
Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

DESIGN OF COMPOSITE LAMINATE STRUCTURES USING A GENETIC 
ALGORITHM AND FINITE ELEMENT ANALYSIS  

 
Felipe Schaedler de Almeida 
Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, Av. Osvaldo Aranha, 99, 3° andar-
90035-190, Porto Alegre, RS, Brasil 
schaedleralmeida@gmail.com 
 
Armando Miguel Awruch 
Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, Av. Osvaldo Aranha, 99, 3° andar-
90035-190, Porto Alegre, RS, Brasil 
awruch@adufrgs.ufrgs.br 
 
Abstract. This paper deals with the design of composite laminate structures using genetic algorithms and finite element 
analysis. Two examples are presented to show the flexibility of this tool in solving different kind of problems. The first 
case is a  multiobjective problem where total weight and cost of an in-plane loaded plate must be minimized. Objective 
functions consisting on a weighted sum of these two quantities are adopted to hold both objectives at the same time. 
The weighting factor used in these function is varied, shifting the optimization emphasis, to obtain a set of optimum 
solutions. Laminae material, fiber orientation and number of plies are the design variables, which are selected from a 
set of discrete values. The problem constraints are given by material failure and structure buckling safety factors. The 
second design case deals with the stiffness maximization of a cylindrical shell under pressure load. Laminated fibers 
orientations are optimized to enlarge the critical load level and minimize the central structure displacement who are 
obtained by geometrically non-linear analysis. Additionally to material failure, the number of contiguous plies with 
same fiber orientation are considered as a design constraint.  
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1. INTRODUCTION 

 
In the recent decades the use of composite laminate materials on structural applications has been growing, requiring 

great effort on development of analysis and design techniques.  The large number of design variables and the 
complexity of the mechanical behavior are outstanding characteristics of composite material structures design. Such 
characteristics turn the project much more difficult and laborious than those involving conventional materials. 

Optimization methods have been used in the sense of turn the composite material structural design a more 
systematic and well defined task (Gürdal et al., 1999). Moreover, less dependence with respect to designer sensitivity 
and maximum material performance can be achieved. Initially, the same method used to optimize conventional 
materials structures was adopted for composite material structures optimization. This mathematical method works with 
continuous variables and performs the search for the best solution through de design space based on gradient 
information. The effort on using such methods met with limited success, since composite laminate design is, in practice, 
restricted by the manufacturing process that limit the variables to few discrete values. Moreover, typically exist many 
configurations close to optimal laminate configuration (locally optima regions) that can prevent the gradient based 
methods to reach the global optimum. 

  As alternative to gradient based methods, many other techniques were tested, having the genetic algorithm (GA) 
stand out the others because it perfectly adjusts to the problem characteristics. GAs are probabilistic optimization 
methods that seek to mimic the biological reproduction and natural selection process through random, but structured, 
operations. The design variables are coded as genes and grouped together on chromosomes strings that represent an 
organism (possible solution on the design space), what allow GAs to manipulate discrete variables. Instead of working 
with just one search point in the design space, GA uses a population of designs that, by reproduction operations, evolve 
through successive generations. Many search points dispersed in the design space prevent the GA to get stuck in a local 
optimum area, and avoiding a premature convergence of the process. New possible designs (organisms) are generated 
by applying genetic operators on existing population organisms (mimicking the natural genetic mechanisms). The 
evolution of successive generations towards the optimization objectives is achieved by using concept of survival of the 
fittest (where fittest organisms have more chances to reproduce and continue in the next generation) what mimic the 
natural selection process. The organism fitness is obtained directly from an objective function, that uses simple structure 
information. No gradient evaluation is necessary to perform the search by GA. 

Although GA has shown to be well adapted to composite laminate structural optimization problems, it requires a 
large number of analyses in each process, what is a fundamental drawback. In more complex problems, were numerical 
methods are necessary for the structural analysis, an excessive number of analyses can turn GA impracticable. Many 
techniques have been developed to minimize these problems. Essentially, the classical GA structure has been adapted to 



take advantage of composite laminates characteristics. The GA restructuring is done by a new variable codification and 
by the way new genetic operators act on the gene string. 

