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Abstract. This work represents a contribution to the understanding of singular problems in anisotropic elasticity. It
concerns the solution of the rotationally symmetric disk problem in the context of both the classical linear theory and
a constrained theory that prevents self-intersection to occur. The problem concerns the rotation of a homogeneous and
cylindrically anisotropic circular disk about its center with a constant angular velocity. The disk is radially compressed
along its external contour by a uniformly distributed normal traction. The case of zero angular velocity has been treated
elsewhere. In the linear theory, it is shown that there exists a region within the disk where self-intersection occurs for any
value of the compressive external force and for a certain range of material parameters. In addition, strains are unbounded
at the center of the disk. In the constrained theory, the self-intersecting behavior is eliminated. For the rotating disk, it
is shown that no self-intersection occurs for values of the compressive force that are small compared to the square of
the angular velocity. In fact, if a certain relation between this force and the angular velocity is attained, the strains are
bounded everywhere. For other values of the compressive force, the self-intersecting behavior is still observed in the
linear theory and is eliminated in the context of the constrained theory.
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1. INTRODUCTION

Strain singularities in Classical Linear Elasticity contradict the very basic assumption of the theory, which is that
strains should be infinitesimal. If the strains become largein the vicinity of a point in the body, then nonlinear effects
should be taken into account in the analysis of the material behavior in this vicinity. Strain singularities are also related
to physically unrealistic behavior, such as material overlapping (see, for instance, Aguiar (2001) and references cited
therein). Nevertheless, the theory can still be used to predict the material behavior in regions where the strains are
infinitesimal.

In this work, we use the constrained minimization theory of Fosdick & Royer-Carfagni (2001) to study a particular
class of problems in Classical Linear Elasticity for which material overlapping can occur inside the body. We are partic-
ularly interested in the uniform radial compression of a circular disk of radiusρe that is rotating with a constant angular
velocityω about its center. The disk is homogeneous and cylindricallyanisotropic.

The case of zero angular velocity has been treated by Fosdick& Royer-Carfagni (2001). In the linear theory, it is
shown that there exists a region within the disk where self-intersection occurs for any value of the compressive external
forcep and for a certain range of material parameters. In addition,strains are unbounded at the center of the disk. In
the constrained theory, the self-intersecting behavior iseliminated by considering two non-intersecting regions inside the
disk: A central core of radiusρa where the determinant of the deformation field,J , is equal to a small parameterε > 0
and an annulus of inner radiusρa and outer radiusρe whereJ ≥ ε. The radiusρa is the unique solution of an algebraic
equation obtained from the imposition of boundary conditions. As the pressurep increases,ρa increases, reaching the
value ofρe for a certain critical value ofp. Beyond this critical value, the whole region occupied by the disk is such that
J = ε.

For the rotating disk, we show in Section 2 that, in the context of the classical linear theory, no self-intersection occurs
for values ofp that are small compared toω2. In fact, if a certain relation betweenp andω is attained, the strains are
bounded everywhere. For other values ofp, the self-intersecting behavior is still observed in the linear theory for the
same range of material parameters considered by Fosdick & Royer-Carfagni (2001). We then show in Section 3 that the
overlapping can be eliminated in the context of the constrained theory. For small enoughp andω, we have two non-
intersecting regions coexisting inside the disk: A centralcore of radiusρa whereJ = ε and an annulus with inner radius
ρa and outer radiusρe whereJ ≥ ε. Here, too,ρa is the unique solution of an algebraic equation in the interval [0, ρe]. As
bothp andω reach certain critical values, however, the algebraic equation may admit two, one, or, no roots in the interval
(0, ρe). We use this fact to investigate the possibility of the disk to support not two, but three non-intersecting regions: A
central core of radiusρa whereJ = ε, an annulus with inner radiusρa and outer radiusρb whereJ ≥ ε, and an annulus
with inner radiusρb and outer radiusρe whereJ = ε. In Section 4 we present numerical results obtained from analytical
and computational investigations that show the existence of such regions.
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2. THE UNCONSTRAINED DISK PROBLEM

Lekhnitskii (1968) considers the equilibrium of a circularhomogeneous disk of external radiusρe, which is radially
compressed along its external contour by a uniformly distributed normal forcep per unit length. He also considers the
equilibrium of a rotating circular homogeneous disk with angular velocityω. In both cases, the disk is linearly elastic
and cylindrically aeolotropic. In this work, we consider that the disk is both rotating at the constant angular velocityω
and being radially compressed by the normal forcep. Depending on the values ofω andp, the solution of this problem
predicts material overlapping.

