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Abstract. This article presents an alternative procedure to treat nonlinear hyperbolic systems. A preliminary 
hyperbolic model describes transport phenomena in an atmosphere, accounting for the propagation of gases, by 
including a source term representing production or destruction of gases due to chemical reactions. The resulting 
mathematical description consists of a nonlinear hyperbolic system of n+2 partial differential equations representing 
mass and momentum conservation for the multicomponent mixture of gases and air and n mass balance equations for 
the gases. This system simulation is performed by combining Glimm’s scheme and an operator splitting technique to 
deal with the non-homogeneous part of the hyperbolic operator. An approximate Riemann solver is used, instead of the 
standard procedure to implement Glimm’s method for advancing in time, which suffers from the disadvantage of 
requiring a complete solution of the associated Riemann problem. The alternative procedure employed in this article 
consists in approximating the solution of the associated Riemann problem by piecewise constant functions always 
satisfying the jump condition – thus circumventing the requirement of an analytical solution for the Riemann problem 
and giving rise to an approximation easier to implement with lower computational cost. Comparison with the standard 
procedure, employing the complete solution of the associated Riemann problem for implementing Glimm’s scheme, has 
shown good agreement. 
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1. INTRODUCTION  
 

Although most transport phenomena description involves parabolic or elliptic partial differential equations which 
always admit regular solutions – whose simulation may employ well known numerical tools like finite elements, finite 
differences or finite volumes – there are several problems in Mechanics, like inviscid compressible flows or flows 
through unsaturated porous media that are mathematically represented by hyperbolic systems. These systems allow very 
realistic descriptions, since the propagation of any quantity – or information – in real natural phenomena is 
characterized by a finite speed; however they may not admit a regular solution, but a generalized solution involving 
shock waves, requiring specific numerical tools, such as, for instance, Glimm’s scheme or Godunov’s one, in order to 
account for their discontinuous nature. 

Glimm’s scheme is a reliable method with mathematically ensured accuracy (Glimm, 1965; Chorin, 1976), based on 
a theory presenting a solid thermodynamic basis (Smoller, 1983); being specifically indicated for simulating hyperbolic 
problems since it preserves shock wave magnitude and position. However Glimm’s method implementation requires the 
complete solution of the associated Riemann problem – a hyperbolic initial value problem subjected to a step function 
as initial data – once its implementation consists of appropriately gathering the solution of a certain number of 
associated Riemann problems, whose solution, besides its inherent difficulty, renders the computational implementation 
more expensive. Non homogeneous hyperbolic systems are conveniently approximated by combining Glimm’s method 
with an operator splitting technique – essentially a technique that treats a simultaneous problem as a sequential one. 
This procedure has already been successfully used in relevant problems in Mechanics (see Martins-Costa and Saldanha 
da Gama, 2005 and references therein).  

The preliminary hyperbolic model for the transport of pollutants in the atmosphere employed in this work considers 
the atmosphere an ideal isothermal gas and the pollutants radially transported. It combines the mass and linear 
momentum balances for the air-pollutant mixture – the classical equations of gas dynamics – with the pollutant mass 
balance – in which a term representing the rate of pollutants production or destruction due to chemical reactions is 
considered. The mathematical representation consists of a nonlinear non homogeneous system of hyperbolic partial 
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differential equations presenting discontinuities in addition to classical solutions with a very interesting feature – a 
contact shock characterized by presenting the same speed of the second eigenvalue. Along this shock the pollutants 
concentration jump while the mass density and the velocity remain constant, i.e. they do not jump (Martins-Costa and 
Saldanha da Gama, 2003). 

