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Abstract. The main objective of this work is related to the determination of incipient plastic collapse of tubes submitted
to proportional concentrated loading. This goal is achieved through the implementation of a non-linear programming
for limit analysis, as an alternative to frequently encountered linear programming approach. The algorithm is
developed as a sequence of Newtonian iterations on the set of optimality equalities, followed by a sort of line search
consisting of step relaxations combined with stress scaling. The numerical procedure is also prepared to be solved
through the utilization of simple finite element techniques. In this work two types of elements are utilized, straight and
constant radius curved tubes submitted to concentrated proportional loading. Also an example of problem is solved
using this approach.
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1. INTRODUCTION

The determination of the limit load that a structure can support before the generation of incipient plastic collapse is
achieved by limit analysis theory. This theory distinguishes from incremental plasticity approach by don’t following
strains evolution but determining limit loads where plastic strain in the structure keep growing without any further
increase of load. In this work the limit analysis theory is applied to straight and curved tubes submitted to proportional
concentrated loads. A non-linear yielding function is implemented as an alternative to frequently encountered approach
of linearization of non-linear yielding function. This choice has the advantage of working with few non-linear
constrains in opposition to linearization approach that works with a considerable greater number of linear constrains.
Borges et al. (1996) proposed a Newtonian algorithm to solve a set of optimality equalities obtained from the limit
analysis problem. The theoretical basis is prepared to be solved through the utilization of simple finite element
techniques. An example was solved by the utilization of a limit analysis algorithm written in Visual Basic (VB)
language.

2. THEORY

In this section the principal aspects of the theory of limit analysis as the expressions of equilibrium, constitutive
relations and yielding criterion are shown.

2.1. Equilibrium

Figure 1 shows the straight and curved elements with, respectively, length of L and )( ijR θθ − :

(a) (b)
Figure 1: Elements: (a) Straight and (b) curved.



It is trivial to show that doing the equilibrium of a part of straight element of length s, the distribution of axial
load )(sN and bending moment ( )sM  can be obtained:
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Where, iN , iV  , iM  and jN , jV  , jM are respectively the axial, shear and bending moment components at nodes i

and j. β  is the angle of straight element. iθ and jθ are respectively angles at nodes i and  j. The local coordinates are s

(longitudinal) and r (transversal); and the global coordinates are gx and gy . The expressions of longitudinal and

transversal loads, in local coordinates, are respectively ( ) ( )ββω sincos)( ygxgs WWs +=  and

( ) ( )ββω cossin)( ygxgr WWs +−= , where xgW  and ygW are respectively the horizontal and vertical loads, in global
coordinates.

In an analogous way the distribution of axial load )(sN and bending moment ( )sM  through an arc of angle θ  of the
curved element can be obtained:
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Expressions (1) and (2), as well as, expressions (3) and (4) can be rewritten in matrix form:
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Where matrix )(sQw represents the effect of distributed load. )(sQe
s is the internal load vector and eQ is the parameter

vector:
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The )(sY  matrices for straight and curved element are shown:
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From equilibrium, in local coordinates generates:
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Where, e
LR  is the internal nodal load vector, eW is the distribution vector and T

LB is the equilibrium matrix:
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In global coordinates, from equilibrium, generates:

e
g

eTe WQBR += (13)

Where, eR  is the internal nodal load vector, in global coordinates, e
gW is the distribution vector and TB is the

equilibrium matrix, in global coordinates. Transformation matrices have to be used to transform from local to global
coordinates. See the expressions at Kenedi et al. (2006a) and Kenedi et al. (2006b).

2.2. Constitutive relations and Yielding criterion

The laws of physical behavior are characterized by constitutive relations between pertinent variables for the description
of phenomenon, in this case the plastic collapse. The laws are presented for elastic ideally plastic materials, in
isothermal and quasi-static processes. Defining q as generalized strain vector and Q as generalized stress vector:









=

K
ε0q      (14)









=

M
N

Q       (15)



For problems of small strains it is possible to use additive decomposition for the calculation of total strain, in other

words, the total strain q can be divided in elastic qe and plastic qp parts:
pe qqq +=      (16)

where,
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Where, A is the cross section area, E is the Young Modulus, I is the second moment of area and e
eD is the elastic matrix.

