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Abstract. This paper discusses the existence of the mixed operational modes in flexible rotors subjected to unbalance 
forces. In this condition, some stations of the rotating machine describe their precessional movement in the forward 
direction while others move in the backward direction simultaneously. In the first part of the paper it is shown a 
method to identify the rotational speed range where occurs the mixed operational modes when there is an adjusted 
element finite model of the rotor. The method is based upon the Shape and Directivity Index (SDI) Plot. The value of 
SDI defines if a certain station (node) of a rotor is in forward or backward whirl. In the second part of the paper, it is 
shown an other method to identify the mixed modes. In this case, the methodology identifies the range of frequencies 
where occur the mixed operational modes, during an acceleration of the rotational speed of the rotating system. The 
method uses the directional order map, which is obtained through the application of the TVDFT order tracking 
technique in the complex response signal of the rotating system. 
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1. Introduction 
 

It is well known that the unbalance force can excite the precessional backward modes only if the rotor is supported 
by bearings with different stiffness in two lateral orthogonal directions, as it happens in many rotors of rotating 
machinery (Vance, 1988; Ehrich, 1992; Krämer, 1993; Lalanne and Ferraris, 1997). Usually, bearings of rotating 
machines are designed to be anisotropic because it enhances the rotor stability. However, it may also introduce the 
undesirable unbalance-related backward whirling motion, which is known to cause reversal stress on the rotor, leading 
to premature failure of the system (Krämer, 1993). Fortunately, the rotational speed regions where the backward 
precession occurs are relatively narrow and close to the critical speeds, which are avoided as operational speeds. Among 
other things, the amount of damping on the rotor/bearings affects the existence, or not, of the backward precessional 
motion. Studies have shown that the more damping on the system, the narrower the rotational speed range where this 
motion can occur (Ehrich, 1992; Krämer, 1993). 
 The existence of the simultaneous forward and backward whirling on rotors has been proved experimentally by Rao 
et al. (1996,1997) and Muszynska (1996) but, in general, this phenomenon is briefly mentioned by the authors (Vance, 
1988; Ehrich, 1992; Lee, 1993) and rarely discussed for flexible multi-discs rotors. Rao et al (1996,1997) studied a 
Jeffcott rotor supported on identical and dissimilar journal bearings. The authors showed the bearings clearance and the 
dissimilarities between the bearings affect the existence of the mixed operational modes. Muszynska (1996) studied a 
vertical, overhung unbalanced rotor with bent shaft and supported by anisotropic bearings and concluded that the 
combined effect of the mass unbalance together with the bow shaft unbalance could lead to simultaneous forward and 
backward precession motions at different stages of the rotor. Despite the fact that Lund (1974) presents many 
simulations in which this phenomenon can be observed, the author barely comments these results. Dias Jr. et al. (2002) 
and Miranda et al. (2002) showed experimentally the existence of the mixed operational modes in flexible rotors 
subjected to unbalance forces and the parameters that affect them. 

The main goal of this work is to study, numerically and experimentally, the existence of the simultaneous forward 
and backward precessional motions on rotors subjected to unbalance forces. In the first part of the paper it is shown a 
method to identify the rotational speed range where occurs the mixed operational modes when there is an adjusted 
element finite model of the rotor. The method is based upon the Shape and Directivity Index (SDI) Plot, introduced by 
Dias and Allemang (2000). The value of SDI defines if a certain station (node) of a rotor is in forward or backward 
whirl. In the second part of the paper, it is shown an other method to identify the mixed modes. The methodology is 
based on experimental data and does not require a finite element model of the rotor. In this case, the technique identifies 
the range of frequencies where occur the mixed operational modes, during an acceleration of the rotational speed of the 
rotating system. The method uses the directional order map, which is obtained through the application of the TVDFT 
order tracking technique (Blough et al., 1996; Blough, 1998) in the complex response signal of the rotating system. 