This system numerical simulation is performed by following a systematic procedure consisting of splitting the 
operator into an ordinary part and a hyperbolic one which, in turn, is treated by means of a Glimm’s scheme for 
evolution in time, employing the Riemann solver proposed by Saldanha da Gama and Martins-Costa (2007) for each 
two consecutive steps. The use of a Riemann solver allows building a simple and efficient procedure for simulating 
hyperbolic systems circumventing the requirement of a complete solution for the associated Riemann problem. This 
solution is approximated by piecewise constant functions satisfying the jump conditions, but not necessarily the entropy 
condition. The above-mentioned procedure, associated with Glimm’s scheme, provides a convenient way for simulating 
hyperbolic systems. Simulations of transport phenomena in an atmosphere containing m pollutants illustrate this above-
described methodology. Also, a comparison among results obtained by employing an exact solution of the associated 
Riemann problem with the proposed Riemann solver results shows the good performance of the latter methodology. 
 
2. MECHANICAL MODEL 
 

A simplified model, based on the mass and linear momentum conservation for the air-pollutants mixture and the 
mass balances for the m pollutants, describes the transport of pollutants in the air. Further assumptions are considering 
the mass transfer caused by an advection-diffusion process of the pollutants – denoted as Ai constituents – in the air, 
assumed as an ideal gas. Also supposing the summation of the m pollutants (the i-th constituents) mass densities 
negligible compared to the air mass density, the mixture balance equations are approximated by mass and linear 
momentum balances for the air. Defining ρ  as the air mass density, v as its velocity, and p and g as the pressure and 
specific body force acting on the air, the transport of m pollutants in the air is mathematically described as: 
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in which iω  is the i-th constituent concentration (or mass fraction) in the mixture, expressed by /i iω ρ ρ≡  where iρ  is 
the i-th constituent mass density. Diffusion of m constituents in the mixture – represented by the coefficients Di, is 
neglected, when compared to advection, an admissible assumption for an isotropic explosion. A simple constitutive 
assumption accounting for chemical reactions altering the quantity of the constituents describes the rate of production of 
the i-th constituent: i ir iα ω= − , in which iα  is a constant. At this point it is important to state additional simplifying 
assumptions to be considered in the present work. First, the pressure acting on the air is considered as a function of the 
mass density ρ only, its derivative satisfying ( )ˆ 'p ρ > 0 . Also, considering a one-dimensional radial flow, the velocity 
field may be reduced to a single component on the flow direction rv=v e . Besides, gravitational effects will be omitted 
– a reasonable hypothesis for a radial flow. The above-stated assumptions reduce the mechanical model presented in 
equation (1) to: 
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Defining the following dimensionless quantities: 2/ ,  / ,   / ,  / ,  /r R tv R v v v p p vη τ ρ ρ ρ ρ= = = = = , in which R is 

a reference radius, v  a reference velocity and ρ  a reference mass density and considering the redefinition of variables: 

i, , iF G v Hρ ρ ρω≡ ≡ ≡ , problem (2) is rewritten as 
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It is worth mentioning that in order to solve the above stated problem; initial data for the mass density, the velocity 

and the pollutants concentration are required. Eventually boundary conditions may also be employed in the solution. 
 
3. NUMERICAL APPROXIMATION 
 

This section presents a scheme to approximate equations (3), based on two main ingredients: an operator splitting 
technique combined with Glimm's scheme, which in this work is combined with an approximate Riemann solver for 
advancing in time. The operator splitting consists in decomposing the operator in such a way that its hyperbolic part is 
splitted away from the purely time evolutionary one. Glimm’s method, specifically developed to deal with hyperbolic 
non-linear problems, consists in marching from a time n to a time n+1 through the associated Riemann problem for 
each two consecutive time steps. It is based on a theory whose mathematical formulation has a solid thermodynamic 
basis, which could be expressed by the entropy condition (Smoller, 1983). A wide range of non-linear hyperbolic 
problems have already been simulated by combining Glimm's scheme and an operator splitting technique among which 
are the wave propagation in gas pipelines, shock propagation in gas dynamics problems and wave propagation in a 
damageable elasto-viscoplastic pipe, the response of non-linear elastic rods and the isothermal and non-isothermal flow 
of either ideal or Newtonian fluids through unsaturated porous media (see Martins-Costa et al., 2005 and references 
therein).  

