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Abstract. This work represents a contribution to the understanding of singular problems in anisotropic elasticity. It
concerns the solution of the rotationally symmetric disk problem in the context of both the classical linear theory and
a constrained theory that prevents self-intersection to occur. The problem concerns the rotation of a homogeneous and
cylindrically anisotropic circular disk about its center with a constant angular velocity. The disk is radially compressed
along its external contour by a uniformly distributed normal traction. The case of zero angular velocity has been treated
elsewhere. In the linear theory, it is shown that there exists a region within the disk where self-intersection occurs for any
value of the compressive external force and for a certain range of material parameters. In addition, strains are unbounded
at the center of the disk. In the constrained theory, the self-intersecting behavior is eliminated. For the rotating disk, it
is shown that no self-intersection occurs for values of the compressive force that are small compared to the sguare of
the angular velocity. In fact, if a certain relation between this force and the angular velocity is attained, the strains are
bounded everywhere. For other values of the compressive force, the self-intersecting behavior is still observed in the
linear theory and is eliminated in the context of the constrained theory.
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1. INTRODUCTION

Strain singularities in Classical Linear Elasticity cadict the very basic assumption of the theory, which is that
strains should be infinitesimal. If the strains become langie vicinity of a point in the body, then nonlinear effects
should be taken into account in the analysis of the mateehabior in this vicinity. Strain singularities are alsoateld
to physically unrealistic behavior, such as material am@ping (see, for instance, Aguiar (2001) and referencesl cit
therein). Nevertheless, the theory can still be used toigrélde material behavior in regions where the strains are
infinitesimal.

In this work, we use the constrained minimization theory o$diick & Royer-Carfagni (2001) to study a particular
class of problems in Classical Linear Elasticity for whichtarial overlapping can occur inside the body. We are partic
ularly interested in the uniform radial compression of @wiar disk of radius, that is rotating with a constant angular
velocity w about its center. The disk is homogeneous and cylindriealigotropic.

The case of zero angular velocity has been treated by Fog8dR&yer-Carfagni (2001). In the linear theory, it is
shown that there exists a region within the disk where seérsection occurs for any value of the compressive externa
force p and for a certain range of material parameters. In addistmajns are unbounded at the center of the disk. In
the constrained theory, the self-intersecting behavislimsinated by considering two non-intersecting regiorssda the
disk: A central core of radiug, where the determinant of the deformation field,is equal to a small parameter> 0
and an annulus of inner radips and outer radiug. whereJ > ¢. The radius, is the unique solution of an algebraic
equation obtained from the imposition of boundary cond#ioAs the pressurg increasesp, increases, reaching the
value ofp, for a certain critical value gf. Beyond this critical value, the whole region occupied by disk is such that
J =¢e.

For the rotating disk, we show in Section 2 that, in the caté&ihe classical linear theory, no self-intersection ascu
for values ofp that are small compared te®. In fact, if a certain relation betwegnandw is attained, the strains are
bounded everywhere. For other valuesgpothe self-intersecting behavior is still observed in theeéir theory for the
same range of material parameters considered by Fosdicky&rRoarfagni (2001). We then show in Section 3 that the
overlapping can be eliminated in the context of the conséditheory. For small enoughandw, we have two non-
intersecting regions coexisting inside the disk: A centrak of radiusp, where.J = ¢ and an annulus with inner radius
po @and outer radiug, whereJ > ¢. Here, toop,, is the unique solution of an algebraic equation in the it p.]. As
bothp andw reach certain critical values, however, the algebraic gguanay admit two, one, or, no roots in the interval
(0, pe). We use this fact to investigate the possibility of the diskaipport not two, but three non-intersecting regions: A
central core of radiug, whereJ = ¢, an annulus with inner radiys, and outer radiug, whereJ > ¢, and an annulus
with inner radiusp, and outer radiug. whereJ = <. In Section 4 we present numerical results obtained frorytoal
and computational investigations that show the existefisach regions.
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2. THE UNCONSTRAINED DISK PROBLEM