2. Unbalance Response – Complex Coordinates 
 

It is well known that the use of complex coordinates on the study of rotating machines can help on the interpretation 
and visualization of the whirling modes. Thus, in this section, it is briefly presented the procedure for transforming the 
lateral, orthogonal displacement of each station of the rotor into their corresponding complex coordinates. It is also 
developed the frequency equation needed for the computation of the unbalanced response. 
 Let one first consider the well-known equation of motion of a 4N degrees of freedom rotating system with N 
stations (Ehrich, 1992): 

 
 [ ]{ } [ ]{ } [ ]{ } { }M q D q K q Q+ + =&& &  (1)

 
where [M] is the symmetric, positive definite mass matrix. [D] and [K] are rotational speed dependent matrices and, in 
general, are not neither symmetric nor positive definite. Matrix [D] represents the damping and gyroscopic terms and 
matrix [K] includes the stiffness, circulatory, and internal damping, terms. 
 A very convenient way to assemble the displacement vector {q} is the following: 
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where {y} and {z} are the displacement vectors on each of the two directions perpendicular to the rotation axis of the 
rotor, and }{ yφ and }{ zφ  are the angular displacement vectors of all stations (or nodes of a finite element model) in the 
directions y e z, respectively.  
 The expressions to transform the displacements of station k into their corresponding complex coordinates are: 
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 Considering all station (or nodes of the finite element model) one has: 
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 Applying the same transformation [T] on the force vector and substituting these results in Eq. (1) one obtains: 
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where [Mc], [Dc] and [Kc] are the complex mass, complex damping/gyroscopic, and complex stiffness/circulatory 
matrices. {g} is the complex force vector. 
 The complex displacement {p} as well as the complex external force {g} can be decomposed into their forward, 
{Pf} and {Gf}, and backward, {Pb} and {Gb}, components as: 
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 Substituting Eq.(6) in Eq.(5) one concludes that 
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 It is known the unbalance force is pure forward and its amplitude vector {Gf} is a function of the unbalance mε and 
of the initial phase of the unbalance mass, and of the rotational speed of the rotor. The backward component of the 
unbalance force is zero. Therefore, the steady state unbalance response of the rotating system is obtained trough the 
solution of the following set of algebraic equations: 
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 The relative amplitude between the forward, {Pf}, and the backward, {Pb}, components of the unbalance 

response define whether the precessional motion of a specific station of the rotor will be forward (when Pf > Pb) or 
backward (when Pf < Pb). If some stations of the rotor describe their precessional movements in the forward direction 
while others move in the backward direction simultaneously, then it is characterized the occurrence of a mixed 
operational mode. These two components can be combined in one parameter, called Shape and Directivity Index, or 
SDI, defined by Han and Lee (1999), that define whether the precessional motion of a specific station of the rotor will 
be forward or backward, circular, elliptical or rectilinear, i. e.: 
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 The relations among the values of the SDI, the shape of the orbit of a station of the rotor and the direction of the 
precessional motion are: 
 

• SDI = -1  ⇒  Circular backward precessional motion 
• -1 < SDI < 0   ⇒  Elliptical backward precessional motion 
• SDI = 0  ⇒  Rectilinear motion 
• 0 < SDI < 1    ⇒  Elliptical forward precessional motion 
• SDI = 1  ⇒  Circular forward precessional motion 

 
 It is easy to conclude that the sign of the SDI defines the direction of the precessional motion while the shape of 

the orbit is defined by its absolute value. A very convenient way to visualize how each station of the rotor whirls when 
it is subjected to unbalance forces is through the SDI Plot. This plot is built by computing the SDI for all nodes and 
each rotational speed. Specific colors are assigned to each SDI value and a convenient color map must be used in order 
to be possible to easily distinguish between backward and forward precessional motion of the stations of the rotor. 
Figure 1 shows an example of a SDI Plot for a single rotor. 

 

     
 

Figure 1. SDI Plot for a single rotor. 
 
3. Numerical Results 

 
In order to investigate the existence of the mixed operational modes, a flexible rotor with three discs and two 

bearings is studied (Lallane and Ferraris, 1997, pg. 126). Figure 2 shows the finite element model of the rotor. The 
localization of discs is listed in Table 1. Shaft and discs are made of steel and the dimensions of the discs are listed in 
Table 2. The bearings are modeled with the following parameters: kyy=7×107N/m, kzz=5×107N/m, cyy=7×102 Ns/m, 
czz=5×102 Ns/m, kyz=kzy=cyz=czy=0. According Fig. 2 and Fig. 3, all stations move in forward precession from 0 (zero) to 
344 rpm. Between 344 rpm and 3572 rpm, the band where is located the first critical speed (3490 rpm), all stations are 
moving in backward direction. After 3572 rpm all station move in forward direction again until close to 8000rpm. There 
is a range of frequencies between around 8000 and 9100 rpm where mixed mode occurs. In this range of frequencies, 
the nodes 1 to 11 move in backward direction while the nodes 12 to 27 move in forward whirl. Figure 4 shows an 
operational mode for a rotational speed of 9004.8 rpm and the values of SDI for the nodes of the rotating system in this 
operational mode. 