The problem is two-dimensional so that, relative to the usual orthonormal cylindrical basis(eρ, eθ), the stress and
strain tensors are given by

T = σρ ρ eρ ⊗ eρ + σθ θ eθ ⊗ eθ + σρ θ (eρ ⊗ eθ + eθ ⊗ eρ) , (1)

E = ǫρ ρ eρ ⊗ eρ + ǫθ θ eθ ⊗ eθ + ǫρ θ (eρ ⊗ eθ + eθ ⊗ eρ) , (2)

respectively. These tensors are related to each other by thelinear constitutive relations

σρ ρ =
1

1 − νρνθ

(Eρ ǫρρ + νρ Eθ ǫθθ) , σθ θ =
1

1 − νρνθ

(νθ Eρ ǫρρ + Eθ ǫθθ) , σρ θ = 2 Gǫρθ , (3)

whereEρ, Eθ, νρ, νθ, andG are elastic constants that satisfy

νρ

Eρ

=
νθ

Eθ

, Eρ > 0 , Eθ > 0 , G > 0, (1 − νρ νθ) > 0 . (4)

Since uniqueness is guaranteed in classical linear elasticity, the displacement field must be rotationally symmetric with
respect to the center of the disk, i.e.,u(ρ, θ) = u(ρ) eρ. Thus, the strain components take the form

ǫρρ = u′ , ǫθθ =
u

ρ
, ǫρθ = 0 , (5)

where(·)′ ≡ d (·)/d ρ. Also, the disk is rotating with a constant angular velocityω1. In the absence of body force, the
only non-trivial equilibrium equation is given by

∂σρρ

∂ρ
+

σρρ − σθθ

ρ
+ γ ω2 ρ = 0 , (6)

whereγ is the mass per unit volume of the material of the disk.
Because of (1)-(5), the equation (6) becomes

u′′ +
u′

ρ
− κ2 u

ρ2
+ ω̂ ρ = 0 , (7)

where

κ ≡
√

Eθ

Eρ

> 0 , ω̂ ≡ γ ω2 (1 − νρνθ)

Eρ

. (8)

The solution of the ordinary differential equation (7) thatsatisfies the kinematic conditionu(0) = 0 and the pressure
condition on the outer radius,σρρ(ρe) = −p, is given by

u(ρ) = α1 ρκ − α2 ρ3 , (9)

where

α1 =
ρ−κ+1

e

[

−p̂ + ω̂ ρ2
e (3 + νθ)/(9 − κ2)

]

κ + νθ

, α2 =
ω̂

9 − κ2
, if κ 6= 3 ,

(10)

α1 =
−p̂ + ω̂ ρ2

e/6

ρ2
e (3 + νθ)

, α2 =
ω̂

6
, if κ = 3 .

In (10),

p̂ ≡ 1 − νρ νθ

Eρ

p . (11)

1The casêω = 0 is treated by Fosdick & Royer-Carfagni (2001).
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Notice from both the inequality (4.e) and the definition ofκ in (8) together with (4.a) that both inequalitiesκ + νθ > 0
andκ − νθ > 0 hold forκ > 0.

