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Abstract. In different engineering structures, the fatigue induced cracks represent one of the most dangerous sources
of eventual catastrophic failures. Accordingly, the early detection of the crack and the estimation of its gravity are
tasks of crucial importance. There are a number of localized methods to detect and analyze the presence of cracks in
structures, however many of them have a troublesome implementation, particulary when the crack is located in places
with little accessibility. Under these circumstances, the global methods of detection reached an important repercussion,
especially those methods based in the measurement of dynamic responses. Actually, in that methodology the experimental
registers of dynamical parameters (like frequencies, accelerations, etc) are compared with the ones of a mathematical
model of the structure. Thus, one of the most attractive and employed methodologies consists in the determination of
the natural frequencies of the structure and the comparison and evaluation with the ones calculated with an appropriate
mathematical model. The mathematical model has to incorporate parameters related to the position and size of the
cracks. Afterwards, one can characterize the crack (size and position) by solving an inverse problem consisting in the
minimization of the difference between the actual and calculated frequency values. The methodology was implemented in
a number of theoretical beam models incorporating cracks for metals as well as composite materials. However, according
to the authors’ knowledge, an appropriate model of thin-walled beams to be implemented together with the crack detection
methodology has not been yet developed. In the present paper a finite element of an I-beam incorporating a crack due
to fatigue loading is developed. This approach consists in combining concepts of the fracture mechanics theory with a
generalized thin-walled beam model developed by the first two authors. This new element is employed to analyze the effect
of location and size of the crack for different geometries and boundary conditions.
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1. INTRODUCTION

The presence of cracks in vibrating structural members is a matter of crucial importance for engineering designs
and for the assessment of the structural life. Consequently, an important amount of scientific research has been devoted
to this subject. In a middle nineties work (Dimarogonas, 1996) the state-of-the-art concerning to the methodologies
for the analysis of cracked structural members was appropriately reviewed. It is well known that the vibration-based
inspection techniques are effective tools for the detection of structural defects and cracks (Adams and Cawley, 1985).
The localization and size of cracks in beam structures can be determined, in principle, from variations in the natural
frequencies, mode shapes and amplitudes of the forced response (Chen and Chen, 1988; Salawu, 1997). The presence of
cracks in a beam structure leads to a local loss of stiffness, or in other words a crack introduces a local flexibility which
modifies the dynamic behavior of the structure. Many of the recent works concerning to the dynamic behavior of cracked
beam structures were devoted to the analysis of rotors (Darpe et al., 2004; Papadopoulos and Dimarogonas, 1992) and for
particular solid and also hollow cross-section beams (Kisa and Brandon, 2000; Zheng and Fan, 2003; Nobile and Viola,
2001). Nevertheless, studies devoted to the behavior of cracked general thin-walled beams, despite of their importance
in structural applications, appear to be non existent or at least really scarce. In the knowledge of the authors, the recent
work of Gomes Cardoso et al (2005), is one of the first articles to tackle the problem of the dynamics of cracked thin-
walled U-beams. However a simplified approach consisting in reducing the area properties to account for the crack was
employed.

In this paper an attempt is made to analyze the dynamic behavior of a shear deformable thin-walled cracked I-beam. A
finite element is developed in order to introduce the crack in a beam model formulation accounting for shear flexibility due
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to bending and warping (Cortínez and Piovan, 2002). The element is developed by considering the increase of flexibility
due to the crack by means of concepts of fracture mechanics together with a model of shear deformable thin-walled beams
for isotropic materials. The beam element is formed by three independent panels: a web and two flanges. The flexibility
matrix for each panel is obtained. In one of the flanges a flexibility matrix for the crack is added to the corresponding
flange flexibility matrix. Afterwards the stiffness matrix for each panel is obtained from the flexibility matrix and finally
the element stiffness matrix is obtained by assembling the three components. The presence of a crack leads to coupled
flexural/longitudinal/torsional motions that are normally decoupled. Parametric studies are performed with the present
element in order to characterize the effect of size and location of the damage in an I-beam with different parametrical
ratios.

2. FINITE ELEMENT MODEL FOR A CRACKED THIN-WALLED BEAM

In Fig.1 one can see the layout of a metallic I-beam composed by three panels: two flanges and a web. The panels of
flanges and web are numbered as 1, 2 and 3. Consider a beam segment that has a single crack surface on one of its flanges.
In order to describe the cracked finite element for a thin-walled beam accounting for shear flexibility due to bending and
warping one has to analyze each panel to obtain the stiffness contribution. However to account for the presence of the
crack, the stiffness matrix of the beam element has to be modified. The modified stiffness matrix considers the coupling
effects due to the presence of a crack, that is, full longitudinal-bending-twisting coupling. It has to be mentioned that
a metallic bisymmetric I-beam without a crack do not exhibit such coupling effects (Cortínez and Piovan, 2002) and a
metallic mono-symmetric I-beam without a crack has only bending-twisting coupling (Cortínez et al., 1999). As one can
see in Fig. 1,the crack is located at a distancex from the left end of the beam element. In Fig. 2 it is possible to see the
flange with a crack and its local forces and displacements.

