, we can calculate the apogee distance, semi-major axis, the 
energy, the perigee and apogee velocities of the transfer ellipses and the values of the impulses to perform the 
maneuver. The choice can be made through the graphs eccentricity versus semi-major axis in terms of the permanence 
time around the Moon of Fig. 2 and 3 or 6 and 7, and of the analysis of the chosen trajectories evolution out of the lunar 
sphere of influence to determinate the best area to perform the acquisition maneuver. 
     Then, the basic idea behind the three procedures consists of considering the two-body Earth-probe problem to obtain 
an analytical estimate of the ∆V1 to launch the probe starting from a LEO (Low Earth orbit) in an ellipse; of the ∆V2 (for 
maneuver based on the Hohmann transfer), or ∆V2 and ∆V3 (for maneuver based on the bi-elliptic transfer) necessary to 
insert it in a chosen routes trajectory(ies). In other words, to find the initial conditions to launch the probe and the 
acquisition point of the routes. With these established conditions by the two-body problem, we integrated the paths 
considering R3BP Earth-Moon-probe and the four-body Sun-Earth-Moon-Probe problem. The objective is to adjust the 
initial conditions and to determine eventual midway corrections to obtain a connection path between the LEO and a 
routes trajectory(ies).    



    The order of the events for routes acquisition maneuvers established considering the two-body Earth-probe problem, 
described in the previous paragraph, is the same when the maneuvers are analyzed considering R3BP and the four-body 
problem. The adjustments and midway corrections allow us to find close paths of the transfer ellipses conceived by the 
two-body Earth-probe problem, however, their apogees and perigees are not aligned with the Earth different from the 
observed for the Hohmann and bi-elliptic transfers (Fig. 8). Although these adjustments are small, they are essential for 
execution of the maneuver, because without them, the ellipses conceived by the two-body problem degenerate due to 
the action of the Sun’s and Moon’s gravitational fields. 
     In the moment of the application of ∆V2 or ∆V3, the knowledge of the routes becomes more important. Because, if 
∆V2 or ∆V3 are not capable to place the probe exactly in the trajectory previously chosen to take it until the Moon, due 
to rockets imprecision, for example, it will place the probe in a close trajectory of that chosen. Once inside of the route, 
small ∆V (targeting) (Macau and Grebogi, 2006) can correct the failure in the acquisition moment and, then, to place the 
probe in the correct trajectory.       
 

                                             
 (a)                                                                     (b) 

Figure 8. Basic geometry of transfers: (a) Hohmann, (b) bi-elliptic. Both adapted for acquisition of capture trajectories 
through de L1. 
 
4.2. Means for acquisition of the internal route 
 
     The trajectories of this route stabilize themselves in non-Keplerians orbits around the Earth after they escape through 
L1. While they remain around the Earth, some of them reach altitudes about 40000km from the Earth’s surface and, in 
general, they can reach the farthest distance from the Earth’s surface between 290000km and 320000km, as can be seen 
in the trajectory of Fig. 10(a) whose initial conditions corresponds to (a0, e0) = (33900km, 0.0000) and Cj = 3.171644. 
For this trajectory, the Earth-probe distance varies between 45260km and 310000km and it escapes and is recaptured by 
the Moon’s gravity twice during the 1000 days of integration. What is observed for the trajectory of Fig. 10(a) also is 
observed for many other trajectories belonging to internal routes. This means that a probe could be inserted in these 
trajectories at any point whose distance from the Earth’s surface is between 40000km and 320000km. Then, it would 
remain around the Earth until it is recaptured through L1, which could take a long time. But this procedure may not be 
interesting exactly because of the long transfer time. This problem can be solved by using targeting techniques to reduce 
the transfer time.   
 