The deformation associated with the displacement fieldu(ρ, θ) = u(ρ) eρ is given byf(ρ, θ) = [ρ + u(ρ)] eρ and its
Jacobian determinantJ ≡ det∇f is given by

J = ϕρ ϕθ , ϕρ = 1 + u′ , ϕθ = 1 +
u

ρ
. (12)

In (12),ϕρ andϕθ are the principal stretches at a pointx = ρ eρ along the radial and tangential directions, respectively.
To interpret these measures of deformation physically, we consider thatx is at the center of a sector of the disk, as

illustrated in Fig. 1. In its reference configuration, the sector has radial lengthd ρ and angled θ. After deformation,d ρ
becomesϕρ d ρ and an arc of lengthρ d θ passing throughx becomesρ ϕθ d θ. Since an element of area does not vanish
in any continuous process starting in the reference configuration2, we must have bothϕρ > 0 andϕθ > 0 for ρ > 0,
which implies thatJ > 0 from (12). The converse is not true, that is, a deformation with J > 0 may not be reached by a
continuous process starting in the reference configurationsince we may have bothϕρ < 0 andϕθ < 0.

Next, we analyze the conditions under which eitherϕρ ≤ 0 or ϕθ ≤ 0. To avoid the outer surface of the disk to be
crushed into a single point at its center, we assume that−u(ρe)/ρe < 1, which can be rewritten asϕθ(ρe) > 0 by means
of (12.c). We then see from (9) together with (8.b), (10), and(11) that this inequality imposes a restriction on the values
of p̂ andω̂ according to the expression

p̂ < p̂θ ≡ κ + νθ +
ω̂ ρ2

e

3 + κ
for κ > 0 . (13)

We shall assume this restriction throughout this section.
If κ ≥ 1, it follows from (12.c) together with (9) and (10) thatϕθ(ρ) > 0 for ρ ∈ [0, ρe].
If κ < 1, the behavior ofϕθ is dictated by the sign ofα1 in (10.a), which in turn depends on the values ofp̂ andω̂. If

p̂ < q̂, whereq̂ is given by

q̂ = ω̂ ρ2
e (3 + νθ)/(9 − κ2) , (14)

thenα1 > 0 and it follows from (12.c) together with (9) and (10.a) thatϕθ(ρ) → ∞ asρ → 0. Also,

ϕ′
θ(ρ) = α1 (κ − 1) ρκ−2 − 2 ω̂ ρ

9 − κ2
(15)

is negative in(0, ρe). Sinceϕθ(ρe) > 0, ϕθ(ρ) is positive and strictly decreasing in(0, ρe).
On the other hand, if̂p ≥ q̂, whereq̂ is given by (14), thenα1 ≤ 0 and it follows from the inequality (13) that

ω̂ < (9 − κ2)/ρ2
e. If α1 = 0, thenϕθ(ρ) = 1 − ω̂ ρ2/(9 − κ2) > 1 − (ρ/ρe)

2 > 0 sinceρ ∈ (0, ρe). If α1 < 0, there
exists a unique root̂ρ ∈ (0, ρe) of the algebraic equationϕθ(ρ) = 0. To see this, observe from (12.c) together with (9)
and (10.a) thatϕθ(ρ) → −∞ asρ → 0. Moreover, we see from (15) thatϕ′′

θ (ρ) < 0 for ρ ∈ (0, ρe). Therefore,ϕθ(ρ) is
a concave function ofρ that is negative near the center of the disk and positive atρ = ρe. The conclusion then follows.

Next, we analyze the conditions under whichϕρ ≤ 0. For this, it follows from (12.b) together with (9) that

ϕρ(ρ) = α1 κ ρκ−1 − 3 ω̂ ρ 2/(9 − κ2) + 1 for κ 6= 3 ,

(16)

ϕρ(ρ) = (3 α1 − ω̂/2)ρ 2 + 1 for κ = 3 ,

respectively, wherêω is given by (8.b) andα1 is given by (10.a) forκ 6= 3 and by (10.b) forκ = 3. Observe from (16)
that, atρ = 0, ϕρ is unbounded forκ < 1, equals toα1 κ + 1 for κ = 1, and is one forκ > 1.

