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Abstract. This work proposes a limit analysis theory for porous materials. This study is analyzed from the basic 
equations of kinematics, equilibrium and constituve, and in the formulations achieved the total plastic strain rate is 
assumed to be given by the sum of the plastic strain rates considering the yielding and the compaction. The compaction 
is considered because the onset of the yielding in porous materials depends on the hydrostatic stress besides the 
deviatoric stress component. Hence in the development of the calculations, it is necessary to use  the yield and 
compaction criterions as functions of the relative density.  The von Mises’s yield given for fully dense materials is 
changed, as proposed by Doraivelu. The collapse factor is obtained using the statical, kinematical and mixed 
formulations. The statical formulation, that is obtained from the modified form of Drucker’s postulate and the 
kinematical compatibility, points the set of stresses out which the plastic admissibility, compaction and equilibrium are 
taken into account. A velocities field is given by the kinematical formulation, that is obtained from the subdifferential of 
the dissipation function and the kinematical compatibility, so that the value one is attributed to the reference external 
power. The mixed formulation is a combination of the plastic dissipation which is used in the kinematical formulation. 
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1. INTRODUCTION  
 

Powder compaction constitutes an important step in the manufacture of products which use the powder as raw 
material, for example, advanced ceramics, pharmaceutics industry, automotive and aerospace applications. To obtain 
the components of these areas, with desire forms and final adequate properties, it is of extreme importance to fulfill all 
the technical conditions of the project and of the production. 

Nowadays manufacturing of components and parts by forging of sintered powder materials is a subject considered 
of interest to industries. The success of the manufacturing processes depends on factors such as control of deformation 
to ensure uniform densification (Park, 1995). 

Metal-working operations such as powder-metallurgy (P/M) extrusion and forging of sintered materials are currently 
employed for achieving required shape, full densification and mechanical properties (Doraivelu et al, 1984). 

Theoretical approaches in conventional deformation processes have been made so as to obtain the working load 
required to cause plastic deformation and the density of the products, when sintered porous metals are employed as 
starting materials in working process such as forging and extrusion (Shima and Oyane, 1976). 

In conventional plasticity concept, various theories and methods for analyzing problems in ordinary metal working 
processes have been developed, although they are not capable of being applied to the deformation of porous materials. 
Constancy of volume in conventional plasticity theory is assumed for the material undergoing deformation, and this 
assumption applies to pore-free metals. In the deformation of porous metals the volume does not remain constant 
(Shima and Oyane, 1976). 

The studies to analyze the yielding of porous materials are more complicated than that of the fully dense materials 
because the yielding is caused not only as function of the deviatoric stress but also as function of the hydrostatic stress, 
therefore the formulation for the yield criterion considering such materials should be a function of both the second 
invariant of the deviatoric stress tensor and the first invariant of the stress tensor (Doraivelu et al, 1984). 

In this work, a limit analysis theory for porous material is developed on the basis of kinematic, equilibrium and 
constitutive equations. All the concepts concerned with the traditional plasticity theory, pore-free material, are 
considered to this study. The statical, kinematical and mixed formulations are used to obtain the stresses and velocities 
fields. 

In order to achieve the purpose of this study, the total plastic strain rate is assumed to be given by the sum of the 
strain rates considering the yielding and the compaction of the porous material.  The compaction must be taken into 



account because of the volume does not remain constant when the yielding is reached in porous material. The yielding 
depends on both the deviatoric stress component and the hydrostatic stress. 

The statical formulation is reached from the global form of Drucker’s postulate combined with the equilibrium. The 
kinematical formulation is given from the global form of the subgradient of the dissipation function considering the 
admissible plastic strain rate field. The mixed formulation is a combination of the plastic dissipation which is used in 
the kinematical formula. 
 
2. BASIC EQUATIONS 
 

In order to model the problem, relations based in the kinematic, equilibrium and mechanical behavior of the material 
are shown in the following sections. 
 