 
Figure 9. An illustration of defined escape/capture routes for trajectories that escape and are captured through L2 in 
geocentric coordinate system. 
 
the Moon’s gravity twice during the 1000 days of integration. What is observed for the trajectory of Fig. 10(a) also is 
observed for many other trajectories belonging to internal routes. This means that a probe could be inserted in these 
trajectories at any point whose distance from the Earth’s surface is between 40000km and 320000km. Then, it would 
remain around the Earth until it is recaptured through L1, which could take a long time. But this procedure may not be 
interesting exactly because of the long transfer time. This problem can be solved by using targeting techniques to reduce 
the transfer time. On the other hand, in order to study transfers without the intensive use of targeting techniques, we can 
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consider the trajectories of the internal route during 10 days before they are recaptured by the Moon. This way, it is 
possible identify the limits of the final section of the internal route that will lead the probe until to the lunar sphere of 
influence directly as we can see in Fig. 10(b).              
     Now, considering the two-body Earth-probe problem, the analytical estimate for ∆VTotal found for the acquisition 
maneuver based on the Hohamnn transfer at the points closest to the Earth’s surface, in the final section of the internal 
capture route (points on PP’ segment in Fig. 10.(b)), it exceeds 4.100km/s. Therefore, this maneuver is not 
economically viable. This was also verified for R3BP and the four-body problem. But if the route acquisition is 
performed in the points farther from the Earth’s surface in the final section of the internal capture route, between 
290000km and 320000km (points on QQ’ segment in Fig. 10.(b)), the ∆VTotal values are smaller. The maneuver consists 
of applying two impulses. The first, ∆V1, removes the probe from the LEO and place it in a geocentric ellipse that will 
take it to the distance between 290000km and 320000km from the Earth’s surface. ∆V1 is calculated just as in the 
conventional Hohmann transfer, that is, through the difference between the perigee velocity of the transfer ellipse and 
LEO velocity (supposed circular). The ∆V1 value depends on the LEO’s altitude and apogee radius of the transfer 
ellipse and its value is given by 
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where G = 6.67x10-20km/s2kg is the gravitational constant, MEarth = 5.9742x1024kg is Earth mass, RC = REarth + HC is the 
LEO’s radius, which is equal to the perigee’s radius of the transfer ellipse, REarth is the average radius of the Earth (REarth 
≈ 6370km), HC is the LEO’s altitude given in km and RA is the apogee’s radius of the transfer ellipse, 290000km ≤ RA  ≤ 
320000km. A second impulse, ∆V2, is applied to the probe to insert it in the route’s trajectory that will take it until the 
Moon, and it is given by difference between the apogee velocity and velocity of the route’s trajectory in the acquisition 
point. As we are considering that the acquisition maneuver is made in the farthest route point from the Earth (point Q in 
Fig. 4(b), for example) and that the transfer ellipse is tangent the route trajectory, we can also consider with good 
approach  
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where VT is the magnitude of vector velocity of the route’s trajectory. For the set of trajectories with Cj(L1) < Cj ≤ 
Cj(L2), 0.600km/s ≤ VT ≤ 0.900km/s along the segment QQ’ in Fig. 10(b).  
     Considering a transfer leaving a LEO with an altitude of 200km, the ∆VTotal values of the maneuver vary between 
3.660km/s and 3.780km/s, depending on the route trajectory chosen to lead the probe until to the Moon. The time 