If κ < 1, we have two cases depending on the sign ofα1 in (10.a), which in turn depends on the values ofp̂ andω̂. If
p̂ ≤ q̂, whereq̂ is given by (14), thenα1 ≥ 0 and it follows from (16) thatϕρ(ρ) is a monotonically decreasing function
of ρ, which reaches its minimum atρ = ρe. This minimum can be negative for̂p > p̂ρ, wherep̂ρ is given by

p̂ρ ≡ 1

κ

[

κ + νθ −
ω̂ ρ2

e νθ

3 + κ

]

. (17)

For q̂ ≥ p̂ > p̂ρ, it follows from both (14) and (17) that we must haveω̂ > (9 − κ2)/(3 ρ2
e). In addition, the inequalities

p̂θ ≥ p̂ > p̂ρ, wherep̂θ is given by (13), yield̂ω > (1 − κ) (3 + κ)/ρ2
e. Thus, it is possible to find values for botĥp in

the range(p̂θ, p̂ρ) andω̂ > (9− κ2)/ρ2
e such thatthe local injectivity is lost at a point close to the boundary ρ = ρe, even

though the global injectivity is preserved. Now, notice from (17) that if̂ω ≈ (κ + νθ) (3 + κ)/(νθ ρ2
e) for νθ > 0, the

value ofp̂ρ would be very small, which in turn would allow to choose a verysmall value ofp̂ in the range(p̂ρ, p̂θ). The

2By a continuous process starting in the reference configuration, we mean a continuous one-parameter familyfσ (0 ≤ σ ≤ 1) of deformations with
f0 = x, f1 = f , anddet∇fσ never zero (Gurtin, 2001).
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Figure 1. The reference and deformed configurations of a sector of the disk.

corresponding value ofω, given by(8), would have to be, however, very high. Because of these considerations, we shall
assume that̂p < p̂ρ, which means that no self-intersection is possible forα1 ≥ 0.

Next, consider the casêp > q̂, which corresponds toα1 < 0, and assume that̂p < p̂ρ to ensure thatϕρ(ρe) > 0. Then,
ϕρ is a concave function, which is negative at the center of the disk, and therefore has a unique root in the interval(0, ρe).
A necessary condition to ensure thatq̂ < p̂ < p̂ρ is obtained from (14) and (17) and is given byω̂ < (9 − κ2)/(3 ρ2

e).
This condition also ensures thatp̂ < p̂θ, wherep̂θ is given by (13).

If κ ≥ 1, ϕρ is bounded atρ = 0 and it is not difficult to show thatϕρ is positive in(0, ρe), provided that̂p is smaller
than bothp̂θ, given by (13), and̂pρ, given by (17).

In summary, in this section we assume that bothp̂ < p̂θ andp̂ < p̂ρ. We then find that bothϕθ andϕρ are positive
in (0, ρe) for eitherκ ≥ 1 or κ < 1 together withp̂ < q̂. Thus, the rotating disk has no self-intersecting behavior
for compressive forces that are small compared to the squareof the angular velocity. On the other hand, if bothκ < 1
and p̂ > q̂, then bothϕθ andϕρ are negative in sub-intervals of(0, ρe), characterizing self-intersection in the disk. In
particular, both are negative near the center of the disk, yieldingJ > 0 from (12). Thus,J > 0 is not sufficient to prevent
self-intersection from occurring. To prevent it, we must have bothϕθ > 0 andϕρ > 0.

3. THE CONSTRAINED DISK PROBLEM

The solution of the unconstrained disk problem in Section 2 predicts material overlapping forκ ∈ (0, 1). In this
section, we consider thatκ ∈ (0, 1) and formulate the disk problem as a minimization problem subjected to the constraint
that the injectivity must be preserved. We then present firstvariation conditions for the existence of a minimizer and solve
the corresponding equations to determine this minimizer.

LetB ⊂ R
2 be the undistorted natural reference configuration of the disk and let

Aε ≡ {v : W1,2 (B) → R
2
∣

∣ det (1 + ∇v) ≥ ε > 0,v = 0 onρ = 0} (18)

be the class of admissible displacement fields of the formv(ρ, θ) = ϑ(ρ) eρ, whereε > 0 is sufficiently small and
W1,2 (B) is the set of all square integrable functions with square integrable derivatives inB.

