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Abstract. The rotary inverted pendulum is a control design problemcWtdovers many research topics. Due to its
intrinsic non-linearity, chaotic movement, and underatéd control, it is an ideal experiment for the applicatioh o
modern control techniques. In order to build a physical iempéntation of its system, one needs to previously study its
dynamics and obtain an accurate computational simulatmiguide this task. In this paper, a simulator provides the
user a friendly interface in which a customized physicallengentation of the double inverted pendulum can be studied.
The user can choose among different control techniqueselyartassical space-state control and optimal LQG control
using a Kalman filter. The simulation is useful in determgniine requirements of torque and controllability for thetsys
according to the choice of link lengths and materials. Seduirements can only be determined using a simulation of the
system dynamic model. The paper presents a complete destigp the pendulum dynamic model, control design and
physical implementation aided through the simulated model
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1. INTRODUCTION

Throughout the world, control theory laboratories haveaditt experiments in order to permit that theoretical ap-
proaches to control a system can be actually used in real Tifee research in control theory also needs experiments
where the new techniques can be applied. So, there is a gradéa of creating laboratories where, with few control
experiments, many research topics can be studied (Hora0eR).

A very simple system, often used in control laboratorieshésinverted pendulum. It has a very simple mechanical
system, but its non-linearity and chaotic movement bringeeat challenge to the controlling task (Zhou and Whiteman,
1996) and (Stachowiak and Okada, 2006). The most commortéaveendulum experiment is tieart-pendulumwhich
is a pole that must be balanced by the movement of a cart uealtbrit (Horacek, 2000). A tricker experiment would
be a rotary inverted pendulum, also calleendubot(Spong and Block, 1995). A rotary inverted pendulum has even
more non-linear dynamics, and with it can be studied the ¢d&lalancing the upper pole and even swinging it up from
below (Awtar et al., 2002). Fig 1 shows the rotary invertedcagdum under development at Laboratério de Robotica e
Automacéo (LARA) in UnB.

Figure 1. Physical implementation of a rotary inverted pgumch built at LARA in UnB.
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In order to built a rotary inverted pendulum, there must beessmformation about which could be the best combination
of physical parameters to create a feasible control exgerimn order to obtain such design parameters, there must be
a mathematical modeling of the system. From such model, alaior can be built in which any closed-loop control
configuration can be studied. As a result, good combinatigraameters could be used in a physical implementation.

One of the most important information acquired from the dations is the magnitude of the control signal. This
information would be the difference in utilizing a very padig¢ and expensive motor that would not work in its full
capacity, and another one that would not be capable of dongrohe rotary inverted pendulum.

With a simulation that aids choosing the right parametera physical implementation of any system, money and
priceless work-time can be saved. The major contributiathisfpaper must be the encouragement of this way of project
development.

This paper is organized as follows. Section 2 contains tiserg®ion of the rotary inverted pendulum and its mathe-
matical model. In Section 3 a proposed LQG control is analyred implemented in Section 4 with the chosen simulation
parameters. Section 5 has the simulation results and im&etare the conclusions obtained from this paper. The-refer
ences utilized are in Section 7.

2. SYSTEM DESCRIPTION AND MODELLING

The rotary inverted pendulum here studied can be reducdagetsdhematic model shown in Fig. 2. On the joint
represented by the poi is placed the DC motor, the system’s actuator. The systemdsractuated since the other
joint at pointA there is no actuator. In this way, with only one control infagth angles from the poles that compose the
pendulum must be controlled.

Motor

Figure 2. Schematic model from rotary inverted pendulum.

In order to obtain the mathematical model of a rotary inveegendulum, one approach consists in analyzing it through
free body diagrams (Merian and Kraige, 1999). The Figure I8vbshows how it can be done. Are represented the
control input of the system, the weight force from each pendulum’s poles,@ad B, the damping torques from each
pendulum’s joints, B and D, with respectively damping coefficients andd,, the internal forces on poi, A, and
A, and finally the angles from each potg,andf..

