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Abstract.  Modal analysis involving output-only measurements is still a challenge that requires the use of special 
modal identification techniques. The present paper discusses the basic concepts and the implementation of a time and a 
frequency domain output-only based methods, the Stochastic Subspace Identification (SSI) and Frequency Domain 
Decomposition (FDD), respectively . The advantage of these output-only based  methods is that no artificial excitation 
needs to be applied to the structure, they can use the own operation condition of the structure as the  excitation 
condition. The SSI method estimates the state sequences directly from the response data and the modal parameters are 
estimated by using the eigenvalues decomposition of the state matrix. The inplementation steps of the procedure are 
based in the well-known numerical linear algebra algorithms and the  SVD and QR decomposition. The FDD method 
is based on the decomposition of the power spectral density matrix by using  SVD. The decomposition of the spectral 
density matrix for the frequency line corresponding to a resonance amplitude peak, allows the estimating of that 
corresponding  mode shape of the model. The methodologies are evaluated with  experimental data and the results 
have been  shown to be promising to identify the structural  modal parameters by taking  output-only  data.  
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1. INTRODUCTION 
 

Nowadays, the requirements of the market have demanded machines and equipment more and more elaborated, with 
performance and production capacity each time higher and to accessible costs. In this context, the interest for the study 
and development of structural techniques of identification, more efficient for analysis of performance and structural 
integrity of systems is quickly becoming increasing. 

Experimental Modal Analysis is one of these techniques; they have been used to study the structural dynamic 
behavior of a model through a matricial formulation that allows the estimating of the vibration parameters of the model. 
This formulation permits one to write a direct relationship between the excitation and the response of the structure in 
terms of its modal parameters. In the experimental test, this input-output relationship is obtained by measuring the 
excitation and the response of the structure for a set of selected measuring points. Once obtained the data, one defines a 
set of complex functions that establish a direct relationship between the excitation force and the responses of the 
structure. For a force applied in a point j and the corresponding response measured in a point i of the structure, one can 
define the called Frequency Response Function (FRF) of the model or its equivalent in the time domain, the Impulse 
Response Functions (IRF). 

The Modal Analysis  based on these function as well as its application have been widely studied and currently exists 
a vast literature covering the main theoretical aspects, as well as the practical aspects related  with the experimental 
tests, (Ewins, 1984; Maia et al., 1997; Allemang, 1999) 

In the convectional modal analysis, it is necessary the measuring of the input excitation and the response of the 
model in order to obtain the respective FRF(s). Generally these tests are carried out in laboratory with well controlled 
conditions and the excitation of the structure is made artificially. However, the vibrate-acoustic behavior of a structure 
in operation conditions (real conditions of load), can present different behavior of a laboratory test. It has the effect of 
pre-tensions, effect of suspensions, effect of ambient conditions and others. Therefore, the study of the behavior of the 
structure by using its proper operation conditions as excitation, it could be more representative then a laboratory tests 
and the identification of the modal parameters of the model it would be more realistic.  

This paper discusses the application of  two techniques of the modal parameters identification using only the 
response of the structure - a non-parametric technique based on Frequency Domain Decomposition (FDD), (Brincker, 
2000a; Brincker, 2001), and a parametric technique based on the raw data time domain, the Stochastic Subspace 
Identification (SSI) technique, (Van Overschee e De Moor, 1996; Peeters and Roeck,1999). The implemented 
algorithms are evaluated with experimental data and the identification of the modal parameters of a frame structure 
using only the response data are discussed. 
 

 



2. FREQUENCY DOMAIN DECOMPOSITION (FDD) 

The Frequency Domain Decomposition technique as discussed in Brincker (2000a), it is an extension of the classic 
frequency domain approach. In the classic frequency domain approach, the parameters are estimated directly from the 
use of Discrete Fourier Transform, that allows an estimating of well separated modes directly from the analysis of the 
power spectrum density matrix (PSD), at the frequency peaks. This technique has some limitations concerning of its 
accuracy in the identification process. It gives a good estimating of natural frequencies and modes if the modes are well 
separated and the estimating of the damping it is difficulty in most cases. 