We consider the problem of minimum potential energy for the rotating disk3:

min
v∈Aε

E [v] , E [v] ≡ 1

2
a[v,v] − f [v] , (19)

whereAε is given by (18) and

a[v,v] ≡ 1

2

ρe
∫

0

[

(ϑ′)2 + κ2 ϑ2

ρ

]

dρ +
νθ

2
ϑ2(ρe) , f [v] ≡ ω̂

ρe
∫

0

ϑ ρ2 dρ − p̂ ϑ(ρe) ρe , (20)

with κ, ω̂, andp̂ being given by (8.a, b), and (11), respectively. The functionalE [·] times2 π Eρ/(1 − νρ νθ) is the total
potential energy of the cylindrically aeolotropic disk in classical linear elasticity.

We now assume that, for someρa ∈ [0, ρe], (0, ρa) and (ρa, ρe) are sub-intervals of(0, ρe) where the constraint
of local injectivity is active (det∇f = ε) and non-active (det∇f > ε), respectively. First variation conditions for the
existence of a minimizeru(ρ, θ) = u(ρ) eρ ∈ Aε of (19), (20) are derived by Fosdick & Royer-Carfagni (2001)and are
given by

3The general statement of the minimization problem, valid for dimensions 2, or, 3, is stated in Fosdick & Royer-Carfagni (2001).
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• The Euler-Lagrange equations:

u′′ +
u′

ρ
− κ2 u

ρ2
+ ω̂ ρ −

(

1 +
u

ρ

)

d λ̂

d ρ
= 0 , λ̂ ≥ 0 , for ρ ∈ (0, ρa) ,

(21)

u′′ +
u′

ρ
− κ2 u

ρ2
+ ω̂ ρ = 0 for ρ ∈ (ρa, ρe) .

• The kinematic and boundary conditions:

u(0) = 0 , u′(ρ) + νθ

u(ρ)

ρ
= −p̂ for ρ = ρe . (22)

• The jump conditions acrossρ = ρa:

u(ρ+
a ) = u(ρ−a ) , u′(ρ+

a ) = u′(ρ−a ) −
[

1 +
u(ρ−a )

ρa

]

λ̂(ρ−a ) , (23)

where ρ±a ≡ lim
τ→0

(ρa ± τ ) for τ > 0 andλ̂ Eρ/(1 − νρ νθ) is the Lagrange multiplier. The condition (23.b) is obtained

from σρ ρ(ρ
+
a ) = σρ ρ(ρ

−
a )− [1 + u(ρ−a )/ρa] λ̂(ρ−a ) together with (3), (5), and (23.a). Observe from (23.b) thatthe jump

of u′ acrossρ = ρa is zero provided that̂λ(ρ−a ) = 0. We show below that this is indeed the case.
The imposition of the injectivity constraintdet(1+∇u) = ε > 0 in (0, ρa) yields the problem of findingu : (0, ρa) →

R that satisfies
1

2 ρ

d

dρ
(ρ + u)2 = ε in (0, ρa) , u(0) = 0 .

The solution of this problem is

u(ρ) =
(√

ε − 1
)

ρ for ρ ∈ (0, ρa) . (24)

Substituting the expression (24) in the first Euler-Lagrange equation (21.a), we obtain a first order differential equation
for λ̂. The solution of this equation is given by

λ̂(ρ) =
1√
ε

[

ω̂

2

[

ρ2 − ρ̃2
]

− (1 − κ2) (1 −
√

ε) log

(

ρ

ρ̃

)]

, (25)

whereρ̃ ∈ R is to be determined consistent withλ̂(ρ̃) ≥ 0 in (0, ρa). We show in Appendix A thatu′(ρ+
a ) = u′(ρ−a ) and

that ρ̃ = ρa, yielding λ̂(ρ−a ) = 0.
The general solution of the ordinary differential equation(21.b) is of the form

u(ρ) = α+ ρκ + α− ρ−κ − ω̂

9 − κ2
ρ3 for 0 < κ < 1 , (26)

where both constantsα+ andα− are determined from the jump conditions (23) together with both λ̂(ρa) = 0 from (25)
andρ̃ = ρa. These constants are given by

α+ =
ρ−κ+1

a

2 κ

[

−(1 + κ) (1 −
√

ε) +
ω̂ ρ 2

a

3 − κ

]

, α− =
ρκ+1

a

2 κ

[

(1 − κ) (1 −
√

ε) − ω̂ ρ 2
a

3 + κ

]