Glimm’s method approximates the homogeneous part of the hyperbolic operator represented in equation (3), 
employing the solution of the associated Riemann problem to march from a time n to a time n+1, thus requiring the 
solution (or approximation) of the associated Riemann problem. In short, Glimm’s method allows building a solution 
for an initial value problem – namely nonlinear hyperbolic systems subjected to arbitrary initial data, through the 
solution of a certain number of associated Riemann problems. The initial condition given by a function of the position r 
is approximated by piecewise constant functions, the step functions, with equal width steps. In the sequence a Riemann 
problem, an initial value problem whose initial condition must be a step function, is to be solved – either exactly or by 
employing the Riemann solver employed in this work – for each two consecutive steps (Martins-Costa and Saldanha da 
Gama, 2003). The main idea behind the method is to appropriately gather the solution (or approximation) of as many 
Riemann problems as desired to successively march from time nτ τ=  to time 1n nτ τ τ+ = + Δ .  

The first step consists in obtaining an initial approximation for ( ), , iF G H  by advancing τΔ  in time through the 

homogeneous (merely hyperbolic) part of the operator via Glimm’s method, using the values of ( , , i )F G H  at time 

nτ τ=  as initial data. The numerical approximation for the solution at time nτ τ=  is then obtained by advancing in time 
with the same time step τΔ  ough the purely time evolutionary system. This procedure is repeated until reaching a 
specified simulation time. 

thr

The numerical procedure employed to advance from the time nτ τ=  to 1nτ τ +=  may be defined as the combination 
of problem (3) with: 
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3.1. Operator splitting technique 
 

The fist step to approximate the fields F, G  and Hi at the time 1nτ τ +=  in the non-homogeneous problem described 
in equations (3)-(4) is to employ an operator splitting technique, described in details by Martins-Costa and Saldanha da 
Gama (2001). It consists of a decomposition of the operator defined in equation (3) so that its merely hyperbolic part – 
namely the homogeneous associated system, is split away from its purely time evolutionary one – an ordinary system. 
This technique gives rise to an initial approximation, obtained by advancing τΔ  in time through the equations 
representing the homogeneous problem, by employing Glimm's method. Once this approximation has been evaluated, 



the numerical approximation for the solution (F,G,Hi) at time 1nτ τ +=  is finally reached by advancing in time to solve 
the following time evolutionary problem, with the same step 1n nτ τ τ+Δ = −  through equations: 
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3.2. Glimm’s scheme 
 

Glimm's scheme, specifically developed to deal with discontinuous problems, preserves the shock waves magnitude 
and position, within an uncertainty of ηΔ  (width of each step). Such features are not found in the usual numerical 
procedures (e.g. finite elements and finite differences). Besides, Glimm’s method presents a clear advantage of saving 
computer storage memory, when compared to other methodologies such as a finite element method associated with a 
shock capture procedure, however its limitation to one-dimensional problems is an important shortcoming. 

The fields ( )1nF η+ , ( )1nG η+  and ( )
1ni

H η
+

 used as initial data in (5) are obtained by advancing  in time via 
Glimm's method through the following homogeneous problem: 

tΔ
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The generalized solution of the Riemann problem associated with the hyperbolic system (7), is reached by 

connecting the left (L) and right (R) states by means of two intermediate constant states (*1 and ) as follows: *2

( ), ,
LL L iF G H    ( )

*1*1 *1  , , iF G H→ ( )*2*2 *2 , , iF G H→ ( ) , ,
RR R iF G H→ . The connection between the states , 

 and *2  may be performed either by rarefactions or shocks. A particular type of link is verified in the 
Riemann problem associated to (7) – the connection between intermediate states *1 and *2  is always a contact shock 
(Lax, 1971; Smoller, 1983), in which there is no jump for both variables F and G – in such a way that 

*1L →

*1 *2→ R→

*1 *2F F=  and 
. The jump is verified solely for *1 *2G G= iH , with a propagation speed . A contact shock may be viewed as the 

limiting case of a rarefaction in which the rarefaction fan is reduced to a single line; namely a discontinuity with 
associated eigenvalue corresponding exactly to the shock speed (Martins-Costa and Saldanha da Gama, 2003). 