Two examples of GA application on composite laminate structure optimization are presented in this work. The first 
one consist on a multiobjective optimization where the total weight and cost of an in-plane loaded plate are minimized. 
The objective function formulation is based on a technique for multiobjective problems optimization, were the emphasis 
given to each objective can be adjusted, allowing the GA to obtain the pareto-optimal set. The second example shows 
the use of GA to optimize a cylindrical shell under pressure load, and with geometrically non-linear behavior. The 
optimization objective is to maximize the structure stiffness, using critical load and maximum central displacement as 
parameters to evaluate the feasible solutions. In both examples the whole design space was analyzed in order to prove 
that the GA is successful in finding global optimum at each case. The GA efficiency is evaluated by the number of 
analyses required for each optimization procedure and by the apparent reliability. 

 
2. STRUCTURAL ANALYSIS 

 
Real composite material structures optimization problems depends on a reliable structural analysis. Even for simple 

geometric configurations, the determination of the mechanical behavior is difficult in the case of composite materials. It 
happens because of the complex mechanisms like coupling between extension, bending and torsion deformations, 
depending on the stacking sequence. The available closed mathematical formulations introduce much simplification on 
the analysis or, in many cases, they are not able to predict the structural behavior, mainly for complex geometries. 
These make necessary to use numerical methods that can predict satisfactorily the structure response for a given design 
load. 

There are many works on the field of numerical simulation of composite material structures using the finite element 
method (FEM). However, the expressive number of analyses usually required by GA limits the use of FEM as an 
analysis tool because of the high computational cost for the analysis of each individual design. 

In this work, a triangular flat plate and shell element with 18 degrees of freedom called DKT (Discrete Kirchhoff 
Triangle) is used. This element was developed by Bathe and Ho (1981) for the non-linear analysis of isotropic plates 
and shells. Additionally to the structure displacements, the analysis tool must be able to determinate the stress 
components at the composite layers in order to predict material failure. This is a very common constraint adopted in 
most of optimization problems, and it is used in this work too. The Tsai-Wu failure criterion (Daniel and Iashai, 1994) 
is used in the failure prediction, evaluated at both faces of each ply at each of the three numerical integration point of 
each finite element. In geometrically non-linear analysis the material failure is verified at each load step of the 
interactive solution method, which is stopped if material failure is detected. A safety factor against failure λBfB can be 
obtained using the Tsai-Wu failure function with the material strength parameter for traction, compression and shearing 
at each of the principal material axes. 

          
3. GENETIC ALGORITHMS FOR COMPOSITE LAMINATES 

 
This work uses a GA provided of many modifications with respect to the classical GA to adapt it to the specific case 

of composite structural optimization (Almeida, 2006). In the next sections special genetic operators and strategies are 
explained. None of the classical GA structure is presented, but the reader can find details about it in Goldberg (1989). 

 
3.1. Composite laminate codification 
 

In GA optimization process, the structure is considered as an organism with its characteristics defined in 
chromosomes, as occurs in natural organisms. Each stored information is seen as a gene that refers to one of the 
structure laminate plies. A computational representation of chromosomes is done by a string containing coded 
information of laminate properties. In this work each laminate is represented by a pair of chromosomes, as it was done 
by Soremekun et al. (2001). In the first one, called “orientation chromosome”, information about fiber orientation of 
each laminate layer are stored. The second, called “material chromosome”, is used to point the layers material 
properties group (ply thickness, elastic and strength constants). So, a laminate layer is represented by a pair of genes, 
each in one of the two chromosomes but at the same relative position. The first pair is referred to the outermost layer, 
being the inner layers referred by the succeeding pairs. As only symmetric laminated are used in this work, just half of 
the laminate layers are coded in the gene strings, and so the total number of genes in a chromosome is proportional to 
half of the maximum admissible number of layers in a specific design. 