. (27)

We still need to findρa in (27). For this, we substitute (26) together with (27) in the traction condition (22.b) to obtain
the algebraic equation

0 = r(ζ) ≡ s(ζ; κ) + s(ζ;−κ) + p̂ −
(

3 + νθ

9 − κ2

)

ω̂ ρ2
e , ζ ≡ ρa

ρe

, (28)

where

s(ζ; κ) ≡
(

κ + νθ

2 κ

)

ζ1−κ

[

−(1 + κ) (1 −
√

ε) +
ω̂ ρ 2

e

3 − κ
ζ 2

]

(29)

is a function ofζ parameterized byκ.
First, notice from (28) together with (29) thatr(0) = p̂ − q̂, whereq̂ is given by (14), and thatr(1) = p̂ − p̂0, where

p̂0 = (1 + νθ) (1 −
√

ε) (30)
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is positive forε > 0 sufficiently small. Taking the derivative ofr, we obtain

r′(ζ) = −
[

(κ + νθ) ζ −κ + (κ − νθ) ζ κ

2 κ

]

{

(1 − κ2) (1 −
√

ε) − ω̂ ρ 2
e ζ 2

}

. (31)

Since bothκ + νθ andκ − νθ are positive,r′(ζ) < 0 for smallζ. For larger values ofζ, the sign ofr′(ζ) depends on the
sign of the expression inside the curly brackets. It followsfrom (31) that the only positive root ofr′(ζ) = 0 is given by

ζ1 =

√

(1 − κ2) (1 −√
ε)

ω̂ ρ2
e

. (32)

Thus, provided that̂p < p̂0, the functionr(ζ) of (28) is positive atζ = 0 for p̂ − q̂ ≥ 0, decreases for small values ofζ,
has only one extremum forζ ≥ 0, and is non-positive atζ = 1. Therefore, there exists a uniqueζ ∈ [0, 1] that satisfies
r(ζ) = 0. Recall from Section 2 that̂p > q̂ yieldsϕθ(ρ) < 0 for the unconstrained disk problem.

If, however,p̂ ≥ p̂0, we may have two, one, or, no roots of the algebraic equation (28), depending on the value ofr(ζ1),
whereζ1 is given by (32). To interpret these roots, we choosep̂ = p̂0 and increasêω from zero. For̂ω ≤ (1−κ2) (1−√

ε),
we see from (32) thatζ1 ≥ 1, which implies thatζ = 1 is the only root of (28) in[0, 1]; therefore,det∇f = ε in the entire
disk. Forω̂ > (1 − κ2) (1 −√

ε), we have thatζ1 < 1, which implies that (28) has two roots in[0, 1].
The existence of two roots caused us to think that three, and not two, regions exist inside the disk. These are circular

regions bounded by the radiiρa, ρb, andρe, such that(0, ρa), (ρa, ρb), and(ρb, ρe) are sub-intervals of(0, ρe) where
the constraint of local injectivity is active (det∇f = ε), non-active (det∇f > ε), and active, respectively. In this case,
the first variation conditions for the existence of a minimizer u(ρ, θ) = u(ρ) eρ ∈ Aε of (19), (20) are similar to the
equations (21)-(23) with the following modifications in therange of validity. The Euler-Lagrange equation (21.a) holds
in both sub-intervals(0, ρa) and(ρb, ρe). The other equation, (21.b), holds in(ρa, ρb). The jump conditions (23) hold
across bothρ = ρa andρ = ρb. The kinematic and boundary conditions (22) remain the same. The procedure used to
find the solution(u, λ̂) of the corresponding equations is similar to the procedure used to find the solution(u, λ̂) of the
equations (21)-(23). The main difference is that now we haveto solve two coupled algebraic equations, instead of only
one, for the determination of bothρa andρb. One of these equations is again obtained from the pressure condition (22.b)
and the other equation is obtained from the continuity of traction acrossρ = ρb. In Section 4 we find numerically up to
four different roots(ρa, ρb) ∈ [0, ρe] × [0, ρe] for these equations, depending on the values ofp̂ andω̂.