2.1. Kinematics 
 

The small deformations are considered and all the formulations that are shown in this work are related to this 
assumption. 

The contour Γ  of a body that occupies a region limited β  of the nR  is divided in two supplementary parts τΓ  and 

vΓ . 

Forces on the surface τΓ  and null velocities in the part vΓ  are assigned. 

The admissibility of the motion is given so that if Vv∈  then 0=v  if  on the contour vΓ . 

The following compatibility equation relates the rate of deformation ε&  to the velocity field v . 
 

Dv=ε&  (1) 
 
where Vv∈  and W∈ε& . 

In the equation (1), D  is considered the tangent operator of deformation and the set of rate of deformation fields ε&  
is represented by W . 

The rate of the total deformation is represented by the sum of the rates of the elastic and plastic deformations 
respectively: 

 
pe εεε &&& +=  (2) 

 
2.2. Equilibrium 
 

The space of the external loads is 'V  or the set of all linear functions >< vF ,  that is defined by their dual V  and 
the space of the stresses is represented by 'W  dual of W . 

The external power given by a reference load is defined by the linear function >< vF , : 
 

τ
β τ

τβ Γ+=>< ∫∫ Γ
dvdvbvF ..,  (3) 

 
In the equation (3), b  and τ  are body and surface forces respectively. 
If the Principle of the Virtual Power is verified, an external power >< vF ,α  will be equilibrated with an internal 

power given by a field of stresses 'WT ∈ , as shown below: 
 

VvvFDvT ∈∀><=>< ,, α  (4) 
 
The product >< DvT ,  is defined by the equation: 
 

∫=><
β

βdDvTDvT .,  (5) 

 
The proportionality factor α  is used as the relationship between the real external power and the reference power. 
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2.3. Constitutive Equations 
 

The set of stresses, where the plastic admissibility is taken into account, is defined by the following condition: 
 

}0),('{)( ≤∈= ρρ TfWTP  (6) 
 
The yield function ),( ρTf  defines, in the space of the stresses, a convex region limited by 0),( =ρTf  which is 

called elastic region where 0),( ≤ρTf   
Yield patterns to porous materials, such as Corapcioglu, Shima and Doraivelu, have been developed. For instance, 

The Doraivelu’s model is shown below (Doraivelu et al, 1984): 
 

0)12()
3

1()2(),( 222
1

2

2
2 ≤−−

−
++= DTIJTf ρρρρ  (7) 

 
In the equation (7), ρ  is the relative density – the relationship between the specific mass of the porous material and 

the dense material, 2J  is the second invariant of deviatoric stress component, 1I  is the first invariant of stress tensor, 

DT  is the yield stress of fully dense material. 

The complementary equation is defined by the dot product of the yield parameter λ&  and its yield fuction ),( ρTf , 
as the following equation: 

 

0,00. ≥≤= λλ && ff  (8) 

 
The set of the stresses )(ρQ , where the compaction function is taken into account, is defined as a function of the 

sum of the elements of the tensor’s main diagonal and the relative density ρ : 
 

}0),('{)( ≤∈= ρρ trTgWTQ  (9) 
 
The complementary equation is defined by the dot product between the compaction parameter μ&  and the 

compaction function ),( ρtrTg , as the following equation: 
 

0,00. ≥≤= μμ && gg  (10) 
 
When porous material is considered, the complementary equation (10) must be observed. If the porous material is 

not being compacted, the compaction function will be represented by negative values 0),( <ρtrTg  and the 
compaction parameter will be given by a null value 0=μ& . When the plastic case is considered, 0),( =ρtrTg  and 

0>μ& , the material will be compacted and the relative density’s value will be increased. 