Expressions (16) and (17) can be written in rate form:
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Where q&  is the total strain rate, eq&  is the elastic strain rate and pq&  is the plastic strain rate. The flow rule, which
relates generalized stress with plastic strain rate is shown:
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Where )(Qf  is a yielding criterion and λ& is a plastic multiplier vector. In sequence it is shown the achievement of a
yielding criterion adapted to beam elements ),( NMf . Figure 2 shows a symmetrical cross section in relation to y and z
axis. At fig.2a, where only bending moment is present, the neutral axis (dashed axis) is coincident with the z axis.  The
distance between z axis and centroid of each semi-area is c. At fig.2b, a tensile load is added to a negative bending
moment, the neutral axis moves to a new position, - e from z axis.  The new distance between z axis and centroid of
each semi-area is nc .

(a) (b)
Figure 2: Beam with symmetrical sections with y and z axis (a) submitted to bending load and (b) submitted to tensile

load in addition to negative bending moment.
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The tensile load and bending moment are:
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The tensile load and bending moment that plastifies the whole cross section are, respectively, 0N and 0M :

AσN y0 = (24)

cAσM y0 =      (25)

Where yσ is the yield strength and the distance c is defined as:  
A

dAy
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=

The stress distribution at a beam cross section, of a elastic-ideally plastic material, loaded by tension and negative
bending moment can be decomposed as show at fig.3:

     (a)           (b)                 (c)
Figure 3: Distributions of stress in a beam of symmetrical cross section totally plastified: (a) Resultant of stress

distribution,  (b) a bending moment loading and (c) a tensile loading.

From figures 2 and 3 and expressions (22) and (23):

ny 2AσN =      (26)

nnyy c2AσcAσM −=      (27)

Notice from figs. 2b and 3c that area n2A  is only submitted to tensile load. Dividing expressions (26) and (27)
respectively by expression (24) and (25) generates:
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Generating the yielding criterion:
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Figure 4 shows the graphical representation of expression (28):

Figure 4: Yielding criterion locus.

Júnior, (2006) showed that yielding surface of beams of rectangular and tubular cross sections are practically the same,
so in this work the expression (28) will be used to represent the yielding surface of tubes, and can be rewritten in
matrix form:
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Substituting (5) in (29) the yielding criterion is, now, written in function of nodal loads:
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      and α is the collapse factor.

3. THEORY IMPLEMENTATION

The analysis of discrete problem can be done by the utilization of  Static Formulation (Borges et al., 1996):
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The application of optimality conditions (expression 32-35) are equivalent to expression (31) of Static Formulation
(Borges et al. , 1996):
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Where B is the deformation operator that is the transpose of equilibrium matrix TB used in expression (13), U& is the
velocity vector and R is the external load vector, also used in expression (13). k is the number nodes and n is the number
of plastic modes per node.
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The optimality conditions can be rewritten as shown:
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3.1 Algorithm

A two stage procedure is utilized to determine a new value of x vector in function of its present value. At first stage an
increment of x vector, called xd , is determined using a Newton-like iteration for the non linear system of equations of
expression (37). At second stage the stress increment xd  is reduced by a step length factor s and the resulting stress is
scaled by a factor p.

Applying a Newton-like approach:
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At first stage the increment of x vector is updated:
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Û is the displacement vector from the solution of RUK ~ˆ = , where BDBK epT=  is the variable elastic-plastic stiffness
matrix that is obtained by the assembling the contribution of every element Ki . Expression (30) is used to calculate each
of m plastic functions.