4. NUMERICAL RESULTS

We use the same numerical values considered by Fosdick & Royer-Carfagni (2001) for the geometric and material
constants. Thus, the radius of the disk isρe = 1, the elastic constants areEρ = 99000, Eθ = 990, νρ = 1, νθ = 0.01,
and the lower bound for the injectivity constraint isε = 0.1. The applied load on the boundary of the disk, given by (11),
is obtained from̂p = p̂0 + 0.1 = 0.79061, wherep̂0 is given by (30), and the angular velocity of the disk, given by (8.b),
is obtained from̂ω = (1 − κ2) (1 − √

ε) + 1 ∼= 1.67693. It then follows from (14) that̂q ∼= 0.56147. These values of
p̂ andω̂ are large values in the context of Classical Linear Elasticity and are used here to show that three, and not two,
non-intersecting regions may coexist inside the disk in thecontext of the constrained theory, which is nonlinear. Two of
the three regions are such thatdet∇f = ε and the third region is such thatdet∇f > ε.

First, however, we assume that two non-intersecting regions may coexist inside the disk so that(0, ρe) = (0, ρa) ∪
(ρa, ρe), whereρa is a root of the algebraic equation (28), and show that this assumption leads toJ ≡ det(1 + ∇u) < ε
in some sub-interval of(0, ρe), which corresponds to a displacement fieldu that is not kinematically admissible, i.e.,
u /∈ Aε, whereAε is given by (18). Sincêp − q̂ > 0, p̂ − p̂0 > 0, andr(ζ1) = −0.06901, whereζ1 is given by (32)
and is equal to0.63535, it follows from Section 3 that the algebraic equation (28) has two roots, which are given by either
ρa

∼= 0.36188 or ρa
∼= 0.87492. In the next two figures, we use these values ofρa to generate graphs for bothJ , given by

(12), (24), (26), and (27), and̂λ, given by (25) withρ̃ = ρa.
In Fig. 2 we show bothJ andλ̂ plotted against the radiusρ for the rootρa

∼= 0.36188. Observe from the graph on the
left thatJ is equal toε for ρ ≤ ρa, is greater thanε in some intermediate region, and then becomes smaller thanε near
ρ = ρe. Clearly, this is not acceptable and the corresponding solution u must be rejected. Nevertheless, observe from the
graph on the right that̂λ ≥ 0 in (0, ρa).

In Fig. 3 we show bothJ andλ̂ plotted against the radiusρ for the rootρa
∼= 0.87492. Observe from the figure on

the left thatJ = ε for ρ ≤ ρa andJ < ε for ρ > ρa. Again, this is not acceptable and the corresponding solutionu must
be rejected. Nevertheless, we see from the graph on the rightthat λ̂ ≥ 0 in (0, ρa). Thus, the assumption of only two
coexisting regions does not lead to a kinematically admissible deformation.

Next, we consider that(0, ρe) = (0, ρa) ∪ (ρa, ρb) ∪ (ρb, ρe), where bothρa andρb are roots of the coupled algebraic
equations discussed at the end of Section 3. To estimate the values of these roots, we square each of the two algebraic
equations, sum the squares, and divide the resulting function by two. The zeroes of the corresponding quadratic function
are the zeroes of the coupled algebraic equations. In Fig. 4 we show level curves of this quadratic function for(ρa, ρb) ∈
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Figure 2. The Jacobian determinantJ (left) and the multiplier̂λ (right) versusρ for ρa
∼= 0.36188.
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Figure 3. The Jacobian determinantJ (left) and the multiplier̂λ (right) versusρ for ρa
∼= 0.87492.

[0, ρe] × [0, ρe]. Observe from this figure that the quadratic function has four points of extremum. We computed these
points and found that they are roots of the coupled algebraicequations. The points are(ρ(1)

a , ρ
(1)
b ) ∼= (0.41638, 0.41638),

(ρ
(2)
a , ρ

(2)
b ) ∼= (0.35788, 0.92748), (ρ(3)

a , ρ
(3)
b ) ∼= (0.84935, 0.47376), and(ρ

(4)
a , ρ

(4)
b ) ∼= (0.88369, 0.88369).