Table 1: Distances in between discs and bearings.                          Table 2: Disc data. 
 

A-D1 0.2 m  Disc D1 D2 D3 
D1-D2 0.3 m  Thickness [m] 0.05 0.05 0.06 
D2-D3 0.5 m  Inner radius [m] 0.05 0.05 0.05 
D3-B 0.3 m  Outer radius [m] 0.12 0.2 0.2 

 

 
Figure2: Finite Element Model of the rotor.    Figure 3: SDI Plot for the rotor. 

 

                       
Figure 4: Zoom in the SDI Plot for the rotor.    Figure 5: Mixed Operational Mode for 9004.8 rpm. 

 
 

 Therefore, when there is an adjusted model of a rotor, the SDI Plot is able to identify the frequencies where mixed 
operational mode occurs. Without a model of the rotor it becomes difficult to identify such a range of frequencies. In 
the next section it is shown a methodology for this case. The method identifies the range of frequencies where occur the 
mixed operational modes during an acceleration of the rotational speed of the rotating system. The method uses the 
directional order map, which is obtained trough the application of the TVDFT order tracking technique in the complex 
response signal of the rotating system. 
 
4. Order Tracking Techniques 
 
 The order tracking analysis is a measurement technique suitable for variable speed machines. Most of the order 
tracking methods require sampling of the vibration signal at constant angle increments and hence at a sampling rate 
proportional to the shaft speed of the machine (Fyfe and Munck, 1997; Blough, 1998). As a result, in a waterfall plot, 
the frequency spectrum components can be displayed as stationary lines versus orders (multiples of the shaft rotation) 
instead of frequency, in Hz. Order tracking techniques identify the orders amplitudes and phases in variable speed 
machines. There are different methods of order tracking, such as, the Computed Order Tracking (COT) (Potter, 1990), 
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the Digital Resampling (Blough, 1998) and the TVDFT (Time Variant Discrete Fourier Transform) (Blough et al., 
1996; Blough, 1998). 
 The COT and Digital Resampling methods can be classified as digital resampling based order tracking, and they are 
the most common order tracking methods in use in commercial softwares and dynamic signal analyzers (Blough, 1998). 
Recently, some new methods of order tracking have been developed such as the Kalman filter based methods (Vold et 
al., 1993, 1997) and the TVDFT method. The former will not be treated in this paper. The Time Variant Discrete 
Fourier Transform (TVDFT) is an order tracking method but does not resample the vibration data. It is performed 
directly on data that is sampled with a constant time interval, reducing considerably the computational effort. As any 
order tracking method, the TVDFT is also very sensitive to the quality of the instantaneous frequency measurement, 
i.e., its accuracy depends on the quality of the tachometer signal processing. 
 The TVDFT is a special case of the chirp-z transform. The chirp-z transform is defined as a type of Fourier 
transform with a kernel whose frequency and damping vary as a function of time. The TVDFT is defined as a discrete 
Fourier transform whose kernel frequency varies as a function of time defined by the rpm of the machine, but the 
damping does not vary as a function of time. This kernel is a cosine or sine function of unitary amplitude and an 
instantaneous frequency equal to that of the tracked order at each instant of time. Its expressions are presented in 
Eq.(10a) and Eq.(10b): 
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where Om is the order which is being analyzed, x is the operating data, N is the block size of the transform, ∆t is the 
sampling interval, am is the Fourier coefficient of the cosine term for Om, bm is the Fourier coefficient of the sine term 
for Om, and rpm is the instantaneous rpm of the machine. 
 In order to obtain better results when orders are either very close together or crossing one another, an orthogonality 
compensation matrix (OCM) may be applied. The application of the OCM also allows faster sweep rates to be analyzed 
more accurately. The OCM may be applied in a post-processing step to the order estimates from a TVDFT analysis. 
Very close orders are normally difficult to be separated using resampling techniques, as well as in the TVDFT. 
Nevertheless, if the OCM is used, these close orders can be separated effectively (Blough, 1998). The formulation of 
OCM is a set of linear equations formulations that must be solved for each rpm value:  
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where eij is the cross orthogonality contribution of order i in the estimate of order j, Oi is the compensated value of order 
i, and Õi is the estimated value of order i obtained using the TVDFT. The terms, eij, are calculated as follow: 
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 Equation (11) is solved by multiplying both sides by the inverse of OCM. The resulting order estimates are linearly 
independent to one another.  
  