Figure 1. Sketch of the cracked thin-walled I-beam

Figure 2. Sketch of a cracked flange, description of local forces and displacements
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The flexibility matrix of the cracked flange is first derived. This is done using the Castigliano’s theorem:
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whereE andG are the longitudinal and transversal elasticity moduli,ν is the Poisson ratio;A2, AR2, I02, IY 2 andIZ2

are respectively the area, reduced area, torsion constant and inertia moments of the flange 2.KIi, KIIi, andKIIIi are
the stress intensity factors for the opening, sliding and shearing modes, respectively. These stress intensity factors can be
described in terms of the local forces in the following form:
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The functionsF1, F2, FII andFIII are given by:

F1 (ξ) =
√

2Tan[πξ/2]
πξ

0.752+2.02ξ+0.37(1−Sin[πξ/2])3

Cos[πξ/2]

F2 (ξ) =
√

2Tan[πξ/2]
πξ

0.923+0.199(1−Sin[πξ/2])4

Cos[πξ/2]

FII (ξ) = 1.122−0.561ξ+0.085ξ2+0.18ξ3√
1−ξ

FIII (ξ) =
√

2Tan[πξ/2]
πξ

(5)

whereξ = a/bG, bG is the width of the flange.
It is clear that the integration in the Eq. (3) has to be performed in the crack domain. The local displacementsd1 to d6

of the cracked flange can be obtained from Eq. (1), in terms of the local forces, as:
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is the flexibility matrix associated to the
presence of crack. Now, taking into account the local equilibrium of the flange one can find the following relationship:
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Now taking into account Eq. (7) together with Eq. (6) and operating in a similar way for the web and the remaining
un-cracked flange, it is possible to obtain the local forces in terms of the local displacement for the three panels:
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Then, the local stiffness matrix for the panels are:[
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The local panel displacements{d1−12}Lj , j = 1, 2, 3 are compatible with the global beam-element displacements by
means of the following expression:

{d1−12}Lj = [TD]LjG {d1−14}G =
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where the global vector of displacements and compatibility matrix are given by:
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In Eq. (12),uXC is the longitudinal displacement,uY C anduZC are the lateral displacements of the shear centerSC ,
φX is the twisting angle (measured from the shear center),θY andθZ are bending rotations (measured from the centroid
C), andθX is a warping intensity variable. Whereas in Eq. (13),yj , j = 1, 2, 3 are the distance from the cross-sectional
shear center to the gravity center of the corresponding panel, and on the other handȳj , j = 1, 2, 3 are the distance from
the cross-sectional centroid to the gravity center of the corresponding panel.

Now, considering Eq. (10) and Eq. (11), the stiffness matrix of the cracked beam element can be obtained by means
of the assembling expression:[
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The mass matrix can be obtained by employing into the expression of the kinetic energy, the appropriate shape func-
tions of a beam-element for a consistent integration (Cortínez et al. 1999):[

M (e)
]

=
∫ Le

0

[
ρA {f1}T {f1}+ ρA {f2}T {f2}+ ρIZ {f3}T {f3}+ ρIY {f5}T {f5}

]
Ledx+∫ Le

0

[
ρCW {f7}T {f7}+ ρIS {f6}T {f6}+ ρAyo

(
{f6}T {f4}+ {f4}T {f6}

)]
Ledx

(15)

where

{f1} = {g11(x), 0, 0, 0, 0, 0, 0, g12(x), 0, 0, 0, 0, 0, 0}
{f2} = {0, g21(x), g22(x), 0, 0, 0, 0, 0, g23(x), g24(x), 0, 0, 0, 0}
{f3} = {0, g31(x), g32(x), 0, 0, 0, 0, 0, g33(x), g34(x), 0, 0, 0, 0}
{f4} = {0, 0, 0, g21(x), g22(x), 0, 0, 0, 0, 0, g23(x), g24(x), 0, 0}
{f5} = {0, 0, 0, g31(x), g32(x), 0, 0, 0, 0, 0, g33(x), g34(x), 0, 0}
{f6} = {0, 0, 0, 0, 0, g21(x), g22(x), 0, 0, 0, 0, 0, g23(x), g24(x)}
{f7} = {0, 0, 0, 0, 0, g31(x), g32(x), 0, 0, 0, 0, 0, g33(x), g34(x)}

(16)

The functionsgij(x) verify the static equilibrium equations for a beam element and can be obtained from the open
literature (Cortínez and Rossi, 1998). In Eq. (15),yo is the distance between the shear center and the centroid of the
cross-section,ρA is the translational inertia,ρIY andρIZ are the rotary inertias,ρCW is the warping inertia andρIS is
the twisting inertia.