Lekhnitskii (1968) considers the equilibrium of a circulermogeneous disk of external radjus which is radially
compressed along its external contour by a uniformly disted normal force per unit length. He also considers the
equilibrium of a rotating circular homogeneous disk wittgalar velocityw. In both cases, the disk is linearly elastic
and cylindrically aeolotropic. In this work, we consideathhe disk is both rotating at the constant angular velagity
and being radially compressed by the normal fagsc®epending on the values afandp, the solution of this problem

predicts material overlapping.
The problem is two-dimensional so that, relative to the Lsudonormal cylindrical basige,, e), the stress and

strain tensors are given by
T=o0,,e,0€,+0g9ges@eg+0,0(e,Deg+es@e,), Q)
E=¢,,e,0e,+epesDeg+eyg(e,Res+eg@e,), (2)

respectively. These tensors are related to each other byé#ae constitutive relations

1 1
(Ep €pp + Vp Eq 599)7 0o — 7(1/9 Ep €pp + Fy 699)1 Opo = 2G€p91 (3)

o
PP
1 -,

- 1 -,
whereL,, Ey, v,, v, andG are elastic constants that satisfy
Yo _ Y% B0, Ep>0, G -
== b » L >0, >0, (1-v,v9)>0. (4)
E, Ey

Since uniqueness is guaranteed in classical linear atgstiee displacement field must be rotationally symmetrittw
respect to the center of the disk, i.a(p, §) = u(p) e,. Thus, the strain components take the form

u
I
€pp = U, 600:;a €p9:01 (5)

where(-) = d(-)/d p. Also, the disk is rotating with a constant angular velocity In the absence of body force, the
only non-trivial equilibrium equation is given by
99pp , Tpp =0
+
dp p

wherev is the mass per unit volume of the material of the disk.
Because of (1)-(5), the equation (6) becomes

00"‘7(4)2/):0’ (6)

!
u"—l—%—mQ%—i—@p:O, (7)
where
Ey o ywi (1 —vyrp)
k== >0, = —r77 (8)
E, E,

The solution of the ordinary differential equation (7) teatisfies the kinematic conditiar{0) = 0 and the pressure
condition on the outer radius,,,(p.) = —p, is given by

u(p) = a1 p® —agp®, ©)
where
—k+1 AA 2 2 N
S AR T ACRR NS _ @ -
ayp = K+ g ) 042_9_5321 If"{/#?)a
(10)
—p+@p?/6 @ .
= < = _ fr=3.
(%1 pg (3+V9) R (6% 6, IT K
In (10),
. 1—=v,1g
P=—F—D. (11)
EP

1The caseb = 0 is treated by Fosdick & Royer-Carfagni (2001).
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Notice from both the inequality (4.e) and the definitionsoih (8) together with (4.a) that both inequalitiest+ vy > 0
andx — vy > 0 hold forx > 0.

The deformation associated with the displacement figjd 6) = u(p) e, is given byf(p,0) = [p + u(p)] e, and its
Jacobian determinangt= det Vf is given by

u
J =, 00, op=141u", 909=1+;- (12)

In (12), p, andyy are the principal stretches at a paint= p e, along the radial and tangential directions, respectively.

To interpret these measures of deformation physically, evesicler thatx is at the center of a sector of the disk, as
illustrated in Fig. 1. In its reference configuration, thetse has radial length p and anglei 6. After deformationd p
becomesp, d p and an arc of length d § passing througl becomes ¢y d 6. Since an element of area does not vanish
in any continuous process starting in the reference corstgu?, we must have botty, > 0 andy, > 0 for p > 0,
which implies that/ > 0 from (12). The converse is not true, that is, a deformatiah wi> 0 may not be reached by a
continuous process starting in the reference configuratiwre we may have both, < 0 andyg < 0.

Next, we analyze the conditions under which eithgr< 0 or ¢4 < 0. To avoid the outer surface of the disk to be
crushed into a single point at its center, we assume-thdp.)/p. < 1, which can be rewritten asy(p.) > 0 by means
of (12.c). We then see from (9) together with (8.b), (10), &b that this inequality imposes a restriction on the value
of p andw according to the expression

A2
W pg

3+ K
We shall assume this restriction throughout this section.
If k > 1, it follows from (12.c) together with (9) and (10) thag(p) > 0 for p € [0, p.].
If & < 1, the behavior ofyy is dictated by the sign af; in (10.a), which in turn depends on the valuegadw. If
p < 4, whereg is given by
G=wpe(3+v)/(9—r?), (14)

thena; > 0 and it follows from (12.c) together with (9) and (10.a) tha(p) — oo asp — 0. Also,

P<Py=k+vy+ for k>0. (13)

wo(p) = a1 (k= 1) p*% = 92w—p2 (15)
— K

is negative in(0, p. ). Sincepy(p.) > 0, wo(p) is positive and strictly decreasing (A, p.).