We have verified that the only point that generates a kinematically admissible solution̂u with λ̂ ≥ 0 in (0, ρe) is the
second one. Notice that this point is the closest to the point(0.36188, 0.87492), which was presented above by considering
only two regions. Below we show figures ofJ andλ̂ considering the roots(ρa, ρb) ∼= (0.35788, 0.92748).

In Fig. 5 we showJ versusρ. Observe from the graph thatJ is equal toε for ρ ≤ ρa, is greater thanε in some
intermediate region, and is equal toε for ρ ≥ ρb.

In Fig. 6 we shoŵλ versusρ. The graph on the left corresponds toλ̂ versusρ in the interval(0, ρa) and the graph
on the right corresponds tôλ versusρ in the interval(ρb, ρe). Observe from both graphs thatλ̂ ≥ 0 in the corresponding
intervals.

In addition to the calculations above, we have used the numerical procedure described in Aguiar (2006), which is
based on an Interior Penalty Formulation of the minimization problem (19)-(20), to compute an approximate solution for
the rotating disk problem under external pressure. Here, noa priori assumptions are made about the number of coexistent
regions. In Fig. 7 we show the numerical approximation ofJ , obtained with a Finite Element mesh of 500 linear elements
and represented by the dash-dotted line, plotted against the radiusρ. Observe that the corresponding curve is very similar
to the curve shown in Fig. 5. For comparison purposes, we alsoshowJ calculated from the expressions (12), (24), (26),
and (27), which corresponds to the case of two coexistent regions. The corresponding curve is represented by the solid
line and is the same curve shown in the graph on the left of Fig.2. Notice from Fig. 7 that both lines are close to each
other forρ ∈ (0, ρ

(2)
b ), where we recall from above thatρ

(2)
b = 0.92748.
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putation for their support of this research.

APPENDIX A

Proposition: To be consistent witĥλ(ρ) ≥ 0 in (0, ρa), the jump ofu′ acrossρ = ρa must be zero and̃ρ = ρa.

Proof. We use an analogous procedure considered by Fosdick & Royer-Carfagni (2001) in the analysis of a model problem
that is a particular case of our problem whenω̂ = 0.

First, we substitute the expressions (24) and (25) in the jump condition (23.b) to obtain

−(1 − κ2) (1 −
√

ε) log

(

ρa

ρ̃

)

= −|[u′(ρa)]| − ω̂

2
[ρ2

a − ρ̃2] , (33)

where|[u′(ρa)]| ≡ u′(ρ+
a ) − u′(ρ−a ) is the jump ofu′ acrossρ = ρa.

Noting thatlog(ρ/ρ̃) = log(ρ/ρa) + log(ρa/ρ̃) and using (33) in (25), we can rewritêλ as

λ̂(ρ) =
1√
ε

[

ω̂

2

[

ρ2 − ρ2
a

]

− (1 − κ2) (1 −
√

ε) log

(

ρ

ρa

)]

− 1√
ε
|[u′(ρa)]| . (34)

Sinceλ(ρa) ≥ 0, we see from (34) that|[u′(ρa)]| ≤ 0, which implies that

u′(ρ+
a ) ≤ u′(ρ−a ) . (35)
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Figure 6. The multiplier̂λ versusρ for (ρa, ρb) ∼= (0.35788, 0.92748).
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Figure 7. The Jacobian determinantJ versusρ.

On the other hand, the conditiondet∇f ≥ ε together with (12) lead to(1 + u′(ρ+
a )) (1 + u(ρ+

a )/ρa) ≥ ε, where
u(ρ+

a ) = u(ρ−a ) from the jump condition (23.a). Sincedet∇f = (1 + u′(ρ)) (1 + u(ρ)/ρ) = ε for ρ ∈ (0, ρa), we then
find that

u′(ρ+
a ) ≥ u′(ρ−a ) . (36)

Next, we observe from both (25) and (34) thatλ̂ is a convex function ofρ in the interval(0, ρa) and vanishes at both
ρ̃ andρa. Sinceλ̂(ρ) ≥ 0 for ρ ∈ (0, ρa), we find thatρ̃ = ρa.
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