/G F
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System (7) is approximated by employing Glimm’s scheme, described in details in Martins-Costa and Saldanha da 
Gama (2003), to advance from time nτ  to time 1nτ + , in other words, ( )1nF η+ , ( )1nG η+  and ( )

1ni
H η

+
 are the solutions 

of (7) evaluated at the time 1nτ τ += . Glimm’s scheme for building a solution for an initial value problem consists in 
appropriately gathering the solution of a certain previously chosen number of Riemann problems to successively march 
from time nτ τ=  to time 1n nτ τ+ = + Δτ . The arbitrary initial condition given by a function of the position η  
( ( ) ( ) ( ) ( ) ( ) ( )

00 0,0 ,  ,0 ,  ,0i iF F G G H Hη η η η η η= = = ) is approximated by piecewise constant functions, by 
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in which nθ  is a number randomly chosen in the open interval ( )1/ 2 ,  1/ 2− +  and ηΔ  is the width of each step 
( 1j jη η η+Δ = − ). 

The above approximations for the initial data give rise, for each two consecutive steps, to the following Riemann 
problem: 
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Denoting by 
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iH  the generalized solution of the Riemann problem (9), the approximation for the 

solution of (7) at the time 1nτ τ +=  is given as follows: 
 

( ) ( )
( ) ( )
( ) ( )

1

1 1

1 1

1 1

ˆ ,             

ˆ ,            

ˆ ,           

j

j

n n j

R
n n n j

R
n n n j

R
i i i n j j

F F F

G G G

H H H

η η τ η η η

η η τ η η η

1

1

j

j

η η τ η η η
+

+ +

+ +

+

+

+ +

= ≈ < <

= ≈ < <

= ≈ < <

      (10) 

 
Remark: In order to prevent interactions among nearby waves of adjacent Riemann problems, the time step τΔ  and, 
consequently, 1nτ +  for problem (9), must be chosen in such a way that the Courant-Friedrichs-Lewy condition (Smoller, 
1983) is satisfied, thus assuring uniqueness for the solution: 
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4. THE ALTERNATIVE PROCEDURE  
 

The procedure proposed in this work consists in replacing the classical exact solutions of the Riemann problem (9) 
by generalized approximations – built in by assuming any two given states always connected by a discontinuity which 
may not satisfy the entropy conditions – in order to advance in time through Glimm’s scheme. Essentially the 
approximation consists in searching for a weak solution for the associated Riemann problem within a space of 
piecewise constant functions with a maximum of two jumps. 



A generalized solution for the Riemann problem described in equations problem (9), depending on ( , )η τ , may be 
expressed as a function of a similarity variable /ξ η τ=  (Smoller, 1983; Saldanha da Gama, 1990) being constructed by 
connecting the left (L) and right (R) states to an intermediate state (*) by rarefactions or shocks as follows: ( ), ,L L LF G H  

( )* * *  , ,F G H→  ( ) , ,R R RF G H→  or ( ),L LF G  ( )* *  ,F G→  ( ) ,R RF G→ .  
Since the connection between intermediate states *1 and *2  in problem (9) is a contact shock – a reversible shock 

without any associated entropy generation (Saldanha da Gama, 1990) – a continuous solution for problem (9) cannot be 
reached. This contact shock is characterized by absence of jump for both variables ρ  and vρ  – in such a way that 

*1 *2( ) ( )ρ ρ=  and *1 *2( ) ( )v vρ ρ= . The jump is verified solely for iρω , with a propagation speed  (v 2 2s vλ= = ) – the 
speed assuming the same value of the corresponding eigenvalue (Martins-Costa and Saldanha da Gama, 2003), giving 
rise to an important simplification, allowing the former three-variables problem (9) to be reduced to a two variables (  
and 

v
ρ ) one with only two connections to be determined, namely,  
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in which R1 and R3 denote possible rarefaction in connections 1 and 3 while S1 and S3 refer to possible shock in these 
connections.  
 