Integers numbers are used to form two gene alphabets, one for each chromosome, that are used to code a composite 
laminate into two gene strings. The numbers on an alphabet represent the discrete possible values for the design 
variables. In the orientation gene alphabet, each number represents a predefined stack in a layer, which can contain 
more than one ply.  The orientation genes defines how many plies exists on a layer and how are the plies of these fiber 
oriented. Similarly to the orientation gene, material alphabet genes define the material properties group that can be 
assigned to each layer. To allow variations of the total number of layers in the different designs when the optimization 
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process is performed, an empty stack code “0” is used. Specific genetic operators are responsible to add or delete the 
laminate layers by changing gene codes. The maximum number of layers is limited by the total number of genes in the 
chromosome. 

 
3.2. Genetic operators for composite laminate optimization 

 
3.2.1. Crossover  
 

Crossover is an essential GA operator, having the fundamental task to generate new organisms (child) in a 
reproduction process, combining genetic information taken from a pair of organisms (parents) selected from a pre-
existing population. The parents selection is a probabilistic process, but greater chance of selection is given to the fittest 
organisms. The created child will hopefully be better than his predecessors, since his genes were part of organisms with 
good fitness. The crossover operator used in this work is similar to classical crossover operator with few modifications. 
A crossover point is randomly determined and the gene strings are split at the same point in both parent. This point must 
be localized in a non-empty stack gene string region (Soremekun et al., 2001), and both material and orientation 
chromosomes must be split at the same point. The left part of parent 1 and the right part of parent 2 are combined to 
form a child. The probability of application of crossover operators is set to 100% in all the examples presented, because 
it is considered a fundamental operator in GA.    

   
3.2.2. Mutation 
 

The classical GA operator acts over the chromosomal string changing a gene value. It is implemented to each gene, 
at a small probability, introducing a different value chosen from the gene alphabet. In spite of the randomity of this 
process, it is possible to incorporate to the mutation operator some knowledge about mechanical response of composite 
materials when one or more of its characteristics are altered.  This may let to a less random process and guide the 
evolution towards optimization objectives. These modifications lead to new operators called orientation alteration, 
material alteration, ply addition and ply deletion, replacing the classical mutation in the GA (Nagendra et al, 1996 and 
Soremekun et al., 2001). 

Orientation alteration and material alteration operators are implemented very similarly to classical mutation. The 
differences are based in the fact that they are independently applied to orientation and material chromosomes, 
respectively. Different orientation and material operator probabilities (pBoaB and pBmaB) may be adopted, which is 
convenient, since orientation and material chromosome may converge at different velocities in a optimization process. 
Additionally, these operators are restricted to non-empty stack regions of the gene string. 

The variation of the total number of laminate layers is made by ply addition and ply deletion operators.  By a given 
pBpaB probability, ply addition operator introduces a new layer close to the laminate mid-plane (end of chromosome), and 
delete an existing empty stack. The new genes are determined randomly by chosen codes at each related gene alphabet. 
In an opposite way, ply deletion take out a last pair of genes of organism chromosome (innermost layer) and adds a pair 
of empty ply genes at the outermost position. This operator is implemented with a given pBpdB probability. Both operators 
manipulate at the innermost laminate layer because it has a little effect on bend-twist performance of the plate or shell, 
causing no abrupt changes in the design. 

 
3.2.3. Permutation 
 

The main characteristic of permutation operator is the ability to modify laminate stack sequence without changes of 
the total number of plies with fibers oriented on each permissible direction. This allows GA to change the bending 
behavior of the laminate without modifying its in-plane mechanical response. The permutation operator implemented in 
this work is equivalent to the gene-swap operator (Nagendra et al, 1996 and Soremekun et al., 2001), where two pairs of 
genes, representing non-empty layers, are chosen randomly and they have their position shifted in the chromosome, 
resulting on a new staking sequence. Such operation occurs at a given probability pBperB, usually with a larger value than 
those corresponding mutation operators probabilities. 