The proposed technique removes some disadvantages associated with the classic approach such as the heavy 
dependency on the frequency resolution of the estimated power spectral density and difficulties of to work with close 
modes. Nevertheless, it keeps the important characteristic of being users friendly and it is still providing a physical 
understanding of the estimated parameters of the model if one observes the spectral density function as in the previous 
case. 

The FDD technique estimates the parameters of the model directly from the measured density output matrix, by 
using Singular Value Decomposition (SVD). The main concept and formulation of the approach come from the 
relationship between the input x(t) and corresponding output y(t) for an invariant linear system, (Papoulis, 1991),  Eq.(1) 
and the assumption that force is a white noise type presenting a flat spectral density function in the range of analysis, 
that means,  )j(Gxx ω  is equal a constant C. 

 
)j(H)j(G)j(H)j(G T

xxyy ωωωω =             (1) 
 

)( ωjGxx  is the input Power Spectral Density Matrix (PSD) and )j(Gyy ω  is the output PSD matrix. For r inputs, 

)( ωjGxx  is of order rxr and the output matrix )j(Gyy ω  it is of order mxm, being m the number of measured 

responses. H(jω) it is the Frequency Response Function matrix (FRF) of order mxr. 
 The Eq. (1) can be redefined writing the matrix )j(H ω  in the partial fraction form and assuming )( ωjGxx  

constant. In this case, one can define, after some mathematical manipulations, see detail in (Borges, 2006),  a similar 
expression for the spectral density function in terms of a sun of modes contribution. For a specific frequency kω , one 
can assume that only a limited number of modes will contribute significantly for the residue, typically one or two 
modes. This permits one to fix the number of modes, which allows a definition of a set of modes of interest, denoted by 
Sub (ω). Then, in the case of structures lightly damped, the output spectral density  matrix can be written like Eq. (2). 
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In the FDD identification, the firs step is to estimate the PSD matrix. Once, the estimated matrix )j(Ĝyy ω  is known 

at discrete frequencies iωω = , it is then decomposed by using Singular Value Decomposition (SVD), Eq. 3: 
 

H
iiiiyy USUjG +=)( ω                               (3) 

 
where the matrix ]u,.....,u,u[U im2i1ii =  is a unitary matrix holding the singular vectors iju  and iS is a diagonal matrix 

holding the scalar singular values ijs . In the region near a peak corresponding to the kth mode the dominating amplitude 
of the spectrum is due to that mode, or maybe a possible close mode. If only the kth is dominating, the first singular 
vector  1iu  is an estimate of the corresponding mode shape, Eq. 4: 
 

1iuˆ =φ                                                                           (4) 
 

and the corresponding singular value is the PSD function of a  equivalent  single degree of freedom  (SDOF) system. 
This PSD function is identified around of the peak by comparing the estimated mode shape  φ̂  with these singular 

vectors obtained for the others frequency lines around of the peak. As long as the singular vector present a high 
correlation with φ̂  measured by  using the concept of Modal Assurance Criterion (MAC) , this corresponding singular 
value belongs to  the SDOF density  function, that will be used to  estimate the parameters of the model. 
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The natural frequencies and damping ratio are obtained from the piece of the SDOF density function around of the 
peak of the PSD, (Borges, 2006). In this case, the SDOF function is taken back to the time domain by inverse fast 
Fourier transform (IFFT), and the frequency and the damping is estimated from the crossing times and the logarithmic 
decrement of the corresponding SDOF autocorrelation function.   

  
3. STOCHASTIC SUBSPACE IDENTIFICATION (SSI) 
 

The Stochastic Subspace Identification (SSI) technique, presented by Van Overschee and De Moor (1996) is 
becoming a consolidating method, being one of those methods more indicated for identification of systems submitted to 
natural excitation condition. This method identifies a stochastic state space model from output-only measurements. The 
state space model is formulated and solved using discrete state space formulations of the form, Eq. (5) e (6): 

 
kdkd1k uBxAx +=+                            (5) 

 
kdkdk uDxCy +=                                     (6) 

                          
In the practice, always exist uncertainties in the model, associated with the noise in the processes and in the 

measurement. If the stochastic components, noise of the process, wk, and the measurement, vk, they are included in the 
Eq. (5) and (6), the discrete system model can be redefined to include the uncertainties too, Eq. (7) and (8): 

 
kkdkd1k wuBxAx ++=+                   (7) 

 
kkdkdk vuDxCy ++=                           (8) 

 
The noise is present due to the disturbances and modeling mistakes, as well as, due to the measuring uncertainties 

due to the sensor. The correct determination of the characteristics of each individual component of the noise is difficult 
and, therefore, makes necessary some assumptions. In this case, it is assumed that the components of the noise, although 
non measured, they have zero mean and covariance matrix given by Eq. (9): 
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where E is expected value operator and pqδ  is the  Kronecker delta. 

