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Abstract. The dynamic behavior of a flexible structure is similar to fluid moving (known as sloshing) in liquid-
propellant rocket motors, subjected to external efforts. Thus, modeling and identification of flexible modes are similar 
to sloshing modes. This paper presents results from modeling using Bond-Graphs (State-Space equations and Transfer 
Functions) applied to an angular position servo and flexible beam used on Flexible Link FLEXCAM Quanser System,  
as well as results from identification process using ARX model. On first step, only  angular servo position is tested, 
input/output time histories are recorded and submitted to identification process. As second step, the flexible structure is 
fixed to hub and new input/output data are collected to perform new identification with the previous model obtained on 
first step. The sampling frequency and a pseudo-random binary sequence (PRBS) input are discussed against 
previously measures of time constants and three mode frequencies. The complete model obtained from match and 
identification process is presented, useful to flexible mode control designs, e. g., LQR, ∞H and PID strategies. The 

natural frequencies and damping ratios are used to design and validate a compensated inverse PID controller to damp 
flexible modes. 
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1. INTRODUCTION 
 

The modeling and identification of a dynamic system (plant) is an interactive process necessary to obtain a model 
with good reliability. The Flexible Link FLEXCAM Quanser System is a very useful equipment to perform this, and so 
is presented in details. The transfer function of the hub is modeled using Bond-Graphs and its coefficients are identified 
using parametric identification (ARX). The next step is the modeling and identification of the flexible structure, where 
the Hamilton’s Principle is used to derive the equations of motion.  The Bond-Graphs are developed and presented 
based on these equtions of motion.  Specific programs are used to produce the overall transfer function, in such way, 
that presents the hub and flexible dynamics. The results and models obtained are thus used to design a digital controller 
presented in Barbosa and Góes (2007). 
 
2. THE FLEXCAM QUANSER SYSTEM 
 

The Quanser System is presented in Fig. 1, used to validate control strategies to Brazilian Vehicle Satellite Launcher 
(VLS), placed at Hybrid Simulation Laboratory (LabSI) of Institute of Aeronautics and Space (CTA-IAE). 

The flexible structure (flexible link) is a uniform flexible beam mounted on the rotating servo plant (hub). The light 
source is attached to the tip of the beam which is detected by a camera mounted to the rotating base.  The hardware and 
equipments of Quanser System consists of a Universal Power Module and a terminal board data acquisition. The hub is 
used to rotary motion experiments and consists of a DC motor mounted with a gearbox. The terminal and the Multiq 
boards perform the analogic to digital and digital to analogic conversion (A/D, D/A). 

The software used to developing, compiling and to perform digital control consists on the Simulink, Real-Time 
Workshop, Watcom C++ compiler and the WinCon controller. The WinCon is a realtime program that performs the 
digital controller and can perform sampling frequencies less than 200Hz (T = 5ms). The figures as follow show the 
typical blocks used in Simulink toolbox, as closed loop control system. It can be used, with few modifications, to 
operate in opened or closed loops. 



  
 (a) (b) 

Figure 1. (a) The FLECAM Quanser System (b) Hub, camera and flexible beam 
 

 

 
 

Figure 2. Typical blocks used in Simulink toolbox. 
 

The camera output is an analog signal which is proportional to the relative deflection of the light source from the 
central axis. The linear displacement y (measurement of tip deflection) corresponds to a linear voltage output. The 
system parameters are presented in Table 1. 

 
Table 1 – System parameters. 

 
Actuator (Hub SRV-02) Flexible Link 

Parameter Numerical value Parameter Numerical value 
Motor torque constant, kt 0.00767  N.m/A Position sensor gain 0.39  V/cm 
Motor torque constant, km 0.00767 V/rd.s Link rigid body inertia 0.0042 kg.m2 
Armature resistence 2.6 Ohm Link mass 0.06 kg 
Armature inductance 0.18 mH Link thickness 0.8 mm 
Gear ratio 14:1 Link height 0.02 m 
Sensitivity 0.0284  V/deg Link length 0.425 m 
Armature inertia 3.87 e-7  kg.m2 Link mass 0.06 kg 
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3. HUB MODELING AND IDENTIFICATION PROCESS 
 

The Figure 3a shows the mechanical and electric diagram while Fig. 3b shows the hub Bond-Graphs.  
 