On the other hand, ip > ¢, whereq is given by (14), therv; < 0 and it follows from the inequality (13) that
O < (9—k2)/p% If a; = 0,thenpg(p) =1 —@p?/(9— K2) > 1 — (p/pe)? > 0sincep € (0, p.). If a; < 0, there
exists a unique rogi € (0, p.) of the algebraic equatiopy(p) = 0. To see this, observe from (12.c) together with (9)
and (10.a) thaps (p) — —oo asp — 0. Moreover, we see from (15) thaf) (p) < 0 for p € (0, p.). Thereforeypy(p) is
a concave function gf that is negative near the center of the disk and positiye-atp.. The conclusion then follows.

Next, we analyze the conditions under whigh < 0. For this, it follows from (12.b) together with (9) that

wpp) = arkp™ T =30p*/(9-k*)+1 for k#3,
(16)
vo(p) = Bar—w/2)p?+1  for k=3,

respectively, where is given by (8.b) andy; is given by (10.a) fox # 3 and by (10.b) forx = 3. Observe from (16)
that, atp = 0, ¢, is unbounded fok < 1, equals tax; x + 1 for k = 1, and is one fok > 1.

If & < 1, we have two cases depending on the sigaoin (10.a), which in turn depends on the valueg@ndw. If
p < ¢, whereg is given by (14), them; > 0 and it follows from (16) that,(p) is @ monotonically decreasing function
of p, which reaches its minimum at= p.. This minimum can be negative fpr> p,, wherep,, is given by

©pZve ”"} . (17)

1

Forg > p > p,, it follows from both (14) and (17) that we must have> (9 — x%)/(3 p2). In addition, the inequalities
Po > p > p,, wherepy is given by (13), yieldo > (1 — x) (3 + x)/p2. Thus, it is possible to find values for bagtin
the rangdpe, p,) andw > (9 — k?)/p? such thathelocal injectivity islost at a point close to the boundary p = p., even
though the global injectivity is preserved. Now, notice from (17) that if> ~ (rk + vp) (3 + k) /(v p?) for v > 0, the
value ofp, would be very small, which in turn would allow to choose a vemyall value ofp in the rang€(p,,, ps). The

2By a continuous process starting in the reference configmatve mean a continuous one-parameter fafily0 < o < 1) of deformations with
fo = x, f1 = f, anddet V{, never zero (Gurtin, 2001).
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Figure 1. The reference and deformed configurations of asetthe disk.

corresponding value af, given by(8), would have to be, however, very high. Because of these deraions, we shall
assume that < p,, which means that no self-intersection is possible:fpe> 0.

Next, consider the cage> ¢, which correspondsta; < 0, and assume that< p, to ensure thap,(p.) > 0. Then,
¢, Is a concave function, which is negative at the center of thle dnd therefore has a unique root in the intefvap.).

A necessary condition to ensure that p < p,, is obtained from (14) and (17) and is given by< (9 — x2)/(3 p?).
This condition also ensures thak py, wherepy is given by (13).

If k> 1, ¢, is bounded ap = 0 and it is not difficult to show thap,, is positive in(0, p.), provided thap is smaller
than bothpy, given by (13), ang,, given by (17).

In summary, in this section we assume that hoth py andp < p,. We then find that botkpy andy,, are positive
in (0, p.) for eitherx > 1 or k < 1 together withp < ¢. Thus, the rotating disk has no self-intersecting behavior
for compressive forces that are small compared to the sapfdhee angular velocity. On the other hand, if beth< 1
andp > ¢, then bothyy andy, are negative in sub-intervals 63, p.), characterizing self-intersection in the disk. In
particular, both are negative near the center of the dighdiyig./ > 0 from (12). Thus,J > 0 is not sufficient to prevent
self-intersection from occurring. To prevent it, we mustdaothys > 0 andy, > 0.

3. THE CONSTRAINED DISK PROBLEM

The solution of the unconstrained disk problem in Sectiomedliets material overlapping for € (0,1). In this
section, we consider thate (0, 1) and formulate the disk problem as a minimization problenjestibd to the constraint
that the injectivity must be preserved. We then presentf@sation conditions for the existence of a minimizer anlyso
the corresponding equations to determine this minimizer.

