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Abstract. The rotary inverted pendulum is a control design problem which covers many research topics. Due to its
intrinsic non-linearity, chaotic movement, and underactuated control, it is an ideal experiment for the application of
modern control techniques. In order to build a physical implementation of its system, one needs to previously study its
dynamics and obtain an accurate computational simulation to guide this task. In this paper, a simulator provides the
user a friendly interface in which a customized physical implementation of the double inverted pendulum can be studied.
The user can choose among different control techniques, namely classical space-state control and optimal LQG control
using a Kalman filter. The simulation is useful in determining the requirements of torque and controllability for the system
according to the choice of link lengths and materials. Such requirements can only be determined using a simulation of the
system dynamic model. The paper presents a complete description of the pendulum dynamic model, control design and
physical implementation aided through the simulated model.
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1. INTRODUCTION

Throughout the world, control theory laboratories have didactic experiments in order to permit that theoretical ap-
proaches to control a system can be actually used in real life. The research in control theory also needs experiments
where the new techniques can be applied. So, there is a growing idea of creating laboratories where, with few control
experiments, many research topics can be studied (Horácek,2000).

A very simple system, often used in control laboratories, isthe inverted pendulum. It has a very simple mechanical
system, but its non-linearity and chaotic movement brings agreat challenge to the controlling task (Zhou and Whiteman,
1996) and (Stachowiak and Okada, 2006). The most common inverted pendulum experiment is thecart-pendulum, which
is a pole that must be balanced by the movement of a cart underneath it (Horácek, 2000). A tricker experiment would
be a rotary inverted pendulum, also calledpendubot(Spong and Block, 1995). A rotary inverted pendulum has even
more non-linear dynamics, and with it can be studied the taskof balancing the upper pole and even swinging it up from
below (Awtar et al., 2002). Fig 1 shows the rotary inverted pendulum under development at Laboratório de Robótica e
Automação (LARA) in UnB.

Figure 1. Physical implementation of a rotary inverted pendulum built at LARA in UnB.
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In order to built a rotary inverted pendulum, there must be some information about which could be the best combination
of physical parameters to create a feasible control experiment. In order to obtain such design parameters, there must be
a mathematical modeling of the system. From such model, a simulator can be built in which any closed-loop control
configuration can be studied. As a result, good combination of parameters could be used in a physical implementation.

One of the most important information acquired from the simulations is the magnitude of the control signal. This
information would be the difference in utilizing a very powerful and expensive motor that would not work in its full
capacity, and another one that would not be capable of controlling the rotary inverted pendulum.

With a simulation that aids choosing the right parameters toa physical implementation of any system, money and
priceless work-time can be saved. The major contribution ofthis paper must be the encouragement of this way of project
development.

This paper is organized as follows. Section 2 contains the description of the rotary inverted pendulum and its mathe-
matical model. In Section 3 a proposed LQG control is analyzed and implemented in Section 4 with the chosen simulation
parameters. Section 5 has the simulation results and in Section 6 are the conclusions obtained from this paper. The refer-
ences utilized are in Section 7.

2. SYSTEM DESCRIPTION AND MODELLING

The rotary inverted pendulum here studied can be reduced to the schematic model shown in Fig. 2. On the joint
represented by the pointO is placed the DC motor, the system’s actuator. The system is underactuated since the other
joint at pointA there is no actuator. In this way, with only one control input, both angles from the poles that compose the
pendulum must be controlled.

Figure 2. Schematic model from rotary inverted pendulum.

In order to obtain the mathematical model of a rotary inverted pendulum, one approach consists in analyzing it through
free body diagrams (Merian and Kraige, 1999). The Figure 3 below shows how it can be done. Are represented the
control input of the system,u, the weight force from each pendulum’s poles, P1 and P2, the damping torques from each
pendulum’s joints, D1 and D2 with respectively damping coefficientsd1 andd2, the internal forces on pointA, Ax and
Ay, and finally the angles from each pole,θ1 andθ2.

Using momentum, forces on horizontal and vertical axis equations, the problem can not be fully answered, so there
must be an analysis of the relative acceleration between points O andA, and the relative acceleration between pointO
and the center of mass from Link2 (Merian and Kraige, 1999) and (Zhou and Whiteman, 1996). The following system
will then be obtained.

α1 =
(m2l

2
2 + 4IG2)N1 − (2m2l1l2 cos(θ2 − θ1))N2

D
, (1)

α2 =
−(2m2l1l2 cos(θ2 − θ1))N1 + 4(m2l

2
1 + IO1)N2

D
, (2)

where, N1 = −u + d1ω1 − d2(ω2 − ω1) +
1

2
m1l1g cos(θ1) + m2l1 cos(θ1) −

1

2
m2l1l2ω

2
2 sin(θ2 − θ1), (3)

N2 = d2(ω2 − ω1) +
1

2
m2l2g cos(θ2) +

1

2
m2l1l2ω

2
1 sin(θ2 − θ1), (4)

D = −m2
2l

2
1l

2
2 − 4m2l

2
1IG2 − IO1m2l

2
2 − 4IO1IG2 + m2

2l
2
1l

2
2 cos2(θ2 − θ1). (5)

For each Linki, i = 1, 2, there are represented its mass (mi), length (li), angular speed (ωi) and angular acceleration
(αi). The coefficientsIG2 andI01 correspond respectively to the inertia momentum from Link2 through its center of
mass, and to the inertia momentum from Link1 through the pointO.
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Figure 3. Free body diagrams for both Link1 and Link2.