         
(a)       (b) 

 
Figure 3. (a) Hub mechanical and electric diagram and (b) Hub Bond-Graphs 

 
The symbolic state space equation and transfer function were obtained quickly from the augmented Bond-Graphs. 

Thus, the model to be identified from the input voltage ( )tein  to the angular displacement ( )tθ  is presented below. 
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The input-output data were used to identification process of the hub dynamics. It was defined, a priori, the sampling 

frequency f=200Hz (typical bandwith for this servo is 20 Hz). The auto-regressive with exogenous input, ARX model, 
was used to identify the hub system parameters. The ARX(na,nb,nk) is 
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The results encountered using input-output time histories recorded from tests into ARX model, are  
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The Figure 4 shows the output response from tests and the output response obtained from a simulating using the 

model identified with the same input excitation.  



 
Figure 4. Output time histories comparison 

 

The manufacturer indicates poles  01 =s  and 421 −≅s , so the identification is coherent. 

 
4. FLEXIBLE BEAM MODELING AND IDENTIFICATION PROCES S 
 

The Figure 5 shows the physical system, consisting of a hub rotating around z-axis with a cantilevered flexible 
appendage (beam). The pinned-free boundary conditions are assumed. 

 

 
 

Figure 5. Uniform beam, hub and variables definitions 
 

The equations of motion to the flexible beam are derived using the classical application of Hamilton´s Principle, 
considering the Euler-Bernoulli assumptions. Thus, the Lagrangian with kinetic and potenctial energies is 
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The work performed on the system by the applied torque is 
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where ( ) xty ∂∂ /,0 is the angular displacement of the beam on 0=x . Applying the Hamilton’s principle: 
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and inserting an additional load due to the control’s restoring torque applied to the beam at the axis of rotation, 
according to Barbosa (2001) and Garcia and Inman (1991), we obtain: 
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with the boundary conditions: 
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The solution to flexible displacement of the beam, y, is assumed using a separation of variables, as follows. 
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where n  is the number of flexible modes included in the model, and iη are the modal coordinates. The solution to the 

angular displacement is assumed as follows, considering the modal amplitudes to the beam rotational movement iΘ  

according to Soares (1997). 
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Substituting Equation (9) into Eq. (7b) we obtain: 
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The expressions of Equations (8) and (9) are inserted in the forced Eq. (7a) and then, we multiply each term by jφ  

and integrate with respect to x from x=0 to x=L. Finally, using the orthogonality property of the modes, we obtain: 
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with the coefficients 
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The Bond-Graph for a beam with force-free boundary conditions is thus linked to the Bond-Graph developed to the 
hub and  presented in Fig. 6. 

 
 

Figure 6. Fully augmented Bond-graph model of the Servo plant and flexible beam 
 
The eigenfunctions and corresponding eigenvalues equations to pinned-free boundary conditions are presented as 

follow.  
 

( ) ( )
( ) ( ) ( )








+= LaLa

La

La
Ax ii

i

i
ii sinhsin

cos

coshφ  ( ) ( )LaLa ii tanhtan =  (12) 

 

The symbolic transfer function ( )sG , from input voltage )(tein  to the end of the beam ( )tLy , , is obtained 

developing the conversion on the state space equations based on the fully augmented Bond-Graph model, shown in Fig. 
6.  The 6th order model to be identified is: 

 

( )
01

2
2

3
3

4
4

5
5

6
6

01
2

2
3

3
4

4
5

5

)(

),(

bsbsbsbsbsbsb

asasasasasa

sE

sLY
sG

in ++++++
+++++

==  (13) 

 
where the poles are associated to the frequency of vibrations due to first, second and third modes. Inserting the system 
parameters presented in Table 1, in the symbolic transfer function, Eq. (13), we obtain: 
 