 
3.3. Selection Schemes 
 

There are many ways to obtain the population of successive generations in a GA. In classical algorithms new 
generations are formed only by children created from an existing population. This process has many drawbacks since 
there is no warranty of improvement or maintenance of achieved evolution when all population is replaced. To solve 
this problem new selection schemes were created, being one of them the elitism scheme, which consists in transfer good 
organisms from old population to a new generation, preserving desirable genetic information. This paper deals with a 
multiple elitist scheme (Soremekun, 1997). 



In the multiple elitist scheme, both parent and child populations of size P are independently ranked from best to 
worst fitness. These two populations are then combined and ranked together, resulting in a combined population with 
2P organisms. Then, best Ne individuals of the combined population are transferred to the new generation. The best 
individuals of child population that have not already been used are taken to fill the remainder of the new generation. 
The number of top elements (Ne) to be transferred to the new generation is a GA parameter to be adjusted at each 
application case 
 
4. NUMERICAL APPLICATIONS 

 
In the following sections two examples of GA applied to optimize composite laminate structures are presented. To 

prove the success of the optimization procedure and to characterize the problem design space, all the possible laminate 
configurations are previously analyzed. Additionally, to obtain the algorithm reliability and computational cost, N 
optimizations with the GA are carried out for each example. The apparent reliability (R) is determined by taking the 
number of optimizations for which the GA finds at least one global optimum (No), divided by the total number of 
applications of the GA (N). It defines the chances of obtaining the global optimum in a single application of the GA. As 
the structural analysis employing the FEM is usually the most time consuming task in the optimization procedure, the 
GA cost is determined by  
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i
PBgB is the total number of generations analyzed in the i-th optimization procedure.   

The criterion to stop the optimization process, used in both examples, is based on two parameters, the upper limit of 
the number of generations (NBLGB) and the maximum number of generations with no improvement of the best design 
(NBSDB).  Once one of these limits is reached, the optimization process is stopped and the best laminate of the last 
generation is taken as the optimization result. NBLGB and NBSDB are defined in each optimization procedure, depending on 
the problem complexity. 

  
 4.1. Cost and weight minimization of an in-plane loaded composite laminate plate.  

 
In this example the total cost and the weight of an in-plane loaded composite laminate plate are minimized. No 

instability or material failure is admissible for a feasible design. Plate geometry, load and boundary conditions are 
presented in Fig. 1. The resultant laminate must be symmetric and it must have from 3 to 12 layers, formed by 2 plies 
each one, and they are oriented at 0°B2B, ±45° and 90°B2B. Additionally, each layer can be made of two unidirectional 
composites, Kevlar-epoxy or Graphite-epoxy, which have different mechanical properties and cost, as it is shown in 
Fig. 1. The elastic constants are the Young’s modulus on fiber direction (E1) and transverse to fiber direction (E2), 
shear modulus (G12) and the Poisson’s ratio (ν12), respectively. Strength parameters for traction and compression for 
longitudinal and transversal directions are given by F1t, F1c, F2t, and F2c respectively, and F6 is the shear strength. 
The remainder parameters are the specific weight (ρ), the cost per unit weight (C), and the ply thickness (t). A regular 
finite element mesh with 432 elements and 247 nodes is used in the structural analysis. 

 

  
 

Figure 1. Composite laminate plate under in-plane load 
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 The safety factor for material failure λBfB is given by the Tsai-Wu failure criterion (Daniel and Iashai, 1994), while 

the safety factor for structural elastic instability λBbB is obtained solving the eigenvalue problem involving linear and non-
linear stiffness matrices. A design is considered to be feasible when both λBfB and λBbB are grater or equal to 1.0.   