Considering the state space variablesθ1, θ̇1, θ2 andθ̇2, and solving the system from Eqs. (1) and (2), are obtained the
dynamic equations for the rotary inverted pendulum:
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This non-linear model will be used during the system’s simulation to obtain its motion. A fourth order Runge-Kutta
algorithm solves numerically this system of differential equations, providing an accurate approximation for the rotary
inverted pendulum behavior (Press et al., 1992).

In order to utilize the state space control, the system must be linearized at an equilibrium point(x0, u0), where
f(x0, u0) = 0 (Franklin et al., 1998).

Linearizing and having the outputy for bothθ1 andθ2, is obtained the state space representation below:

u = u0 + δu (13)
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]
. (19)

Utilizing a sampler period ofTs seconds and considering a zero order holder, the discrete time state space representa-
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tion is (Franklin et al., 1998):

δxk+1 = Φδxk + Γδuk, (20)

yk = H(δxk + x0). (21)

3. STABILIZING CONTROLLERS

In order to control the system with its linearized model, three major systems characteristics must be dealt: adjust to the
fact that the system is linearized to an equilibrium point; there must be a reference signalr; and there must be an estimate
for the current statexk calledx̂k, because not all states are available in system’s output.

When the system reaches the reference signal, the control signal will not always be zero, so it has a steady state value
uss, wheref(r, uss) = 0. So:

uss = u0 + δuss. (22)

In other words, the control signalδuk will also have a non-zero steady state value. Then, the system’s control law can
be as follows:

δuk = −K(δxk − δxr) + δuss, (23)

uk = u0 − K(δxk − δxr) + δuss = uss − K(δxk − δxr), (24)

where, δxr = r − x0. (25)

The Separation Principlesays that the controller can be designed as all states are available in output. Then it can
be added to a system where a estimator is used with no damage tothe desired poles location. The matrixK will be
responsible to minimize the cost function in Eq. (26) (Franklin et al., 1998).

J ′ = lim
N→∞

1

2

N∑

k=0

(δxT
k Q1δxk + δukQ2δuk). (26)

The coefficientsQ1 andQ2 are responsible to weight the importance of respectivelyδx andδu to the cost function.
From Eq. (26) is obtained theAlgebraic Riccati Equationbelow, and with its solution can be obtainedK as shown in Eq.
(29) (Franklin et al., 1998).

S∞ = Φ
T (S∞ − S∞ΓR−1

Γ
T S∞)Φ + Q1, (27)

where, R = Q2 + Γ
T S∞Γ, (28)

K = R−1
Γ

T S∞Φ. (29)

The coefficientQ2 is a scalar since only one input to the system, while matrixQ1 can be determined by Eq. (30).

Q1 = ρHT H. (30)

In order to obtain the estimatêxk, and complete the LQG design, it is used anExtended Kalman filter(EKF) applied to
the non-linear state space model. The EKF will be responsible for producing a minimum error variance estimate (Welch
and Bishop, 2001). Consideringwk andvk process and measurement white noises respectively, and discretizing the
system of differential equations in (6) using Euler method,one obtains:

xk = xk−1 + Tsf(xk−1, uk−1) + wk, (31)

= s(xk−1, uk−1,wk), (32)

yk = Hxk + vk (33)

= t(xk−1, uk−1,vk). (34)

The process and measurement noises’ distributions can be represented as Gaussian ones with null expected value and
covariance matricesQ andR, respectively. The noises can be represented as (Welch and Bishop, 2001):

w ∼ N(0,Q), (35)

v ∼ N(0,R). (36)

Doing another linearization to Eq. (32) and (34), are obtained the matrices needed to implement the EKF algorithm.
The algorithm can be divided in two parts: thePredictionone, when a first estimation is made based on the knowledge
about the system, and theCorrection one, responsible to weight the system’s innovation (yk − Hx̂

−

k−1) (Welch and
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Bishop, 2001). Figure 4 represents how the algorithm works.

Φk[i,j] =
∂s[i]
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∂x
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∂x[j]
(x̂k−1, 0) = H, (39)

V k[i,j] =
∂t[i]

∂v[j]
(x̂k−1, 0) = 1. (40)

Figure 4.Extended Kalman filteralgorithm.

4. PHYSICAL SYSTEM PARAMETERS

The construction of a real implementation of a pendubot should consider two system’s properties: controllability and
observability. Both can be studied with the system’s dynamic model, and then, a good set of physical parameters could be
found for the real pendulum.