The sequences wk and vk are assumed independent each other. In the case of natural excitation (operation 
conditions) only the responses of the structure are measured. The input uk is not measured, therefore, it is impossible to 
distinguish the input uk of the noise terms wk, vk in the Eqs. (8) and (9). If the characteristic of the input is typically a 
white noise, the input uk can be modeled by the terms wk and vk, resulting in a system purely random. The input now is 
modeled in terms of the noise wk and vk, Eq. (10) and (11). 

 
kkd1k wxAx +=+                         (10)

  
kkdk vxCy +=             (11) 

 
The deterministic knowledge of the input in this case, is substituted by the assumption that the input is an random 

process (white noise). So, the identification of the parameters will mean the identification parameters of a stochastic 
system. The Eqs. (10) and (11) constitute the base line for system identification in the time domain by using natural 
excitation condition. The SSI method identifies the state matrix based on the measurement data, using some robust 
numerical techniques, such as Singular Values Decomposition - SVD, QR - factorization and least square.  

The fundamental concept in the SSI algorithm is the projection of the future rows space outputs in the past rows 
space output. The great advantage is that the identification is based on the measured data instead of the data covariance, 
i.e., the explicit formulation of the covariance is avoided. It clearly is a direct method of identification in the time 
domain, that works directly with time data without the need to convert them in correlation or spectral matrix data. 
Figure 1 shows a schematic representation of the stochastic state space model, the ∆-block represents a data delay. 

 
 

 
 



 
Figure 1. Stochastic state space model representation 

 
The Kalman filter it is used for identifying of the modal parameters. Nunes (2006), discusses the complete 

formulation and various steps of the approach. The first step of the process is the estimation of the states sequences of 
the Kalman filter from the measured response data. Basically, they are obtained building blocks matrices of the output 
data (Hankel matrix) that contains all information of the correlation functions of the measured response data . The 
matrices are decomposed by using  (SVD) and the singular values are used to select the order of the model. In a second 
stage, the system of matrices Ad, Cd, Q, S and R, Eq. (9), (10) and (11) they  are determined from the states sequences 
through the solution of a least square problem and finally, the natural frequencies, damping ratio and the modes shapes  
are directly extracted from the estimated matrix. 
 
4. EXPERIMENTAL ANALYSIS OF A FRAME STRUCTURE 
 

The FDD and SSI techniques were evaluated for identification of modal parameters of a real frame structure, i.e., 
natural frequencies, modes shapes (residues) and damping ratios of the model. Two experimental tests were conducted, 
one based in the classical modal analysis and second one output-only modal analysis approach. The conventional modal 
analysis aims to provide a data base set of reference to compare and evaluate the results obtained in the FDD and SSI 
procedures. Figure 2a shows the structure and some details of the experimental setup used in the acquisition process. 
The responses of the structure were measured by accelerometers, placed in the connective of the bars, totalizing 16 
points. The test was conducted in a free-free condition. The structure was suspended by means of flexible cable (elastic) 
aiming to represent appropriately the suspension of the structure. 

 

  
Figure 2a.  Set up of the Experimental Tests 
 

Figure 2b. Points of Measuring 
 

In the second test (output only), the excitation of the structure was not exactly caused by a condition of operation of 
the structure. To simulate this condition of operation it was introduced an unmeasured excitation force with random 
characteristics in the structure. And the responses were measures in all nodes in the x-direction, Fig. 2b. This 
unmeasured excitation was a white noise of spectral density Gxx.. 

  The experimental tests, as discussed previously, are composed of a convectional modal test based in the response 
and the excitation force and a second test based only in the response. In the first test, the input and the responses were 
both captured. The excitation force it was applied in point 5, x-direction, and measured by a force cell mounted between 
the shaker and structure and the responses were captured by using a accelerometers in all measured nodes, in x-
direction, Fig 2b.  The obtained input-output relationship provides the FRF(s) used to estimate the modal parameters of 
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the model. In the second test, the set of data was defined  without to  measure the excitation force, only the response of 
the model were measured and the parameters were estimated the by using the FDD and SSI approaches. 