The plastic strain rate is assumed to be given by the sum of the strain rates considering the yield p
fε&  and the 

compaction p
gε& . 

 
p
g

p
f

p εεε &&& +=  (11) 
 
The internal variable pε&  can be defined by the flow law, that is, the mathematical representation of the normality 

rule. 
The plastic strain rate, which is related to the yield function f  by the normality law, is represented by the following 

equation: 
 

),( ρλε TfT
p
f ∇= &&  (12) 

 



The plastic strain rate, which is related to the compaction function g  by the normality law, is represented by the 
following equation: 

 
),( ρμε trTgT

p
g ∇= &&  (13) 

 
The equation (13) can be rewritten to simplify the next formulations: 
 

33)),(( xtrT
p
g ItrTg ρμε ∇= &&  (14) 

 
The trace of the deformation tensor represented by the expression (14) is: 
 

),(3)( ρμεε trTgtr trT
p
g

p
gv ∇== &&&  (15) 

 
As a result: 

 

33)(
3
1

x
p
gv

p
g Iεε && =  (16) 

 
To model the problem the Drucker’s postulate (Lubliner, 1990) is considered. 
 

QPTTT p ∩∈∀≥− ** 0).( ε&  (17) 
 
P  is the set of the stresses considering the porous materials, these stresses are function of the relative density in a 

space of stresses where there is the admissibility plastic. 
Q  is the set of the stresses where the compaction of the material occurs, these stresses function of the relative 

density. 
 
Using the equality (11): 
 

QPTTT p
g

p
f ∩∈∀≥+− ** 0)).(( εε &&  (18) 

 
The condition (18) can be rewritten: 
 

QPTTTTT p
g

p
f ∩∈∀≥−+− *** 0).().( εε &&  (19) 

 
The following condition is based on equation (16): 
 

QPTITTTT x
p
gv

p
f ∩∈∀≥−+− *

33
** 0)(

3
1).().( εε &&  (20) 

 
By performing the dot product: 
 

QPTTTtrTT p
gv

p
f ∩∈∀≥−+− *** 0)(

3
1).( εε &&  (21) 

 
The condition (21) can be rearranged: 
 

QPTtrTTtrTT p
gv

p
f

p
gv

p
f ∩∈∀+≥+ ***

3
1.

3
1. εεεε &&&&  (22) 

 
The function of the plastic dissipation is given by: 
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pp T εε && .)( =ℵ  (23) 
 
According to the equality (11), the dissipation is represented as: 
 

p
g

p
f

p
g

p
f TT εεεε &&&& ..),( +=ℵ  (24) 

 
Using the equality (16): 
 

33)(
3
1..),( x

p
gv

p
f

p
g

p
f ITT εεεε &&&& +=ℵ  (25) 

 
or by performing the dot product, the dissipation is given by the following expression: 

 

trTT p
gv

p
f

p
g

p
f 3

1.),( εεεε &&&& +=ℵ  (26) 

 

where trT
3
1

 is the hydrostatic pressure associated with the stresses tensor T . 

According to the expressions (22) and (26), the next condition is obtained: 
 

QPTtrTT p
gv

p
f

p
g

p
f ∩∈∀+≥ℵ ***

3
1.),( εεεε &&&&  (27) 

 
The variation *T  is restricted to the set QP∩  and it can be concluded that the dissipation is equal the supreme 

value of the plastic admissible stresses, which gives the highest value of the dot product, as the equality: 
 

QPTtrTTtrTT p
gv

p
f

T

p
gv

p
f

p
gv

p
f ∩∈+=+=ℵ ***

*
}

3
1.{sup

3
1.),( εεεεεε &&&&&&  (28) 

 
The subgradient of the dissipation function )( pε&∂ℵ  is defined by the following condition: 
 

}).()()({)( *** WTT pppppp ∈∀−≥ℵ−ℵ≡∂ℵ εεεεεε &&&&&&  (29) 

 
According to equality (11), the expression (29) is modified: 
 

}),().().(),(),({),( ****** WTTT p
g

p
f

p
g

p
g

p
f

p
f

p
g

p
f

p
g

p
f

p
g

p
f ∈∀−+−≥ℵ−ℵ≡∂ℵ εεεεεεεεεεεε &&&&&&&&&&&&  (30) 