5. Experimental Results 

 The experimental part of this work was performed using the test rig pictured in Fig. 6. This experimental set up 
consists of a Bently rotor kit assembly powered by 1 HP electric motor. There are two rigid discs mounted on a shaft 
supported by two bearings. The bearing closer to the motor is named bearing I and the other is the bearing II. The 
anisotropic bearing II is supported by different sets of springs in horizontal and vertical directions (to provide forward 
and backward whirl) (Fig. 7). There are 8 displacement sensors to measure data from 4 different stations: the two discs 



and two stations in the shaft. A National Instrument data acquisition board, controlled by a Matlab® code was used to 
acquire the unbalance responses of the rotating system.  
 

      

Station 2 Station 1 
Station 4 

Station 3 

 
     Figure 6. Test rig used in the analysis.    Figure 7. Anisotropically supported rolling bearing. 
 
 It was used a band pass filter to ensure that only the frequency component relative to the rotor unbalance response 
were present in the analysis. The run-up was measured from 52 Hz to 58 Hz in 10 seconds. After the application of the 
TVDFT order tracking in the complex and nonstationary data p(t), the resultant order map is obtained. This order map 
shows that all stations move in forward direction. Figure 8 presents the directional order map for station 1, and also 
shows the magnitude of Pf and Pb as function of time and rotation. 
 
 

 

  
 

Figure 8. Directional order map for station 1 and magnitude of Pf and Pb as function of time and rotation. 
 

 Another test was performed, but with the disc II (disc closer to the anisotropic bearing II) rotated by 90o in 
comparison with another disc. It means there was a new spatial distribution of unbalance forces in the system. As a 
result, the stations 1, 2 and 4 move in forward direction in all range of frequency, while for the station 3 there is a 
change in the whirl direction. The precessional movement of this station is in forward direction until 3275 rpm. After 
that, the station moves in backward direction. This changing in whirl direction can be visualized in Fig. 9. Thus, in this 
case, in the range of 3275 rpm until 3518 rpm, the rotating system has mixed operational modes. 
 In a third analysis, another 90o rotation in disc II was made. As a result, the stations 1 and 2 still move in forward 
direction, but the stations 3 and 4 now move in backward direction during the range of frequency used. This situation 
means that there are mixed modes over all these frequencies. Fig. 10 shows the order map and the order amplitude 
curve for station 1, and Fig. 11 shows the order map and the order amplitude curve for station 3. 
 The experimental results confirmed that the occurrence of the mixed operational modes phenomenon is strongly 
affected by the spatial unbalance force distribution, as has been pointed out in the works of Dias Jr. et al. (2002). The 
different distribution of unbalance forces in the system was achieved by changing the relative angular position of the 
unbalance masses of the discs (through the rotation of the disc II in comparison to disc I). 
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Figure 9. Directional order map for station 3 and magnitude of Pf and Pb as function of time and rotation. Disc II rotated 

by 90o. 
 

 

 

Figure 10. Directional order map for station 1 and magnitude of Pf and Pb as function of time and rotation. Disc II 
rotated by 180o. 

 

 

 

 
Figure 11. Directional order map for station 3 and magnitude of Pf and Pb as function of time and rotation. Disc II 

rotated by 180o. 
 



6. Concluding Remarks 
 

In the first part of the paper it is shown a method to identify the rotational speed range where occurs the mixed 
operational modes when there is an adjusted element finite model of the rotor. The method is based upon the Shape and 
Directivity Index (SDI) Plot. The value of SDI defines if a certain station (node) of a rotor is in forward or backward 
whirl. The second part of the paper, it is presented a methodology to identify the range of frequencies where occur the 
mixed operational modes, during an acceleration of the rotational speed of the rotating system. The method uses the 
directional order map, which is obtained trough the application of the TVDFT order tracking technique in the complex 
response signal of the rotating system 
 The experimental method is applied in test rig, which consist of two rigid discs mounted on a shaft supported by one 
rigid and one anisotropic rolling bearing at the ends. The experimental data confirmed the existence of the mixed 
operational modes in the system. The results demonstrated that this phenomenon is strongly affected by the spatial 
unbalance distribution (relative angular position and amount of the unbalance masses). This methodology has as 
disadvantages the need of a high sample rate in the signals, in order to have a good measurement of the tachometer 
signal and consequently a good estimation of the instantaneous rotational speed. Due this high sample rate it is 
necessary more computational effort to perform the proposed analysis. 
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