4.1. On the Riemann solver 
 

It is important to mention that the presence of the contact shock in (9), provides the independent solution of the first 
two equations of problem (9) as explained by equation (12). The determination of the intermediate state (*) permits 
solving the third equation. All the considerations above allow expressing the associated Riemann problem as: 
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The eigenvalues of (13) are given (in increasing order) by . 1/ 2/ ( 2)( ') ,   1,j G F j p jλ = + − =
Since  for all ' 0p > η  and τ , (13) is hyperbolic system (genuinely nonlinear whenever  is positive everywhere) 

and problem (13) is called a Riemann problem whose generalized solution depends on the ratio 
''p

( ) /( )η η τ τ− − , being 
reached by connecting the left state ( , )L LF G  and the right state ( ),R RF G  to an intermediate state.  

When the eigenvalues jλ  are increasing functions of ( ) /( )η η τ τ− −  between two states, they are connected by a j-
rarefaction (Lax, 1971; John, 1974) – a continuous solution of the associated Riemann problem – the solution ( , )F G  
depending continuously on ( ) /( )η η τ τ− −  between these two states and associated to a j-rarefaction there exists a 
Riemann invariant which is a constant. Conversely, if jλ  are decreasing functions, the states are connected by a j-shock 

(a discontinuous solution) with speed js , the entropy conditions being automatically satisfied. Since weak solutions 
cannot assure uniqueness of solution (Keyfitz and Kranzer, 1978), the so-called entropy condition must be verified in 
order that uniqueness is preserved. Considering two given states connected by a j-Shock with speed js , the following 
jump conditions – denoted as Rankine-Hugoniot conditions – associated with equation (13), must be satisfied: 

 
2 /

j

G F pG
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+
= =       (14) 

 
in which js  represents the speed of discontinuity propagation and f , the jump of a quantity f.  

Details on the employed Riemann solver are found in Saldanha da Gama and Martins-Costa (2007). Essentially it 
consists of assuming the solution within a space of piecewise constant functions, so that any two states are connected by 
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a discontinuity. In other words: ( ) ( ) ( )* *, 1-shock , 2-shock ,L L R RF G F G→ → → → F G . This approximation no longer 
requires considering the original four possible solutions required by Riemann problem exact solution and stated in 
equation (12). On the other hand, the entropy conditions are not ensured. It is to be noticed that the conservation laws 
are satisfied in a weak sense. 

The (generalized) solution of (13), within a space of piecewise constant functions, is reached as follows 
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5. SOME RESULTS 
 

In order to show the good performance of the Riemann solver proposed in this work, figures 1 to 4 compare results 
obtained by employing the exact solution of the associated Riemann problem to those using the Riemann solver 
described in this work. In all depicted sketches, the evolution of gas density ρ , velocity  and pollutants concentration 
per unit volume for three distinct pollutants – denoted as constituents 1, 2 and 3 of the mixture – namely 

v

1ρω , 2ρω  and 

3ρω , is presented along with radial position for five selected time instants. Each considered case is shown in a set 
composed by six lines and five columns of graphs. Each line represents a distinct time instant – the first one being the 
initial condition, while each column corresponds to the behavior of a distinct variable. Also, in all depicted graphs, the 
sphere’s internal radius is depicted at the left-hand side while the external one is at the right side. The qualitative results 
shown in Figures 1 to 4 were obtained by employing a convenient normalization. 

 

(a)  (b) 
 

Figure 1. Gas density, velocity and pollutants concentration per unit volume ( ( 1,2,3)i jρω = ) variation with radial position 
for distinct time instants – initial data: step functions for ρ , 1ω , 2ω  and 3ω  and linear velocity.  

(a) Exact solution of Riemann problem; (b) Riemann solver. 
 