required for acquisition maneuver varies between 3.4 and 3.9 days, and, once the acquisition is accomplished, the probe 
will be captured by the Moon within 10 days. The total time of the transfer varies, therefore, between 13 and 14 days. 
     The next step is to integrate the transfer paths between the LEO and the route considering the R3BP and the four-
body problem. In this case, we verified that small adjustments in the values of ∆V1 and ∆V2 are necessary to performing 
the maneuver. With these adjustments the value of ∆VTotal passes to vary between 3.650km/s and 3.770km/s for the 
R3BP and 3.645km/s and 3.760km/s for the four-body problem.  
     On the other hand, the acquisition maneuver based on the bi-elliptic transfer made in the area between 290000km 
and 320000km from the Earth it is not economically viable. However, if it is performed at the area where the final 
section of the capture route trajectories is closest to the Earth’s surface, between 110000km and 155000km, the costs 
are smaller. The first, ∆V1, removes the probe from the LEO and launch it in a first transfer ellipse and it is calculated 
just as in the conventional bi-elliptic transfer, that is, through the difference between the perigee velocity of the first 
transfer ellipse and LEO velocity (supposed circular), and is given by 
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where de RA1 is the apogee’s radius of the first transfer ellipse. A second impulse, ∆V2, is applied to the probe exactly in 
apogee of the first transfer ellipse and it places the probe in the second transfer ellipse, and it also is calculated just as in 
the conventional bi-elliptic transfer, that is, the difference between apogee velocities of the second and first transfers’ 
ellipses 
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where RP2 and RA2 are the perigee and apogee radius of the second transfer ellipse, respectively, with 110000km ≤ RP2 ≤ 
155000km. Note also that RA2 = RA1. In the perigee of the second ellipse a third impulse, ∆V3, is applied to insert the 
probe in a route trajectory. In this case, the acquisition is made in closest route point to the Earth (along the segment PP’ 
in Fig. 10(b)), and by analogy with the anterior procedure, we can considerer  
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where 2.180km/s ≤ VT  ≤ 1.800km/s is the route trajectory velocity along the segment PP’ in Fig. 10(b).  
     The values of ∆VTotal leaving from a LEO with altitude of 200km vary between 3.540km/s and 3.590km/s depending 
on the trajectory, and the time required for acquisition maneuver is between 10 and 11 days. The capture by the Moon 
happens between 6 and 7 days after the route acquisition. Therefore, the total time transfer varies between 16 and 18 
days. 
     The analysis of this acquisition maneuver also considering R3BP and the four-body problem show that small 
adjustments in the values of the three impulses are enough to conclude the maneuver. With these adjustments, the 
values of ∆VTotal vary between 3.510km/s and 3.575km/s for the R3BP and 3.505km/s and 3.565km/s for the four-body 
problem. 
     These results show that the two-body problem offers a good approach for the value of ∆VTotal of the acquisition 
maneuver, independent of the studied procedure. However, the analysis of the mission should consider more complex 
and realistic dynamical systems.        
     Once captured, the trajectories belonging to the route can remain around the Moon between 10 and 1000 days, see 
Fig. 2 and 3. These are non-Keplerians orbits, but some of them pass at few dozens of kilometers of the lunar surface. It 
is also interesting to notice, that the application of a small ∆V to the probe, after the capture, is enough to place it 
permanently in orbit around the Moon, being it a stable orbit associated to the Family H2 or one of the ones that have Cj 
> Cj(L1). 
 

