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Abstract. The path planning of robotic manipulators consists of finding continuous movements that take the arm of one 
given initial configuration until a desired position in the work space. Diverse works available in the literature shown 
the genetic algorithms application path planning in robotics. Many of these works present complex techniques in the 
genetic algorithm implementation, involving the changeable size chromosomes manipulation. The inverse kinematics 
solution by genetic algorithms also has been proposed in the literature, however, for isolated points. This work 
considers the application of a genetic algorithm based in the direct kinematics calculation, for generate trajectories to 
a robotic manipulator with three degrees of freedom. The implemented algorithm calculates the inverse kinematics for 
all the trajectory's points. In this work, the positioning error and the joints angular displacement are boarded through 
a multi-objective function. The obtained results show the efficiency of the used methodology. 
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1. INTRODUCTION 
 

The inverse kinematics determines the angles of the junctions that result in the desired position of the terminal organ 
of a manipulator with relation to the reference coordinate system. The solution of the inverse kinematics is difficult 
whereas the mapping between the Cartesian space and the junction space is non-linear and evolve equations that can 
have multiple solutions (Craig, 1989). Several methods for the solution of the inverse kinematics, based on Genetic 
Algorithms (GAs) have been proposed in the literature.  

In Kalra et al. (2003) the inverse kinematics problem using genetic algorithms was explored for isolated points. In 
that work, the algorithm supplied the two possible solutions to the inverse kinematics problem, and it can be chosen, as 
better solution, which one presented bigger fitness value. 

The inverse kinematics problem for isolated points was also elaborated by Parker et. al. (1989). The objective of that 
work was to place the performer in the correct position and to minimize the displacements of the manipulator junctions. 

Eydgahi and Ganesan (1998) presented the application of genetic algorithms for the generation and adjustment of 
the pertinence functions of diffuse groups for the solution of the inverse kinematics of robotic manipulators. The 
presented method converges more quickly to the solution in comparison to methods based only on diffuse systems or 
based on Artificial Intelligence. 

Buckley et al. (1997) used a genetic algorithm in the solution of the problem of the inverse kinematics of a robotic 
manipulator with high kinematics redundance. As the first results had not presented acceptable solutions, the genetic 
algorithm was adjusted to draw out the diversity of the population and to reduce the space of search for the application 
of the kinematic knowledge of the junction 2. 

The planning of trajectories for robotic manipulators consists in finding continuous movements that take the arm of 
one given initial configuration until a desired position in the work space (Pires and Machado, 1999). 

Several available works in the literature have shown the application of genetic algorithms in the generation of 
trajectories for robotic manipulators. 

Toogood et al. (1995) used a genetic algorithm for the attainment of a free trajectory of collisions for a robotic 
manipulator of three degrees of freedom (DOF) in a space containing fixed and known obstacles. Besides avoiding 
collisions, the trajectory could be optimized for smaller distance, minor time or minimum torques. 

Tian and Collins (2003, 2004) proposed a genetic algorithm using real codification for the search of an excellent 
trajectory of a redundant manipulator. The evaluation function was based on multiple criteria such as total displacement 
of all the junctions and uniform speed in the Cartesian spaces and junction. For validation of this approach, simulations 
were carried out in a workspace with and without obstacles. 

Santos et al. (2005) presented a genetic algorithm capable to solve the problem of the inverse kinematics for all the 
trajectories points. They used the Reduction Technique of Search Space (RTSS), that, according to the authors, 
improves as much the speed as convergence accuracy avoiding leaps between multiple solutions. 



Some works present complex techniques in the implementation of the genetic algorithm for the calculation of 
trajectories of robotic manipulators. Such techniques involve the chromosomes manipulation of variable size (Marques 
et al., 1996, Davis, 1996). 

The objective of this work is to present the application of a genetic algorithm for the generation of trajectories of a 
robotic manipulator planar with three degrees of freedom. In the implemented algorithm, an individual chromosome 
represents the angles of the manipulator junctions for a determined point. By presenting minor computing cost, the 
angles of the junctions were codified using the real representation instead of the binary one (Tian and Collins, 2003). 
The evaluation function (fitness) has multi-objective character and it is defined on the basis of two criteria: minimum 
angular displacement of the end-effector in the Cartesian space and minimum angular displacement of the manipulator 
junctions, using the ponderation of the objective method. The genetic algorithm calculates the inverse kinematics for all 
the points that describe a linear trajectory. 
 
2. PROBLEM FORMULATION 
 

In this work was considered a robotic manipulator planar with three degrees of freedom (Fig. 1). The joint angles θ1, 
θ2 and θ3 can vary between -π and π. The lengths of the links l1, l2 and l3 are 25 cm, 15 cm and 10 cm respectively. The 
end-effector must follow linear trajectories starting in the Cartesian coordinate (12.0004, 14.9995) and finishing in 
different final points. 