The optimization is made through the manipulation of the total number of layers, fiber orientations and ply 
material. The numbers 1, 2 3 are used to represent the stacks 0°B2B, ±45° and 90°B2B in the orientation chromosome, 
respectively, while the numbers 1 and 2 are used to represent Kevlar-epoxy and Graphite-epoxy material in the material 
chromosome, respectively. The laminate is represented by a pair of chromosomes with 6 genes each, resulting in 55944 
possible designs. A distribution of weight and cost of all the possible feasible designs in the problem is shown in Fig. 2. 
The points A to F in this figure are the pareto-optimal designs, which must be obtained by the GA, according to the 
emphasis given to each of the optimization objectives. Details of the pareto-optimal points are presented in Tab. 1. 

 

 
           

Figure 2. Weight and Cost of feasible designs 
 

Table 1. Pareto-optimal designs. 
 

Optimal design Laminate Weight (N) Cost (uc) λBbB λBfB 

A [ ]Skeke
43 90,45±  24.49 73.46 1.30 16.04 

B [ ]Skekekege
24 0,90,45,45 ±±  25.44 64.62 1.56 17.16 

C [ ]
S

kekekegege
222 90,45,0,90,45 ±±  26.39 55.77 1.64 18.00 

D [ ]Skegegege
222 45,45,0,90 ±±  27.34 46.93 1.50 31.84 

E [ ]Skegegege
2222 0,45,0,90 ±  28.30 38.09 1.30 30.93 

F [ ]
S

gegegegege
222 0,45,0,90,45 ±±  29.25 29.25 1.04 55.12 
  

An objective function must be established to determine the designs fitness to be used by the GA in the optimization 
process. In this example weight and cost are supposed to be simultaneously minimized, what characterizes a 
multiobjective optimization problem. The objective function formulation must include both parameters and to allow 
modifications on the emphasis given to each of them. GA can obtain each of the pareto-optimal designs by shifting the 
objective emphasis adjusting the weighting factor α. The optimization constraints must also be considered in the 
objective function by penalizing the unfeasible designs and with benefit to those with a large safety factor. 

First it was tested a standard objective function formulation for multiobjective optimization, consisting in a linear 
combination of the two objectives. This attempt was frustrated because the pareto-optimal set is arranged as a line in the 
wheight-cost plane, as can be seen in Fig. 1. In this case, every value of α leads to one of the extreme points A or F. 

The alternative objective function used in this paper for multiobjective optimization is given in by 
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In these equations WP

*
P e CP

*
P are the normalized total weight and cost of the plate, respectively. They are normalized 

using the maximum and minimum values that are easily obtained by the extreme combination of materials and number 
of layers. The structural safety factor λP

*
P is given by the minimum value between λBbB and λBfB. 

Instead of working directly with weight and cost, the implemented formulation uses the square of these variables, 
already weighted by the factor α. This alternative gives a curved distribution of the optimal designs in the weight-cost 
plane. The optimal solution is defined as the closer point to the weight-cost axes origin, being this distance given by 

“ ( )[ ] ( )( )[ ]22*
22* 1 CW αα −+ ”. The safety factor λP

*
P is used to penalize unfeasible designs and to benefit the feasible 

ones. 
In the optimization process, GA is applied 25 times for each α, which is taken varying from 0.0 to 1.0 with 

increments equal to 0.1.  The GA is used with a population size P=30 and the elitist scheme parameter Ne=4. The 
genetic operators are used with the following probabilities pBaoB=4%, pBamB=2%, pBpaB=4%, pBpdB=8% e pBperB=80%. The 
criterion parameters to stop the process are NBLGB = 300 and NBSDB= 100. 

The GA can obtain one of the pareto-optimal designs for every tested α, but not all of the 25 GA applications for 
each value of α are successful in obtaining one of these points. This happens because there are many designs with the 
same weight and cost of the optimal design, but with a small safety factor. As a benefit for safety factor was 
implemented in the objective function, these designs have slightly different fitness. Table 2 shows the apparent 
reliability (R) and its standard deviation (σ), resulting of AG optimizations at two situations. The first situation 
considers only the optimal designs presented at Tab. 1., and the second considers as valid solutions all the designs with 
the same weight and cost of those in Tab. 1. These are called “near optimal design” and are found in every optimization 
and for all α values, showing the GA efficiency. 