Using momentum, forces on horizontal and vertical axis #gns, the problem can not be fully answered, so there
must be an analysis of the relative acceleration betweantg0iandA, and the relative acceleration between p@nt
and the center of mass from LinkMerian and Kraige, 1999) and (Zhou and Whiteman, 1996). ©Heviing system
will then be obtained.

(mzlg + 4IG2)N1 — (2m2l1l2 COS(92 — 91))N2

o = D ) (1)
7(277121112 COS(92 — 91))N1 + 4(m21% + IOl)NZ
Qo = D ) (2)
1 1
where, Ny = —u+diw; — dz((,dg — wl) -+ §m1l1g COS(91) + maly COS(91) — imglllgwg sin(02 — 91), (3)
1 1
N2 = dQ(u)Q — wl) —+ imglgg COS(@Q) + émglllgw% sin(02 — 91), (4)
D = —miB13 — dmyl3lge — Ioymals — 411 Igo + m31215 cos? (0, — 6,). (5)

For each Link, i = 1,2, there are represented its massg), length (;), angular speed.{) and angular acceleration
(o). The coefficientd o and Iy correspond respectively to the inertia momentum from bLitlikkough its center of
mass, and to the inertia momentum from Lirikrough the poin®©.
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Figure 3. Free body diagrams for both Lin&nd Link,.

Considering the state space variatflest;, 6> andé,, and solving the system from Egs. (1) and (2), are obtained th
dynamic equations for the rotary inverted pendulum:

Ty 91 fi

(z, u)
7o 61 fa(z,u)
P— . p— . p— p— 6
r T3 0,,2 fl@,u) fa(z,u) |’ ©
«f4 92 f4(wa U)
where, #; = 9, @)
g = —12N3 n 18 cos(x3 — 1) Ny ®)
2 13(12mg + 4my — 9mag cos?(z3 — x1))  l1la(12ma + 4my — 9mgy cos?(z3 — 1))’
T3 = Ty, (©)]
. 18 cos(x3 — x1) N3 B 12(3may + mq )Ny (10)
L l1l2(12m2 + 4m1 — 9m2 0082(323 — xl)) m2l§(12m2 + 4m1 - 9m2 COSQ(.Z‘g — 331)) ’
1 1
where, N5 = —u+dixo —da(zg —z2) + §mlllg cos(z1) + maly cos(zy) — §mglllgxi sin(zs — 1), (11)
1 1
Ny = do(wg—12) + §mglgg cos(x3) + §mglllgaz§ sin(zg — 1). (12)

This non-linear model will be used during the system’s satiah to obtain its motion. A fourth order Runge-Kutta
algorithm solves numerically this system of differentigluations, providing an accurate approximation for thergota
inverted pendulum behavior (Press et al., 1992).

In order to utilize the state space control, the system madinearized at an equilibrium poirfte, ug), where
f(xo,up) = 0 (Franklin et al., 1998).

Linearizing and having the outpytfor both6; and6s, is obtained the state space representation below:

w = ug+ou (13)
Yy = yot+oy (15)
bz = Féx+ Gou, (16)
by = H(oz), (17)
z
_ r1 | _ Z2
where, y = [333 } =H o | (18)
Ty
1 0 0 O
so, H = [0010}. (19)

Utilizing a sampler period df’; seconds and considering a zero order holder, the discnegestiate space representa-
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tion is (Franklin et al., 1998):

0xkr1 = Pz, + Toug, (20)
y, = H(zy + o). (21)

3. STABILIZING CONTROLLERS

In order to control the system with its linearized modelethmajor systems characteristics must be dealt: adjustto th
fact that the system is linearized to an equilibrium poimg&re must be a reference sigmabnd there must be an estimate
for the current state;, called«’;,, because not all states are available in system’s output.

When the system reaches the reference signal, the contnall sigjl not always be zero, so it has a steady state value
uss, Wheref (r, uss) = 0. So:

Ugs = Uy + OUgg- (22)

In other words, the control signédl.;, will also have a non-zero steady state value. Then, thersist®ntrol law can
be as follows:

dup, = —K(0x —dx,) + duss, (23)
uy = ug— K(dxk — dx,) + duss = ugs — K(dx) — d;), (24)
where, dx, = r—x. (25)

The Separation Principlesays that the controller can be designed as all states aitaetd®an output. Then it can
be added to a system where a estimator is used with no damdge tesired poles location. The matd#k will be
responsible to minimize the cost function in Eq. (26) (Ftan&t al., 1998).