The identification of the modal parameters of the structure in the ordinary sense it was carried out by using the 
method of Ibrahim, (Ibrahim, 1977).These results are used to confront with the results obtained from the FDD and SSI, 
aiming a better evaluation of the approach as well as to certify the quality of the obtained results and to discus the 
validation of the implemented methodology. It seems that, in the stage of implementation and validation of the 
approach, a comparison with a well-defined data base obtained by of consecrated techniques could give a better insite of 
the reliability of the results. 

 
5. RESULTS OF FREQUENCY DOMAIN DECOMPOSITION (FDD) 
 

The only-output modal analysis using FDD was conducted by using only the output spectral density matrix of the 
structure. Figure 3 shows a typical measured spectral density function. 

 

 
Figure 3. Typical measured output spectral density function 

  
Figure 4. Singular Values of the  spectral density matrix and its equivalent time domain function  

 
From the measured output, the spectral density matrix was defined and used to estimate the modal parameters of the 

model, by using the FDD technique. The decomposition of the output spectral density matrix, it was defined for a set of 
discreet frequencies lines near to the frequency peaks. Figure 3 shows detail of the peace of the data used to identify the 
equivalent SDOF corresponding the first mode The extension of the number of frequency line used to define the 
equivalent spectral density function of the equivalent SDOF, it was defined by using the concepts of MAC-values. This 
value of MAC is pre-defined by the analyst and, in this analysis, it was used all frequency lines that presented MAC-
values higher then 0.5.  

Figure 4 show the estimated spectral density function for the first peak of frequency and its corresponding time 
representation, respectively. This new estimated spectral density function corresponds to a equivalent system of a single 
degree of freedom that will be used for the estimating of the information of the corresponding mode shape. The 
estimation of the parameters for the others modes is analogous. 

 Table 1 shows the natural frequencies, and damping ratio, identified by using the technique FDD and Fig. 5 shows a 
plot of the firs identified mode shape. 

 
 
 
 
 



Table 1. Results of FDD 
 

FDD MODES 
ω(Hz) Damping (%) 

1 40,156 0,13 
2 56,094 0,18 
3 92,969 0,22 

 

 
Figure 5. First Mode-DDF 

 
6. RESULTS OF STOCHASTIC SUBSPACE IDENTIFICATION (SSI) 
 

In the only-output modal analysis using SSI, the response signals were sampled at a sampling rate of 4096 data 
points, measured in all nodes of the frame in a range of frequencies from 0 to 125 Hz. Figure 6 shows a typical data 
output in the time domain and its corresponding Spectral Density, more specifically the response measured in the point 
12, direction x. Just to say, the spectrum function are not used in this case, it is shown only to shown the resonances 
peaks in the measure range. 

 

Figure 6. Measured data and Spectral Density of Power of point 12 
 

Figure 7 shows the bar chart used for the identifying of the order of the system. The identified order is n =8. This 
result is coherent with the previous analysis, since the experimental pre-tests had shown the existence of 4 natural 
frequencies in the frequency band analyzed. 

 

 
Figure 7. System Order 
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Once identified the order of the model, then, it is possible to identify  the dynamic matrix A (nxn), from the 
measured data.  

The modal parameters of the model are gotten through the decomposition of the dynamic matrix in eigenvalue and 
eigenvector, “(Nunes, 2006)”. Table 2 shows the natural frequencies, damping ratio and the modes identified using the 
technique SSI and Fig. 8 presents the mode shape for the first mode 

 
Table 2. Results of SSI 

 
SSI MODES 

ω(Hz) Damping (%) 
1 40,98 0,34 
2 56,61 0,34 
3 92,56 0,16 
4 122,81 0,38 

 

 
Figure 8. First Mode - SSI 

 
7. COMPARISON BETWEEN FDD AND SSI 
 

The results of the two techniques were validated against each other. In this case, the   natural frequencies and the 
damping ratios can be compared directly and the modes shapes can be compared by MAC values. Additionally a 
measure of modal significance can also be calculated by using the modal significance concept as discussed in “Brincker 
(2000b)”, Eq. (12): 
 

)MAC*MAC/()i,i(MACMSC SSI
maxi

FDD
maxi

2=           (12) 
 

 where FDD
maxiMAC  is the maximum off-diagonal element in row no i and SSI

maxiMAC  is the maximum off-diagonal  
element in column no i . Thus the measure compares the modes shapes in one model with the other mode shapes (other 
modes) in the other model. If the measure is larger than one, it means that the mode shape compares better with the 
corresponding mode in the other model than with any other mode shape in the other model, “(Brincker, 2000b)”. 