In order to choose in which lengths and material the rotary inverted pendulum’s poles are made, there are some facts
that should not be ignored: an inverted pendulum with a Link2 heavier then Link1 would increase the controllability of
the system, although it will imply in a greater control signal; greater lengths would also imply in a greater control signal,
but a Link1 longer than Link2 would permit the equilibrium to lower values ofθ1.

The system’s control strategy can also be set to help the goodbehavior of the pendubot. The LQG control uses a local
linearized dynamic model to an equilibrium point(x0, u0). It is only accurate when the system’s states and input signal
do not differ much from the equilibrium values. The use of a very fast controller could take the system out of that region
before it gets in steady state, therefore,Q2 should be greater thanρ (Eq. 30), providing a controlled system that evolves
slowly. It happens because the pendubot would have a pole displacement that minimizes the control inputuk.

A good combination of parameters to compose and perform a simulation of a rotary inverted pendulum is shown in Tab.
1. The sampler periodTs is chosen to be0.001 seconds because it is longer enough to permit the necessary computation
time, and permits a good approximation to the real movement that a physical implementation would perform.

Table 1. rotary inverted pendulum parameters used in simulation.

m1 (kg) 0.3 m2 (kg) 0.5
l1 (m) 0.3 l2 (m) 0.3

d1 (N.m.s) 0.01 d2 (N.m.s) 0.01
x10 (rad) π

4 x20 (rad/s) 0
x30 (rad) π

2 x40 (rad/s) 0
x1final (rad) 3π

4 x2final (rad/s) 0
x3final (rad) π

2 x4final (rad/s) 0
Ts (rad) 0.001
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As shown in Tab. 1, the controller must bring the rotary inverted pendulum from a statex0 to xfinal. To make it
possible, several local linearizations to the system are made to get to the desired final state. Consequently, the referencer

will evolve to finally be equal toxfinal. For each linearized model,r will not be more thanπ
36 away from the equilibrium

point where the linearization was made.
The coefficientsQ1 andQ2 must be tuned to obtain the control gainK. As mentioned before, a good option would

be to setQ2 greater thenρ. The matrixQ1 can be obtained fromH as follows:

Q1 = ρHT H = ρ





1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0



 . (41)

And Q2 is just a constant:

Q2 = η. (42)

A good combination forρ andη used in simulation isρ = 1 andη = 10.
The adjustment of covariation matricesP 0 andQ is tricky. A good approach would be to minimize the variance of

states that cannot be directly measured from the output. Eq.(43) shows the value used for the simulation.

P 0 = Q =





1 0 0 0
0 0.1 0 0
0 0 1 0
0 0 0 0.1



 . (43)

Considering that both angular sensors used in the real implementation will have a error variance ofπ1620 , matrix R

equals to:

R =

[
π

1620 0
0 π

1620

]
. (44)

The simulations results are shown in next section.

5. SIMULATION RESULTS

Figures 5(a), 5(b) and 5(c) were obtained from a rotary inverted pendulum simulator programed in MATLAB, and
represent the obtained values forθ1, θ2 anduk respectively. As can be seen, the reference forθ1 evolves until it reaches
the desired value from Tab. 1. Figures 6(a), 6(b) and 6(c) represent the obtained values forθ1, θ2 anduk respectively but
now for a simulation that uses not advised values for poles lengths and weights. As it can be seen, the major value that
the control input has achieved is1.6956Nm, that would be the minimum value that a DC motor used in a real experiment
could provide. The results show that a rotary inverted pendulum with those characteristics would not be easily controlled
and would oscillate when it reaches a value close to the final reference at3π

4 rad. In fact, a rotary inverted pendulum with
m2 = 0.1kg could not be controlled to follow the references used for both simulations.

Figure (7) shows the simulator interface. With this interface it possible for the user to chose among others control
strategies and configurations. For instance, in a given configuration the optimal controller uses the real state vector
instead of using the EKF.

6. CONCLUSIONS

In this paper, it has been shown a simulation-based design ofa rotary inverted pendulum. Indeed, an optimal regulator
has been proposed, but the major result of the analyzed simulation is the control signal maximum value. That clearly is
an information that only the simulation could provide in order to aid the choice of physical components of the pendulum.
There are many other possibilities for each parameter to thephysical implementation, and for each one of them it can be
studied how the control setting would perform, whether the physical configuration maximizes or minimizes the controlla-
bility, and whether a DC motor with a limited torque could perform the control. One major drawback is the limitation that
the linearized model implies for control purpose. A non-linear control could solve this problem, and is one of the ongoing
researches topics, such: Markov jump non-linear systems modeling to control the “swing up ” mode, and closed-loop
identification of the real system.
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Figure 5. Graphics (a),(b) and (c) are respectively the obtained values forθ1, θ2 andu for a simulation with parameters
from Tab. 1,ρ = 1 andη = 10.
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Figure 6. Graphics (a),(b) and (c) are respectively the obtained values forθ1, θ2 andu for a simulation withl1 = 0.2m,
l2 = 0.3m, m1 = 0.3kg, m2 = 0.2kg, ρ = 10 andη = 1.
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