Table 2 also shows for each α the average number of applications of the GA required to convergence, An, and the 
parameter J, determined by taken An and dividing it by the size of the design space.  The GA reveled to be expensive 
(6.5%<J<9.5%), and it can be attributed to a retardation to stop the process until the maximum number of generations 
caused by new fitters designs (with same weight and cost but better safety factor), obtained at the end of the 
optimization procedure. 

 
Table 2. GA optimization results. 

 
Optimal designs Near optimal designs α  Pareto-optimal set 
R σ R σ 

An J 

0 A 100% 0.0% 100% 0% 3791 6.8% 
0.1 A 100% 0.0% 100% 0% 3646 6.5% 
0.2 A 100% 0.0% 100% 0% 3690 6.6% 
0.3 B 100% 0.0% 100% 0% 3976 7.1% 
0.4 B 100% 0.0% 100% 0% 4320 7.7% 
0.5 C 20% 8.0% 100% 0% 4501 8.0% 
0.6 D 16% 7.3% 100% 0% 4139 7.4% 
0.7 E 20% 8.0% 100% 0% 5291 9.5% 
0.8 F 88% 6.5% 100% 0% 4898 8.8% 
0.9 F 76% 8.5% 100% 0% 4378 7.8% 
1 F 96% 3.9% 100% 0% 4710 8.4% 

             
4.2. Stiffness maximization of a composite laminated shell with geometrically non-linear behavior.  

 
The cylindrical shell under uniform pressure load is shown in Fig .3. In the optimization process, the finite element 

analysis is carried out taken into account geometrically non-linear effects. It was considered that in the composite 
laminate material only the fiber angles may assume different discrete values, while all the other parameters remain 
fixed. Material failure and the number of contiguous plies with the same fiber orientation are considered as design 
constraints. This last constraint is imposed in order to avoid the failure of the composite material due to matrix rupture. 
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Figure 3. Cylindrical shell under a uniform pressure load 
 

A finite element mesh for the whole domain having 800 elements and 441 nodes is adopted and the Generalized 
Displacement Control Method (Yang and Shieh, 1990) is used to solve the non-linear problem. In Fig. 3 are also 
included material properties (elastic constants, specific weight and strength parameters) corresponding to glass-epoxy. It 
is considered that the composite material is formed by 14 layers having a fixed total thickness h = 12.6 mm. Each layer 
is formed by 2 plies that may have fiber orientations such as 0°B2B, ±45° and 90°B2B. Contiguous plies with same fiber 
orientation are limited to 4 plies. An orientation chromosome with 7 genes is used. Codes 1, 2 and 3 are attributed, 
respectively, to the laminate sequence 0°B2B, ±45° and 90°B2B. 

    To evaluate the shell stiffness two parameters, obtained form the structural analysis, are used. The first one is the 
critical load level (NCBcritB) determined when the curve pressure x displacement at the central point reaches the first peak. 
The second parameter is the maximum value of the displacement of the central point (UBmáxB) at the end of the load 
increment or when material failure is observed. Two variables are used in order to consider situations where constraints 
are satisfied or they are violated. The first variable is the maximum load level acting on the structure without material 
failure (NCBmáxB) and the second variable is an integer number (VBnlcB) indicating how many times the constraint referred to 
contiguous plies with the same fiber orientation have been violated. In Fig. 4 values of NCBcritB and UBmáxB corresponding to 
situations where the two constraints are not violated (feasible designs) are shown. 

 

 
 

Figure 4. Critical load level x maximum central displacement of feasible designs 
 

The objective here is to maximize the structure stiffness, obtaining the maximum value of NCBcritB associated to the 
minimum value of UBmáxB. The structure fitness is given in the GA by the following function:       
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 In Eq. (3), NCP

2
PBmáxB is used to penalize structural failures before the application of the total load, whereas (VBnlc B+ 1) is 

employed to penalize configurations where the maximum number of plies with the same fiber orientation is greater than 
4. The optimal solution, contained in Fig. 4, is defined by the stacking sequence ( )[ ]S224 90,45,90 ±  and the 
following value of the parameters: NCBcritB = 0.563 and UBmaxB = 27.2 x 10P

-3 
Pm. 