Let B C R? be the undistorted natural reference configuration of thke alind let

A.={v:W" (B) = R*|det (1+Vv) >e>0,v=00np =0} (18)

be the class of admissible displacement fields of the fefm 0) = J(p)e,, wheres > 0 is sufficiently small and
w12 (B) is the set of all square integrable functions with squaregrgble derivatives iis.
We consider the problem of minimum potential energy for thtating disk:

. 1
min €[y, EV) = 5 alv,v] = fv], (19)
whereA. is given by (18) and
Pe Pe
92 v
aviv=3 [ [(W +r? 7] A+ (00 =@ [ 062 dp—pip0) .. (20)

0

with x, @, andp being given by (8.a, b), and (11), respectively. The funai@|-] times2 7 E,/(1 — v, vp) is the total
potential energy of the cylindrically aeolotropic disk lilagsical linear elasticity.

We now assume that, for someg < [0, p.], (0, pa) and(pq, p.) are sub-intervals of0, p.) where the constraint
of local injectivity is active {et Vf = ¢) and non-activedet Vf > &), respectively. First variation conditions for the
existence of a minimizeu(p, #) = u(p) e, € A. of (19), (20) are derived by Fosdick & Royer-Carfagni (20aay are
given by

3The general statement of the minimization problem, validdimensions 2, or, 3, is stated in Fosdick & Royer-Carfagoio().
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e The Euler-Lagrange equations:

, .

ey <1+3) Ay, Az0,  forpe(0,p),

p p p) dp
(21)
/
u”'i_i_’iQ%'i_@p =0 forpe(paape)'

e The kinematic and boundary conditions:

w0) =0, Wt —p  forp=p. 22)
e The jump conditions acrogs= p,:

_ _ upPg )| 2, =
wod) =ulon) ) =) - |14 M2 g, @3

where pZ = lin%(Pa +7) for 7 > 0.and\ E,/(1 —v,vy) is the Lagrange multiplier. The condition (23.b) is obtaine

fromo, ,(pd) = 0, ,(pa) — [1 +ulp, )/ pa] Mp, ) together with (3), (5), and (23.a). Observe from (23.b) thagump
of v’ across = p, is zero provided thai(p;) = 0. We show below that this is indeed the case.
The imposition of the injectivity constraidet(14+Vu) = ¢ > 0in (0, p, ) yields the problem of finding : (0, p,) —

R that satisfies
1 d

3,5t WI = in(0p),  u(0)=0.

The solution of this problem is
u(p) = (Ve=1)p  forpe(0,pa)- (24)

Substituting the expression (24) in the first Euler-Lage@guation (21.a), we obtain a first order differential eiquat
for A. The solution of this equation is given by

1 [w

5o =2 317 - -y - vEoe (2)] (25)

wherej € R is to be determined consistent wikiiz) > 0in (0, p,). We show in Appendix A that/(p;) = u/(p; ) and
thatp = p,, yieldingA(p, ) = 0.
The general solution of the ordinary differential equaii@h.b) is of the form

u(p):a"'p“—i—a_p_m—gw—zp3 fOI‘O<I€<17 (26)
— R

where both constants™ anda~ are determined from the jump conditions (23) together Wiithti(pa) = 0 from (25)
andp = p,. These constants are given by

—Kk+1

A2 K41 ~n2
+7pa _ _ W Pg 7:pa _ _ _wpu,
ot =L e m \/5>+—3_R], o=l -1 vE) - Sl (27)

We still need to fingp,, in (27). For this, we substitute (26) together with (27) ie thaction condition (22.b) to obtain
the algebraic equation

. 3+ R o
0=r(Q) = s(Gin) + (G- 45— (38 Y g2, =L, (28)
where
S(Gir) = (+—) (i [—<1+n> (1_@+w_p3<2] (29)
’ 2k 3—k

is a function of¢ parameterized by.
First, notice from (28) together with (29) thai0) = p — ¢, whereg is given by (14), and that(1) = p — po, where

po = (1+vp) (1 - Ve) (30)
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is positive fore > 0 sufficiently small. Taking the derivative of we obtain

Q) =~ [(n+ue)é“+ =) (- ) (- V) - 022 (31)

2K

Since boths + vy andk — vy are positiver’ () < 0 for small¢. For larger values aof, the sign ofr’(¢) depends on the
sign of the expression inside the curly brackets. It folléresn (31) that the only positive root of (¢) = 0 is given by

Cl:wl_ﬁz;—ﬁ)_ 2

Thus, provided thap < po, the functionr(¢) of (28) is positive att = 0 for p — ¢ > 0, decreases for small values@f
has only one extremum f@r > 0, and is non-positive af = 1. Therefore, there exists a uniqgec [0, 1] that satisfies
r(¢) = 0. Recall from Section 2 that > ¢ yieldsyy(p) < 0 for the unconstrained disk problem.