N
1
J' = lim 5 > (0xf Quowy, + SurQaduy). (26)

N—o0
k=0

The coefficients); and@Q- are responsible to weight the importance of respectiyelyanddu to the cost function.
From Eq. (26) is obtained th&lgebraic Riccati Equatiobelow, and with its solution can be obtain&tlas shown in Eq.
(29) (Franklin et al., 1998).

See = ®7(S - S TR'TTS )®+Qy, (27)
where, R = Q,+TI"S.T, (28)
K = R'I7S_ ®. (29)

The coefficient), is a scalar since only one input to the system, while ma@jxcan be determined by Eq. (30).
Q, =pH H. (30)

In order to obtain the estimai&,, and complete the LQG design, it is usedextended Kalman filtefEKF) applied to
the non-linear state space model. The EKF will be respoasdslproducing a minimum error variance estimate (Welch
and Bishop, 2001). Considering; andwv, process and measurement white noises respectively, aoetilitng the
system of differential equations in (6) using Euler mettmtg obtains:

xpy = Tp1 + Tf (X1, up—1) + W, (31)
= S(Tp_1,Ur—1,Wk), (32)
Y, = Hxp+ v (33)
= t(@p_1,Up—1,Vk). (34)

The process and measurement noises’ distributions canpbesented as Gaussian ones with null expected value and
covariance matrice® and R, respectively. The noises can be represented as (Welchiahd® 2001):

w ~ N(0,Q), (35)
v ~ N(O,R). (36)
Doing another linearization to Eq. (32) and (34), are oldithe matrices needed to implement the EKF algorithm.

The algorithm can be divided in two parts: tResdictionone, when a first estimation is made based on the knowledge
about the system, and ti@orrectionone, responsible to weight the system’s innovatigp ¢ Hz,_,) (Welch and
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Bishop, 2001). Figure 4 represents how the algorithm works.

632‘ e (9 —~
Drpi g ax; (@r—1,ur—1,0) =TI + Tsa_i(mk—huk—l)a (37)
887', R
W i g Bw[[j] (Zr—1,ux—1,0) =1, (38)
Oty
Hyji 5 8x—[[j]]($k—17 0)=H, (39)
Oty .
Vk[i,j] ﬁ;(.@k_l,()) = 1. (40)
%o Prediction
Py -
#, = @p_1+Tsfl@p—_1,up—1),
P, = &P, .27 +Q.
Correction
&, My = Py HY(H P HY +R)™ !
b, 4 By = &5 4 My(y, —Hip ), —
Py = (I-MH;)P;.

Figure 4.Extended Kalman filtealgorithm.

4. PHYSICAL SYSTEM PARAMETERS

The construction of a real implementation of a pendubot khoonsider two system’s properties: controllability and
observability. Both can be studied with the system’s dyramddel, and then, a good set of physical parameters could be
found for the real pendulum.

In order to choose in which lengths and material the rotargrited pendulum’s poles are made, there are some facts
that should not be ignored: an inverted pendulum with a 4.inkavier then Link would increase the controllability of
the system, although it will imply in a greater control sigrggeater lengths would also imply in a greater control algn
but a Link; longer than Link would permit the equilibrium to lower values 6f.

The system’s control strategy can also be set to help the lpeloavior of the pendubot. The LQG control uses a local
linearized dynamic model to an equilibrium poinaty, uo). It is only accurate when the system’s states and input kigna
do not differ much from the equilibrium values. The use of eyfast controller could take the system out of that region
before it gets in steady state, therefaig, should be greater tham(Eqg. 30), providing a controlled system that evolves
slowly. It happens because the pendubot would have a pgladement that minimizes the control input.

A good combination of parameters to compose and performalaiion of a rotary inverted pendulum is shown in Tab.