 
Taking into account the dissipation (24): 
 

}),().().(..),({),( ****** WTTTTT p
g

p
f

p
g

p
g

p
f

p
f

p
g

p
f

p
g

p
f

p
g

p
f ∈∀−+−≥−−ℵ≡∂ℵ εεεεεεεεεεεε &&&&&&&&&&&&  (31) 

 
Using the equality (16), the expression above is modified: 
 

}),()(
3
1).(

3
1.),({),( ****** WtrTTtrTTT p

gv
p
f

p
gv

p
gv

p
f

p
f

p
gv

p
f

p
gv

p
f

p
gv

p
f ∈∀−+−≥−−ℵ≡∂ℵ εεεεεεεεεεεε &&&&&&&&&&&&  (32) 

 

In such case ),( p
gv

p
f εε &&∂ℵ  is represented by the expression: 

 



}),(
3
1.),({),( ****** WtrTTT p

gv
p
f

p
gv

p
f

p
gv

p
f

p
gv

p
f ∈∀+≥ℵ≡∂ℵ εεεεεεεε &&&&&&&&  (33) 

 
Then the compact form of the constitutive equation can be given as: 
 

),( p
gv

p
fT εε &&∂ℵ∈  (34) 

 
3. COLLAPSE FACTOR BY THE STATICAL FORMULATION 
 

The Drucker’s postulate in global form is pointed out: 
 

QPTTT p ∩∈∀≤>−< ** 0),( ε&  (35) 
 
According to the compatibility equation (1), the Drucker’s postulate is shown: 
 

QPTDvTT ∩∈∀≤>−< ** 0),(  (36) 
 
The following expression is the condition (36) solved: 
 

QPTDvTDvT ∩∈∀><≤>< ** ,,(  (37) 
 
According to the equilibrium (4), the above condition is represented: 
 

QPTvFDvT ∩∈∀><≤>< ** ,, α  (38) 
 
If the variation of *T  is restricted to equilibrated stresses: 
 

},,'{ ***
* VvvFDvTWTS ∈∀><=><∈= αα  (39) 

 
In such case the representation of the expression (38) is modified: 
 

*
** ,, ααα SQPTvFvF ∩∩∈∀><≤><  (40) 

 
The optimum problem to statical formula is rewritten: 
 

*
**

**,*,
sup α

ρα
αα SQPT

T
∩∩∈=  (41) 

 
The field of stresses and the collapse factor is calculated when the limit analysis problem is solved with the statical 

formulation. 
The statical formulation matches the first collapse theorem: 
Any external loading is supported by a structure if the produced field of stresses satisfies plastic admissibility and 

obeys the equation of equilibrium (Sneddon and Hill, 1964). 
 

4. COLLAPSE FACTOR BY THE KINEMATICAL FORMULATION 
 

Taking into account the kinematical condition (1) and if the variations in the plastic strain rate *pε&  are restricted to 
kinematically admissible plastic strain rate field, the following equality is obtained:  

 
* *p Dvε =&  (42) 

 
where Vv ∈*  and Wp ∈*ε . 
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By the equation (11), the plastic strain rate is compounded by two components of plastic deformation, considering 
the yield *p

fε&  and the compaction *p
gε&  : 

 
* * *p p p

f gε = ε +ε& & &  (43) 
 

where *p
f Wε ∈&  and *p

g Wε ∈& . 

Using the equality (16), *p
gε&  is shown as a function of the trace of deformation tensor to simplify the next 

formulations: 
 

* *
3 3

1
3

p p
g gv xIε = ε& &  (44) 

 
where *

3 3( )p
gv xI Wε ∈& . 

Taking into account the equalities (43) and (44), the kinematical compatibility (42) can be rewritten: 
 

* * *
3 3

1
3

p p
f gv xI Dvε + ε =& &  (45) 

 
where WI p

fx
p
gv ∈*

33
* ),( εε &&  and *v V∈ . 