 Table 3 shows the comparison of the two models, the identified the natural frequencies, damping ratio, MAC-values 
and modal significance for the modes shapes obtained by FDD and SSI techniques. Figure 9 shows MAC- graph.  

 
Table 3. Comparison of the Modes (DDF x SSI) 

 
DDF SSI MODES 

ω(Hz) Damping (%) ω(Hz) Damping (%) 
MAC 

 
MSC 

1 40,156 0,13 40,98 0,34 0,823 2.88 
2 56,094 0,18 56,61 0,16 0,807 2.00 
3 92,969 0,22 92,56 0,34 0,7993 8.70 

 
The results in table 3 shows a good agreement of the identified frequencies by the  two methods, the value of 

damping estimation seemed to be suitable appropriate, since damping estimating in most cases is quite uncertain. 
Finally all modes present a satisfactory correlation indices (MAC) and the modal significance for the modes is high, this 
indicates that identified modes shapes in both cases are really the characteristics modes of system. 
 



 
Figure 9. Comparison of the Modes Shapes – MAC 

(DDF x SSI) 
 

Additionally, the results obtained from FDD and SSI were confronted with the result obtained with the conventional 
modal test. This step it is important  to guarantee the evaluation of the approach as well as to certify the quality of the 
obtained results and the validation of the implemented methodology. 

Table 4 compares the natural frequencies, damping ratio and the modes using the techniques FDD and Ibrahim. 
 

Table 4. Comparison of the Modes (DDF x Ibrahim) 
 

DDF IBRAHIM MODES 
ω(Hz) Damping (%) ω(Hz) Damping (%) 

MAC 

1 40,46 0,43 40,46 0,24 0,9758 
2 56,25 0,35 56,24 0,40 0,9192 
3 92,96 0,23 92,87 0,12 0,9643 

 
Figure 10 presents the MAC-graph shows the modes correlation, taking modes shapes obtained with the Frequency 

Domain Decomposition technique and the conventional technique (Ibrahim). It is noticed that all modes present a 
satisfactory correlation indices.  

 
Figure 10. Comparison of the Modes Shapes – MAC 

(Ibraim x DDF) 
 

Table 5 shows the natural frequencies, damping ratio and the modes using the techniques Ibrahim and SSI. It is 
possible to observe a good index of correlation between the modes, evidenced for the values of MAC.  

 
Table 5. Comparison of the Modes (SSI x Ibrahim) 

 
SSI IBRAHIM MODES 

ω(Hz) Damping (%) ω(Hz) Damping (%) 
MAC 

1 40,98 0,34 40,46 0,24 0,83 
2 56,61 0,34 56,24 0,40 0,87 
3 92,56 0,16 92,87 0,12 0,86 
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Figure 11 shows, through the MAC- graph, the index of correlation of the mode shapes. As in the previous 
comparison, it is noticed that all modes present a satisfactory correlation indices.  

 
 

 
Figure 11. Comparison of the Modes Shapes – MAC 

(Ibraim x SSI) 
    

8. CONCLUSION 
 

 This paper discusses how the modal parameters can be obtained from output-only data modal analysis using a 
frequency and a time based technique. It discusses the application for a frame structure. The modal parameters of the 
frame structure were also estimated by a classic modal analysis in order to compare with the results of the output-only 
based methods. In this case the convectional modal analysis was used as reference to evaluate the quality of the 
estimated results obtained by the Frequency Domain Decomposition and Stochastic Subspace Identification methods. 

The obtained results have been shown promising. The modal parameters of the system were estimated with the same 
order of precision as compared with the results obtained in the classic modal analysis. This shows that the methodology 
could be applied in the identification of real structures, using output-only data, it will be next step of the work. 
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