In order to evaluate the parameter NBLGB (limit for the number of generations) and P (number of individuals in the 
population) with respect to the performance of the GA, 5 values of each of parameter are adopted and 50 optimizations 
are carried out for each of the 25 combinations of the two parameters. All these combinations of NBLGB and P are 
presented in Tab. 3, where Ne and NBSDB, associated with NBLGB and P had also been included.  The probability of fiber 
orientation alterations is taken in this case as being pBaoB=4%, while for the probability of permutation pBperB=80% is 
adopted. As the number of layers remains fixed and only glass-epoxy is used, the probabilities pBam B= pBpaB = pBpdB = 0. 

  
  Table 3. Study of some parameters used in the GA. 

 

Comb P (Ne) NBLGB (NBSDB) Comb P (Ne) NBLGB (NBSDB) Comb P (Ne) NBLGB (NBSDB) 

1 50 (8) 300 (100) 11 50 (8) 108 (36) 21 50 (8) 33 (11) 

2 30 (5) 300 (100) 12 30 (5) 108 (36) 22 30 (5) 33 (11) 

3 18 (3) 300 (100) 13 18 (3) 108 (36) 23 18 (3) 33 (11) 

4 10 (1) 300 (100) 14 10 (1) 108 (36) 24 10 (1) 33 (11) 

5 6 (1) 300 (100) 15 6 (1) 108 (36) 25 6 (1) 33 (11) 

6 50 (8) 180 (60) 16 50 (8) 60 (20)    

7 30 (5) 180 (60) 17 30 (5) 60 (20)    

8 18 (3) 180 (60) 18 18 (3) 60 (20)    

9 10 (1) 180 (60) 19 10 (1) 60 (20)    

10 6 (1) 180 (60) 20 6 (1) 60 (20)    
 
In Fig. 5, some results of the optimization are presented. Obviously, when values of NBLGB increase An has an higher 

value, while R decreases.  
The main goal of this case is reached because the design with the maximum stiffness is obtained for the different 

combinations of some of its parameters. Additionally, a combination for values of NBLGB and P giving the minimum 
number of structural analyses has been also studied. It depends of the required reliability, because the computational 
cost varies proportionally. Table 4 shows the combination with the lower computational cost for each value of R above 
90%. In this table, J is the relationship between An and total number of solutions in the design space. 

 
  Table 4. The best combinations according to increasing values of the apparent reliability R. 

 
 

 

R Comb P NBLGB An J 
92% 23 18 33 394 18% 
94% 21 50 33 896 41% 
96% 5 6 300 793 36% 
98% 18 18 60 567 26% 

100% 13 18 108 893 41% 

As can be observed, 18 individuals is the ideal size for the population, appearing three times with the lower values 
of An and the best values of R. It is also observed that in combination number 18, with P=18, the apparent reliability is 
R=98%, the number of structural analyses is not very high (567) and, for this case, NBLGB =60. 
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Figure 5. Average value of the number of structural analysis per optimization process and apparent reliability for each 
combination of the parameters of the GA 

 
4. FINAL REMARKS 

 
The GA was applied successfully to optimize composite laminate structures. In the first example a new objective 

function was used to find the pareto-optimal set. It was not possible to reach this goal using a conventional objective 
function. Some difficulties were observed when secondary objectives, such as the maximization of the safety factor, 
were incorporated, but, in spite of this aspect, the algorithm obtained optimum values for the main objectives (weight 
and cost). In the second example a cylindrical shell with geometrically non-linear behavior was analyzed. In this 
problem the influence of different values of P and NBLGB, taking R and An as parameter, was studied. Using 25 
combinations of P and NBLGB the tendency of R and An was analyzed. Finally, intervals of P and NBLGB where the GA is 
more efficient were determined.    
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