Using the equality (45) in the equilibrium (4) the expression below is obtained: 
 

*
33

*****

3
1,

3
1, DvIvFtrTT x

p
gv

p
f

p
gv

p
f =+><=><+>< εεαεε &&&&  (46) 

 
The global form of the condition (33) is rewritten in order to obtain the kinematical formulation: 
 

WItrTT x
p
gv

p
f

p
gv

p
f

p
gv

p
f ∈∀><+><≥ ),(

3
1,),( 33

****** εεεεεεχ &&&&&&  (47) 

 
Replacing the equilibrium (46) in the condition (47): 
 

*
33

*****

3
1,),( DvIvF x

p
gv

p
f

p
gv

p
f =+><≥ εεαεεχ &&&&  (48) 

 
If the value one is attributed to the reference external power, that is, field of velocities is chosen so that the value one 

is attributed to the reference external power: 
 

1, * =>< vF  (49) 
 
Hence the optimum problem to the kinematical case is obtained: 
 

*
33

**

*

**

,*,
3
1

1,
),(inf

** DvI

vF

x
p
gv

p
f

p
gv

p
f

v p
gv

p
f =+

>=<
=

εε
εεχα

εε &&
&&

&&
 (50) 

 
The kinematical formulation matches the second collapse theorem: 
 
The inequality sign in (48) is for all kinematically admissible strain rate fields, that is, all admissible collapse 

mechanisms. The stronger inequality – where the equality sign is suppressed – is a condition imposed for the capability 
of the structure of supporting the external loads (Sneddon and Hill, 1964). 

 



5. COLLAPSE FACTOR BY THE MIXED FORMULATION 
 

The mixed formulation is a combination of the plastic dissipation and the kinematical formulation. 
Considering the global form of the plastic dissipation (28): 
 

QPTtrTT p
gv

p
f

T

p
gv

p
f ∩∈>+<= *****

*

**

3
1,sup),( εεεεχ &&&&  (51) 

 
Replacing the plastic dissipation (51), in its global form, in the kinematical formulation (50), the mixed condition is 

reached: 
 

*
33

**

*

*

****

*,*,

3
1

1,

3
1,supinf

**

DvI

QPT

vF

trTT

x
p
gv

p
f

p
gv

p
f

Tv p
gv

p
f

=+

∩∈

=><

>+<=

εε

εεα
εε

&&

&&
&&

 (52) 

 
A more compact form of the mixed formulation can be obtained: 
 

QPT

vF
DvT

Tv p
gv

p
f ∩∈

=><
><=

*

*
**

*,*,

1,
,supinf

** εε
α

&&
 (53) 

 
The fields of both velocities and stresses are obtained by the result of the condition (53), which is a stationary point, 

that is, a saddle point. 
 
6. CONCLUSIONS 
 

The use of the limit analysis theory can improve several factors in the project development, in order to obtain lighter 
products, with greater resistance and more economically, as well as to avoid the plastic collapse. 

A variational formulation for the limit analysis of porous materials was proposed. The strains due to both yield and 
compaction stresses were considered in the formulations, apart from the equilibrium, constitutive equation and the 
compatibility equation. 

Drucker’s postulate in global form is taken into account to obtain the statical formulation, which coincides with the 
first collapse theorem and shows the field of stresses that satisfies the compaction of the material and the plastic 
admissibility, besides obeying the equilibrium condition. The kinematical formulation is obtained taking into account 
the condition of the subgradient of the dissipation function, the kinematical compatibility and the reference external 
power. From this formulation all admissible collapse mechanisms are given, and the capacity of the body of supporting 
the external loads. By the combination of the plastic dissipation and the kinematical formulation, the mixed formulation 
is obtained, which points out a stationary point, that is, the fields of velocities and stresses. 
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