If, however,p > p,, we may have two, one, or, no roots of the algebraic equa?®) epending on the valueof(; ),
where(; is given by (32). To interpret these roots, we cho@se po and increase from zero. Fow < (1—x2) (1—4/z),
we see from (32) tha; > 1, which implies that = 1 is the only root of (28) if0, 1]; thereforedet Vf = ¢ in the entire
disk. Foro > (1 — x?) (1 — 1/€), we have that; < 1, which implies that (28) has two roots jo, 1].

The existence of two roots caused us to think that three, ahtivo, regions exist inside the disk. These are circular
regions bounded by the radii,, p,, andp., such that0, p,), (pa, p»), @and(ps, p.) are sub-intervals of0, p.) where
the constraint of local injectivity is activelét VI = ¢), non-active {et VI > ¢), and active, respectively. In this case,
the first variation conditions for the existence of a minienin(p,0) = u(p)e, € A. of (19), (20) are similar to the
equations (21)-(23) with the following modifications in ttenge of validity. The Euler-Lagrange equation (21.a) bold
in both sub-intervalg0, p,) and(ps, p.). The other equation, (21.b), holds (ip,, p»). The jump conditions (23) hold
across bothp = p, andp = p,. The kinematic and boundary conditions (22) remain the sarhe procedure used to
find the solution(u, /\) of the corresponding equations is similar to the procedseeluo find the solutio(u, \) of the
equations (21)-(23). The main difference is that now we hawlve two coupled algebraic equations, mstead of only
one, for the determination of bogh, andp,. One of these equations is again obtained from the preseurition (22.b)
and the other equation is obtained from the continuity afticem acrose = p,. In Section 4 we find numerically up to
four different rootsp., p») € [0, pe] % [0, p.] for these equations, depending on the valugsaridw.

4. NUMERICAL RESULTS

We use the same numerical values considered by Fosdick &ri@gdagni (2001) for the geometric and material
constants. Thus, the radius of the diskis= 1, the elastic constants afg, = 99000, £y = 990, v, = 1, vy = 0.01,
and the lower bound for the injectivity constraintis= 0.1. The applied load on the boundary of the disk, given by (11),
is obtained fronp = po + 0.1 = 0.79061, wherep, is given by (30), and the angular velocity of the disk, givgr(®.b),
is obtained fromv = (1 — %) (1 — /2) + 1 = 1.67693. It then follows from (14) thag = 0.56147. These values of
p andw are large values in the context of Classical Linear Eldgtiend are used here to show that three, and not two,
non-intersecting regions may coexist inside the disk inctbretext of the constrained theory, which is nonlinear. TWwo o
the three regions are such thiat Vf = ¢ and the third region is such thédét Vf > «.

First, however, we assume that two non-intersecting regiay coexist inside the disk so tHat p.) = (0, p,) U
(pa, pe), Wherep, is a root of the algebraic equation (28), and show that thigragtion leads to' = det(1 + Vu) < ¢
in some sub-interval of0, p.), which corresponds to a displacement fieldhat is not kinematically admissible, i.e.,

u ¢ A, whereA. is given by (18). Sincg — ¢ > 0, p — po > 0, andr(¢1) = —0.06901, where(; is given by (32)
and is equal t0.63535, it follows from Section 3 that the algebraic equation (283 bwo roots, which are given by either
pa = 0.36188 or p, = 0.87492. In the next two figures, we use these valuegofo generate graphs for both given by
(12), (24), (26), and (27), ank| given by (25) withp = p,.

In Fig. 2 we show botly and\ plotted against the radiysfor the rootp, = 0.36188. Observe from the graph on the
left that.J is equal toe for p < p,, is greater tham in some intermediate region, and then becomes smaller:tinaar
p = pe. Clearly, this is not acceptable and the correspondingisolu must be rejected. Nevertheless, observe from the
graph on the right that > 0in (0, pq).