                          
(a) (b)  
 

Figure 10. (a) Trajectory with initial condition relative to the Moon corresponding to (a0, e0) = (33900km, 0.0000) and 
Cj = 3.171644, which Earth-probe distance after the escape varies between 45260km e 320000km. (b) Internal capture 
route defined for integration of the trajectories during 10 days before the capture by the Moon. Both in synodic 
coordinate system. 
 
4.3. Means for acquisition of the external route   
  
      The trajectories of this route stabilize themselves in orbits around the Earth after they escape through L2, as show 
Fig. 5. Depending on the trajectory, the apogee distance varies between 4x105km and 107km, considering the R3BP. In 
order to visualize the external capture route, it is necessary to consider an initial conditions corresponding to a (a0, e0) in 
diagrams of Fig. 2 and 3 or 6 and 7, for which Cj < Cj(L2).  Then, we define an interval with radius ε centered in (a0, e0). 
For a small ε all trajectories in this interval will have similar evolution after they escape through L2. So, we can find 
capture routes like that shown in Fig. 9, which is obtained considering an interval around the trajectory of Fig. 5.     
     Then, considering the two-body problem firstly, we conceived a geocentric ellipse whose apogee is tangent to the 
route trajectory(ies). The maneuver consists of applying an impulse, ∆V1, to launch the probe in this ellipse starting 
from the LEO given by 
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where RAE  is the perigee’s radius of the transfer ellipse. A second impulse, ∆V2, is applied to the probe in the opposite 
direction of its motion when it reaches the apogee of the ellipse with the objective of slow it down and to insert it in one 
route trajectory. Once again, we are considering that the acquisition maneuver is being made in a point where the 
transfer ellipse is tangent the route trajectory. However, we can also consider the approach 
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where VT is the apogee velocity of the route trajectory. With the application of ∆V2, the probe is inserted in the route 
and, starting from this instant, it will follow the opposite sense (direction) to the taken by the paths after the escape, that 
is, the integration will be made for backward in time. For the apogees about 1.5x106km, the ∆VTotal of the maneuver 
varies between 3.530km/s and 3.590km/s when the probe is launched of a LEO with altitude of 200km, and the time of 
the acquisition maneuver is between 37 and 38 days, depending of the trajectory. The capture happens between 62 and 
64 days after the acquisition. This is verified for any trajectories whose initial conditions corresponding to (a0, e0) 
furnishes a Cj < Cj(L2) in Fig. 2 and 3 or 6 and 8. Therefore, the total transfer time is between 99 and 101 days. For the 
apogees about 2.0x106km, the ∆VTotal of the maneuver varies between 3.430km/s and 3.460km/s, time of the acquisition 
maneuver is between 58 and 59 days and the capture happens between 100 and 101 days. Therefore, the total transfer 
time is between 159 and 160 days. Fig. 9 shows an illustration of this maneuver. 
     Similarly to the made for the internal route, the initial conditions established for the two-body problem were 
integrated for R3BP and the four-body problem. Following the observed for the other procedures, small adjustments 
allow finding the closest path of the Real. With these adjustments, the ∆VTotal of the maneuver varies between 
3.510km/s and 3.570km/s for acquisition to 1.5x106 km of the Earth and between 3.420km/s and 3.450km/s for 
acquisition to 2.0x106 km. The time continues the same. Once again, the results show that the two-body problem can be 
considered to determine the ∆VTotal of the maneuver with good approach. 
 
 
5. CONCLUSIONS 
 
     In this work, we presented two set of trajectories starting from which it is possible to define two natural routes of 
capture by the Moon through L1 and L2. The routes were defined considering properties of R3BP, but their existence 
also was verified for the four-body Sun-Earth-Moon-probe problem.  
     A study on some maneuvers based on the Hohmann and bi-elliptic transfers for the routes acquisition also were 
presented. With respect to the acquisition of the internal route, the maneuver based, for example, on the bi-elliptic 
transfer allows to insert a probe in a Moon orbit without the need of impulses for this end, with 3.540km/s ≤ ∆VTotal ≤ 
3.590km/s, for a probe leaving a LEO with altitude of 200km and total transfer time between 16 and 18 days. After the 
capture, the trajectories remain in orbits of the Moon for periods that can vary between 10 and 1000 days and, still, 
smalls ∆V can move them to permanent orbits, as the stable orbits associated to the Family H2, or those located in the 
area of stability with Cj > Cj(L1). Thus, a great number of future transfers missions followed by permanence around the 
Moon can take advantage of this route; be them automatic or manned missions, since the transfer lasts on average only 
2.5 weeks. The ∆VTotal for acquisitions maneuver of the external route varies between 3.550km/s and 3.570km/s for 
acquisition at 1.5x106km from the Earth and between 3.440km/s and 3.470km/s for acquisition at 2.0x106km from the 
Earth and the total time of these transfers are about 100 and 160 days, respectively, and both for a probe leaving a direct 
LEO with altitude of 200km. The effects of Sun’s gravitational field, the eccentricity of the Earth’s orbit and the 
eccentricity and inclination of the Moon’s orbit don’t impose restrictions to the acquisition maneuvers for these routes.  
     Given the exposed, we can conclude that the routes presented here represent good options for a great number of 
future missions destined to the Moon face the economy that they can provide, without require times of transfer very 
long, as in the case of the maneuver based on the bi-elliptic transfer. 
     In future studies, there may be methods that make acquisition of the capture routes with even smaller ∆VTotal 
specially with targeting techniques. On the other hand, the structure found in the mapping of the lunar sphere of 
influence showing escape and capture trajectories may exist, in a similar way, in other localization of the Solar System, 
and exploration of these trajectories may also be useful in future interplanetary missions.    
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