This cracked finite beam-element may be employed assembled together with other uncracked elements in order to
model a given thin-walled beam structure. It is clear that the cracked element provides a localized increase of flexibility
(or a local loss of stiffness). This effect can be captured with changes in the mode shapes of certain frequencies as it is
shown in the following paragraph.

The problem of determining the natural vibration frequencies and the associated mode shapes of a systems leads to
the solution of the following eigenvalue problem:

[K] {q} = ω2 [M ] {q} (17)

where[K], [M ] and{q}, are the global stiffness matrix, mass matrix and displacements vector, respectively.
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3. NUMERICAL STUDIES

A bisymmetric I-beam with a crack in one of its flanges is analyzed. The material properties of the beam areE =
2.1× 1011N/m2, ν = 0.3 andρ = 7850Kg/m3. The cross-sectional properties arebG = bC = h = 0.6m, the thickness
is e = 0.03m and the length is such thath/L = 0.1.

In the first example a clamped-clamped beam with a single crack in the upper flange located in the middle of the beam
is selected. A model of 41 elements was employed. In Tab. 1 one can see the variation of the first eight frequencies with
respect to the Depth of crack. As it is expected, the frequencies of the cracked beam show a slight variation with respect
to the case free of crack. Even in the cases with deeper cracks, the difference between the frequencies of the cracked
beam with respect to the uncracked beam, can reach values in the order of2.5%. Although the frequencies of cracked and
uncracked beams have a small difference, their corresponding mode shapes differ substantially. Thus in Fig. 3 one can
see the first mode shape for the uncracked I-beam, whereas in Fig. 4 one can see what happens with the first mode shape
of the beam with a crack of a depth2a/bG = 80%. The mode shape in both figures is eminently torsional, however in
Fig.4 one can see that due to the presence of a crack, the flexural and longitudinal motions are also coupled. It has to be
said that in order to show appropriately the coupling effect, in Fig. 4 the flexural and longitudinal motions were magnified
ten times from their original values.

Table 1. Variation of the first eight frequencies for a beam with central single crack in the upper flange

Frequency Depth of crack2a/bG

Order 0% 5% 10% 20% 40% 60% 80%
1 53,181 53,181 53,180 53,176 53,108 52,802 52,020
2 68,328 68,328 68,328 68,323 68,233 67,854 67,019
3 106,188 106,183 106,167 106,104 105,854 105,504 105,206
4 136,784 136,783 136,780 136,769 136,725 136,652 136,550
5 176,506 176,505 176,502 176,490 176,442 176,362 176,251
6 241,129 241,129 241,129 241,128 241,124 241,117 241,109
7 248,643 248,643 248,641 248,619 248,243 246,599 242,673
8 321,544 321,543 321,542 321,512 321,012 318,926 314,605

Figure 3. First mode shape for the uncracked beam

As a second example, the same beam but with cracks near the clamped ends is analyzed. The variation of the frequen-
cies with respect to the Depth of crack is depicted. Note that in this case there is a sensible difference in the first frequency
that can reach up to ten percent. However the most sensible differences between the dynamic behavior of uncracked and
cracked beams can be observed in the mode shapes of Fig. 3 and Fig. 5, respectively.
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Figure 4. First mode shape for the cracked beam. The crack is located in the middle of the beam

Table 2. Variation of the first eight frequencies for a beam with central single crack in the upper flange

Frequency Depth of crack2a/bG

Order 0% 5% 10% 20% 40% 60% 80%
1 53,181 53,180 53,177 53,150 52,783 51,225 47,639
2 68,328 68,327 68,324 68,290 67,842 66,349 64,382
3 106,188 106,162 106,084 105,772 104,618 103,369 102,823
4 136,784 136,779 136,765 136,675 135,817 132,776 126,939
5 176,506 176,501 176,484 176,376 175,336 172,234 168,218
6 241,129 241,100 241,011 240,654 239,332 237,932 236,039
7 248,643 248,630 248,588 248,380 246,920 242,771 237,355
8 321,544 321,529 321,480 321,235 319,486 315,042 309,485

Figure 5. First mode shape for the cracked beam with cracks near the clamped ends
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4. CONCLUSIONS

In the present paper a new formulation for a thin-walled I-beam with a fatigue crack was developed. A new finite
element that includes the effect of the crack in a shear-deformable beam theory was introduced. The presence of a crack
in a thin-walled I-beam model leads to the coupling of bending-longitudinal, bending-twisting and longitudinal-twisting
motions. These coupling effects were observed and appropriately enhanced in the mode shapes of the cracked beam. The
variations in the mode shapes of cracked beams with respect to the uncracked case, can be a useful tool for detection of
cracks.
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