1. The sampler period; is chosen to b6.001 seconds because it is longer enough to permit the neceszaputation
time, and permits a good approximation to the real moventettat physical implementation would perform.

Table 1. rotary inverted pendulum parameters used in stinola

my (kg) 0.3 ms (KQ) 0.5
Iy (M) 0.3 I3 (M) 0.3
di; (N.m.s) 0.01 dy (N.m.s) 0.01
x10 (rad) I Zoq (rad/s) 0
x3¢ (rad) 5 Z40 (rad/s) 0
Tifping (rad) | 3% To fina (radis)| 0
L3 final (rad) g T4 final (rad/S) 0
T's (rad) 0.001
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As shown in Tab. 1, the controller must bring the rotary itedrpendulum from a statey t0 ©inq;. To make it
possible, several local linearizations to the system ament@get to the desired final state. Consequently, the refefe
will evolve to finally be equal te s;,,,;. For each linearized modet,will not be more thanj; away from the equilibrium
point where the linearization was made.

The coefficient€), and@- must be tuned to obtain the control gdih. As mentioned before, a good option would
be to sety, greater themw. The matrix@, can be obtained frontd as follows:

1 0 0 0
x| 0 00 0
00 0 0

And Q) is just a constant:

Q2 =1. (42)

A good combination fop andn used in simulation i = 1 andn = 10.
The adjustment of covariation matric& andQ@ is tricky. A good approach would be to minimize the varian€e o
states that cannot be directly measured from the output(43).shows the value used for the simulation.

1 0 0 0
0 01 0 0
0 0 0 01

Considering that both angular sensors used in the real mggieation will have a error variance ef5;, matrix R
equals to:

R:[lﬁzo 2] (44)
0 65

The simulations results are shown in next section.
5. SIMULATION RESULTS

Figures 5(a), 5(b) and 5(c) were obtained from a rotary eeependulum simulator programed in MATLAB, and
represent the obtained values &t 6, andu,, respectively. As can be seen, the referencéfagvolves until it reaches
the desired value from Tab. 1. Figures 6(a), 6(b) and 6(aesemt the obtained values fr, 02 andu; respectively but
now for a simulation that uses not advised values for polegthes and weights. As it can be seen, the major value that
the control input has achievedli$s956 Nm, that would be the minimum value that a DC motor used in a nga¢eément
could provide. The results show that a rotary inverted pemdwvith those characteristics would not be easily congobll
and would oscillate when it reaches a value close to the fafatence a% rad. In fact, a rotary inverted pendulum with
mo = 0.1kg could not be controlled to follow the references used fohlsitnulations.

Figure (7) shows the simulator interface. With this inteefat possible for the user to chose among others control
strategies and configurations. For instance, in a given garaiion the optimal controller uses the real state vector
instead of using the EKF.

6. CONCLUSIONS

In this paper, it has been shown a simulation-based desigmatéry inverted pendulum. Indeed, an optimal regulator
has been proposed, but the major result of the analyzedaiiowilis the control signal maximum value. That clearly is
an information that only the simulation could provide in @rd¢o aid the choice of physical components of the pendulum.
There are many other possibilities for each parameter tpltlgsical implementation, and for each one of them it can be
studied how the control setting would perform, whether thgsiral configuration maximizes or minimizes the controlla
bility, and whether a DC motor with a limited torque couldfoem the control. One major drawback is the limitation that
the linearized model implies for control purpose. A noretincontrol could solve this problem, and is one of the orgyoin
researches topics, such: Markov jump non-linear systengelimy to control the “swing up " mode, and closed-loop
identification of the real system.
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Figure 5. Graphics (a),(b) and (c) are respectively theinbthvalues fol,, 6, andw for a simulation with parameters
from Tab. 1,0 = 1 andn = 10.
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Figure 6. Graphics (a),(b) and (c) are respectively theiobthvalues for,, 6, andw for a simulation withl; = 0.2m,
lo = 0.3m, my = 0.3kg, ma = 0.2kg, p = 10 andn = 1.
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Figure 7. Simulator Interface.