In Fig. 3 we show both/ and plotted against the radiysfor the rootp, = 0.87492. Observe from the figure on
the left that/ = ¢ for p < p, andJ < ¢ for p > p,. Again, this is not acceptable and the corresponding smlutimust
be rejected. Nevertheless, we see from the graph on thethight > 0 in (0, pa). Thus, the assumption of only two
coexisting regions does not lead to a kinematically adilissleformation.

Next, we consider thaD, p.) = (0, pa) U (pa, po) U (pp, pe ), Where bottp,, andp, are roots of the coupled algebraic
equations discussed at the end of Section 3. To estimateathesvof these roots, we square each of the two algebraic
equations, sum the squares, and divide the resulting fumbif two. The zeroes of the corresponding quadratic functio
are the zeroes of the coupled algebraic equations. In Fige ghow level curves of this quadratic function {er,, p») €
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Figure 2. The Jacobian determinah(left) and the multiplier: (right) versus for p, = 0.36188.
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Figure 3. The Jacobian determinahtleft) and the multiplier\ (right) versus for p, = 0.87492.

[0, pe] x [0, pe]. Observe from this figure that the quadratic function has fmints of extremum. We computed these
points and found that they are roots of the coupled algele@iations. The points a(efll) , pgl)) =~ (0.41638,0.41638),
(02, pi?) = (0.35788,0.92748), (p{¥), pi*)) == (0.84935,0.47376), and(p5", pi*)) = (0.88369, 0.88369).

We have verified that the only point that generates a kinealtiadmissible solutior with A>0in (0, pe) is the
second one. Notice that this pointis the closest to the §0i86188, 0.87492), which was presented above by considering
only two regions. Below we show figures #fand\ considering the root&., pp) = (0.35788,0.92748).

In Fig. 5 we showJ versusp. Observe from the graph thdtis equal toe for p < p,, is greater tham in some
intermediate region, and is equalddor p > pp.

In Fig. 6 we show) versusp. The graph on the left correspondsXaersusy in the interval(0, p,) and the graph
on the right corresponds toversusp in the interval(py, p.). Observe from both graphs th&t> 0 in the corresponding
intervals.

In addition to the calculations above, we have used the nigalgrocedure described in Aguiar (2006), which is
based on an Interior Penalty Formulation of the minimizapooblem (19)-(20), to compute an approximate solution for
the rotating disk problem under external pressure. Hera,proori assumptions are made about the number of coexistent
regions. In Fig. 7 we show the numerical approximatiod pdbtained with a Finite Element mesh of 500 linear elements
and represented by the dash-dotted line, plotted agamsatiiusy. Observe that the corresponding curve is very similar
to the curve shown in Fig. 5. For comparison purposes, wesllew J calculated from the expressions (12), (24), (26),
and (27), which corresponds to the case of two coexisteimmeg The corresponding curve is represented by the solid
line and is the same curve shown in the graph on the left of Eig\otice from Fig. 7 that both lines are close to each
other forp € (0, pl()Q)), where we recall from above th,af) =0.92748.
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APPENDIX A

Proposition: To be consistent witbi(p) >0in (0, p,), the jump ofu’ acrosp = p, must be zero ang = p,.

Proof. We use an analogous procedure considered by Fosdick & Regmrfagni (2001) in the analysis of a model problem
that is a particular case of our problem wheg- 0.
First, we substitute the expressions (24) and (25) in thepjoamdition (23.b) to obtain

=) 1= V) o (%) = [l - § 2 - 71, 33

where|[u/(p,)]| = v/ (pF) — u/(p, ) is the jump ofu’ across = p,,.
Noting thatlog(p/p) = log(p/pa) + log(p./p) and using (33) in (25), we can rewriteas

50 =2 |5 17 = ] - =) 1= vBos (2] - Tl o). (3

a

SinceA(p,) > 0, we see from (34) thdiu'(p,)]| < 0, which implies that

u'(pf) < (p,) (35)
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On the other hand, the conditielet VE > ¢ together with (12) lead t61 + v’ (p))) (1 + u(pt)/pa) > €, where
u(pt) = u(p, ) from the jump condition (23.a). Sinekt VE = (1 +u/(p)) (1 + u(p)/p) = e for p € (0, p,), we then
find that

u(p) =/ (py) - (36)

Next, we observe from both (25) and (34) thais a convex function op in the interval(0, p,,) and vanishes at both
g andp,. Since\(p) > 0for p € (0, p,), we find thatp = p,.
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