 

All numerical results have been obtained by employing Glimm’s difference scheme combined with an operator 
splitting technique as described in the previous section employing 200 evolutions in time between each two depicted 
time instants (except for Figure 1, where 400 evolutions have been considered) while the spatial domain encompassed 



300 steps. In all the considered cases the term accounting for rate of production of the constituent 1 was 0.1 ( 1 0.1α = ) 
while those related to the constituents 2 and 3 were made equal to zero. Also all results model an isothermal process. 

 
 

(a)   (b) 
 

Figure 2. Gas density, velocity and pollutants concentration per unit volume ( ( 1,2,3)i jρω = ) variation with radial position 
for distinct time instants – initial data: step functions for ρ , 1ω  and 2ω  and linear 3ω  and velocity.  

(a) Exact solution of Riemann problem;  (b) Riemann solver. 
 
 

Figure 1 considers step functions for all the pollutants concentration and for the mass density and a linear 
decreasing function for the velocity. Figure 2 considers the same initial condition used to obtain Figure 1 except for the 
third constituent whose pollutants concentration is a linear decreasing function. In Figure 3 step functions were 
prescribed for the pollutants concentration of the constituents 1 and 2, and a linear decreasing function for the 
constituent 3 was considered, while the velocity assumed a linear decreasing value up to a region near the spherical 
shell centerline when it assumes a constant value. Finally in figure 4 step functions were prescribed for all the pollutants 
concentration and for the velocity while the mass density assumed a linear decreasing function. 

At this point it is important to emphasize that in all depicted results both the exact solution of the associated 
Riemann problem and the Riemann solver proposed by Saldanha da Gama and Martins-Costa (2007) have shown very 
good agreement, justifying the use of the alternative procedure in the simulation of nonlinear hyperbolic systems. 
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(a)    (b) 
 

Figure 3. Gas density, velocity and pollutants concentration per unit volume ( ( 1,2,3)i jρω = ) variation with radial position 
for distinct time instants – initial data: step functions for ρ , 1ω  and 2ω ; linear 3ω  and velocity: linear and 

constant.  (a) Exact solution of Riemann problem;  (b) Riemann solver. 
 
 

(a)   (b) 
 
 

Figure 4. Gas density, velocity and pollutants concentration per unit volume ( ( 1,2,3)i jρω = ) variation with radial position 
for distinct time instants – initial data: step functions for velocity, 1ω , 2ω  and 3ω ; and: linear ρ .  

(a) Exact solution of Riemann problem;  (b) Riemann solver. 



6. FINAL REMARKS 
 

The numerical methodology presented in this work allowed the accurate approximation of a nonlinear system of 
three partial differential equations representing mathematically the transport of n pollutants in the atmosphere. Both the 
spherical geometry and generation term for one of the pollutants resulted in a nonlinear non homogeneous hyperbolic 
system, adequately treated by combining Glimm’s scheme with operator splitting technique. 

Among the numerical methodologies currently employed to treat discontinuous problems Glimm’s scheme is the 
one that better preserves the shock identity. Although its applicability is restricted to one-dimensional problems, this 
methodology exhibits two important features deserving remark. The former is that Glimm’s method approximation 
tends to the exact solution of the problem (considering its weak formulation) when the width of the steps tends to zero 
and the latter is that it does not dissipate shocks, preserving their magnitude (no diffusion being observed) and position. 
The operator splitting technique is a simple and effective tool that consists, essentially, in treating a simultaneous 
problem as a sequential one. A decomposition in two parts of the operator defined in the hyperbolic system is 
performed so that the merely hyperbolic part of the operator – namely the homogeneous associated problem – is split 
away from its purely time evolutionary one. 

A Riemann solver was employed to implement Glimm’s method for advancing in time. The problem was also 
approximated by employing the usual methodology for implementing Glimm’s scheme – a complete solution of the 
associated Riemann problem. Comparison between these two solutions has shown very good agreement. 
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