   -3.8e-015 s^5 - 4.91e-005 s^4 + 3.8e-013 s^3 - 0.0117 s^2  + 2.28e-012 s - 0.85 
Y(L,s)/Ein(s) =  -------------------------------------------------------------------------------------------------------------------------- 

   s^6 + 1.07e-005 s^5 + 320.699 s^4 + 0.002999 s^3 + 16848.25 s^2  + 0.116 s + 84534.2 
 

The frequency response function is plotted in Fig. 7. The zeros, poles and frequencies associated are compiled in 
Table 2. 
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Figure 7. Frequency response function 
 
 

Table 2 – Zeros, poles and frequencies associated. 
 

Zeros poles  
5 zeros (rd/s) 6 poles (1/s) frequency (Hz) 

-1.3e+10 -0.0 ± 2.4 i 0.38 Hz 
-2.5 ± 11.2i -0.0 ± 7.7 i 1.23 Hz 
2.5 ± 11.2i -0.0 ± 16.0 i 2.55 Hz 

 
The frequencies associated to the first, second and third modes of vibration can be used to design specific controllers 

using different strategies.  
  
5. RESULTS COMPARISION 
 

The Figure 8 shows the output autospectrum and Fig. 9 shows the Frequency Response Function (FRF) obtained 
from two tests. It can be observed that the first, second and third frequencies are coherent. The Table 3 shows the results 
obtained from three ways: nonparametric, autospectrum and FRF from tests. 
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Figure 8. Output deflection autospectrum   
 
 

10
0

10
1

10
2

-40

-30

-20

-10

0

10

20

 FRF Y(L,s)/Ein(s)

 w (rd/s)

 G
ai

n 
- 

dB

flex1
flex2

 
Figure 9. FRF from tests 

 
The Table 3 presents the frequencies and a comparision from methods. 

 
Table 3 – Frequencies of vibrations comparision 

 
Methods 1st mode  2nd mode 3rd mode 

Nonparametric 0.38 Hz (2.39 rd/s) 1.23 Hz  (7.73 rd/s) 2.55 Hz  (16.02 rd/s) 
Autospectrum - 1.1 Hz  (6.91 rd/s) 2.2 Hz  (13.82 rd/s) 
FRF from tests - - 2.0 Hz (12.6 rd/s) 
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7. RECOMMENDATIONS 
 
During the use of FLEXCAM is recommended the camera be aligned in directions that do not have source lights, 

because this can mask the signals. Frequently is recommended the calibration to the FLEXCAM to obtain the actual 
camera gain. The sample period shall be chosen as fast as the dominant poles (4 to 20 times due to sampling frequency) 
to be considered or to identification process. The best flexible models depend on equipment used. So, the use of 
precision equipment (dynamic analyzer) is recommended. Verify the cables on the back side of the FLEXCAM, they 
must be free in such way that does not hold the rotating movement of the servo SRV-02. 

The choice of location to the source light must be done with care, because it can superimpose two modes of 

vibration. In Miu (1991) “If the location of the sensor is exactly at the node, ra will be identically zero and the resulting 

transfer zero will superimpose on the second system pole. This pole-zero cancellation has the simple physical meaning 
that the second mode has become unobservable”. 
 
8. CONCLUSIONS 

 
The main conclusion in this work is that the identified models are coherent and can be used to design a controller to 

the flexible beam. The ARX model with no polarized signals produced results with quickly convergence. This work 
presented the modeling and identification of a real flexible plant, via practical results, useful to flexible control designs. 
Barbosa and Góes (2007) presents a digital controller based on these results and shows good attenuating on the 
amplitude of vibration, during its movement to a desired angular position. 

The FLEXCAM Quanser System was fundamental to the modeling and identification process, as can be verified 
along this work. The flexibility of using Simulink/Matlab on this test bed is very interesting to study and identify 
flexible structures. 
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