At second stage step relaxation and stress scaling; and updating are done:

( )0
1 dQsQpQ e

i
e
i += −  (44)

( )0
1 ααα dsp ii += − (45)

Also

( ) 




=

∞

00 max,max λγλλ λ
&&&

jm (46)

The value of p for each iteration is achieved by picking the p that is nearer to unity of the m calculated
using ( ) ( ) 00 =− QfQpf jf

j
j γ . Borges et al. (1996) has a very detailed description of this algorithm, including the

initialization and convergence criterion.

3.2 VB Program

To handle the large amount of mathematical operations needed to implement a limit analysis routine a VB program was
developed for straight and constant radius curved elements. Figure 5 shows a couple of screens of the pre-processor of
this program, such as the initial conditions, the materials properties, the cross-section options, the input of nodes and
elements, the localization the center of curved elements and the specification of concentrated loading and constrains.

Figure 5 - Pre-processor screens of this program.

There are many advantages of using a software object orientated like VB such as, the natural organized way of
programming that arise from the utilization of a great number of small codes inside each command button, the intuitive
but powerful sets of commands available that is similar to well know Fortran language, the capacity of implementation
of complex routines of algorithm and the capacity to handle a massive amount of calculations needed to be processed.
This last characteristic is fundamental to solve a limit analysis algorithm since the calculation of elastic-plastic stiffness
matrix has to be actualized, at each iteration, to determine the displacement vector by the utilization of Gauss approach.
From fig.5 it is apparent another advantage of using VB that is the professional display of screens. So far the pos
processor of this program is limited to generate files of .txt extension of the output variables such as eQ , U& ,α and mλ& .
With the development of this VB program a graphical output will be implemented to include a graphical representation
of the final geometry of collapsed structure.
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3.3 Example

An example obtained from Lubliner, (1990) is implemented at VB program. Figure 6 shows the structure before and
after the development of plastic hinges:

Figure 6 – A beam with two constrains at ends, one built in and other simple supported loaded by two concentrated
loads at intermediary positions, before and after the development of plastic hinges at nodes 1 and 3.

The beam is divided in three elements with the same length, with four nodes. The velocities of nodes iU& and stain rate

of plastic hinges iγ&  are:

01 =U&  and 
L
U&

& −=1γ , UU && −=2 , UU && 23 −=  and 
L
U&

&
3

3 −=γ  and 04 =U&                (47)

Equating internal and external power and using expression (47) is possible to obtain:

( )FL
M
β

α
−

=
2
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0
bhSM y=  (for a rectangular cross section b x h) (48)

Substituting b = 0.0075 m, h = 0.003 m, β = 0.3, F =1 N, L = 1 m and yσ  = 250 MPa at expression (48) it is possible to

determine the analytical alpha αanalytical  = 9.9264. The VB program generated eQ , U& ,α and mλ& output in *.txt files.

The eQ  file shows that N are always zero and M is -1 at node 1 and  +1 at node 3, the U& file shows that  horizontal
velocities at all nodes and vertical velocities at nodes 1 and 4 are null; and the vertical velocity of node 3 is the double
of node 2.  The α file shows the numeric alpha  αnumeric =  9.9259, after four iterations ( 1st = 9.2272, 2nd = 9.6452,
3rd = 9.9161 and 4th = 9.9259)  that is very close to αanalytical  = 9.9264.  Also mλ& file shows correctly, only in nodes 1
and 3 there are generation of plastic hinges.

4. CONCLUSIONS

The determination of incipient plastic collapse of tubes submitted to proportional concentrated loading was achieved
through the utilization of limit analysis theory. An explanation about equilibrium, constitutive relations and yielding
criterion for limit analysis theory was done. The discretization of problem was executed through the proposition of
optimality conditions. A brief explanation of implementation of a Newton-like iteration for solution of non linear
system of equations in two stages, increment and step relaxation combined with stress scaling was done. This approach
was implemented in a VB program to handle the large amount of mathematical operations needed to implement a limit
analysis routine. A problem was solved and the results compared with reference literature. With the continuation of this
research the output capabilities of VB program will be improved and a successive application of limit analysis theory
will be implemented to extend the utilization of limit analysis theory for large displacement and rotations.
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