 

 
 

Figure 1. Robotic Manipulator Planar 
 
The initial configuration corresponds to the vector of variable of the junctions {0.0307 1.8756 1.5691}T in radians, 

as illustrates the Fig. 2. In the Fig. 2, the area between the circumferences of radius R1 and R2 corresponds to workspace 
of the manipulator, being R1 = l1 + l2 + l3 e R2 = (l2

2 + (l1 - l3)
2)0.5. The final configurations are the coordinates (x, y) of 

the end-effector, gotten through the Eq. (1) with the current angles generated by the GA. 
 

 
 

Figure 2. Initial configuration of the manipulator 
 

The final configurations are the coordinates (x, y) of the end-effector, gotten through the Eq. (1) with the current 
angles generated by the GA. 
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The trajectory of a manipulator consists in a group of strings that represent the positions of the junctions between the 

initial and final robot configurations. A Genetic Algorithm was adopted to look for an optimal global path for the 
manipulator. 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

3. GENETIC ALGORITHMS 
 
The Genetic Algorithms (GAs) constitute one technique of search and optimization, highly parallel, inspired in the 

evolution principle of Darwin. The natural principles, in which the GAs were inspired, are simple. The selection 
principle privileges the most apt individuals and, therefore, with more probability of reproduction. The individuals with 
more descendants have more chances of transmitting their genetic codes to the next generations (Michalewicz, 1994). 
Such genetic codes constitute the identity of each individual and are represented in the chromosomes. These principles 
are emulated in the construction of computing algorithms that search the best solution for one determined problem, 
through the evolution of populations of codified solutions through artificial chromosomes. The components of a GA 
include: initialization, selection, crossing and mutation according to illustrates Fig. 3 (Kalra et al., 2003): 

 

 
 

Figure 3. Components of a GA 
 

3.1. Individual representation 
 
The success of a genetic algorithm for a specific problem of optimization depends on the representation of an 

individual in the population (kalra et al., 2003). Each possible solution in the search space is represented by a sequence 
of symbols s generated from an alphabet (binary or real). Each s sequence corresponds to a chromosome and each 
element of s is equivalent to a gene. 

For a robotic manipulator, the individuals in a population can be represented, with real codification, through the 
joint angles: {θ1 θ2 θ3}. The real codification was chosen to avoid succeeding conversions of the binary code or gray for 
real values, saving, thus, computing time. 

 
3.1. Initialization 
 

In the initialization process, a population of chromosomes is generated randomly. The size of the population affects 
the efficiency and the performance of the GA (Goldberg, 1989). A population of small dimension can take the GA to 
converge quickly to a maximum local, while a very big population, damages the computing performance of the 
algorithm. The initial population for a robot with three degrees of freedom is generated randomly respecting the inferior 
(L) and superior (U) limits of each variable of junction: 
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3.3. Evaluation 
 

To each structure (solution) is associated a numerical value (fitness) that represents the quality of this structure and 
indicates its aptitude degree. The value of fitness is gotten through the objective function. The objective function of this 
study aims at the minimization of the position error of the end-effector manipulator and the smallest joint angular 
displacement. The positioning error is calculated through the Euclidean Distance between the current and final 
coordinates of the manipulator: 
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Being (xf, yf ) the desired position and (xi, yi) the current position, gotten through the Direct Kinematics calculation 

of the manipulator (Eq. 1) with the use of the current angles generated by the GA. The angular error is also gotten 
through the Euclidean Distance between the initial and final configurations of the joint angles of the manipulator: 
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Where {θi,in} are the initial configuration angles of the manipulator, {θi,f} are the current angles generated by the GA 
and ||.|| denotes the Euclidean distance. In this work, the positioning error and the angular displacement are approached 
together through a multi-objective function (Nunes et al., 2006). Using the weighting factors method, that satisfies the 
restriction ω1 + ω2 = 1, the optimization problem is defined as the inverse of the error: 
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3.4. Seletion 

 
The selection process in GAs chooses individuals for the reproduction. The selection is based on the individuals 

aptitude: apter individuals have more probability of being chosen for the reproduction. The selection method chosen for 
this work was Stochastic Universal Sampling (SUS), in which the individuals are mapped out in adjacent segments 
whose length is the same as the value given for the evaluation function to each individual. In this method it is used N 
hands equally spaced between them (N = number of parents to be selected) and the roulette spins only once. The chosen 
parents are the individuals marked for the N hands. The distance between the hands will be 1/N and the position of the 
first hand is given for a number generated randomly between 0 and 1/N. The method SUS is considered fast enough for 
the serial processing and more efficient than the Roulette selection methods, Stochastic Rest and Ranking (Baker, 
1987). 

 
3.5. Crossing and mutation 

 
The individuals selected for the following population are recombined through the Crossover operator. This operator 

is considered the main characteristic of the GAs. The pairs of individuals are chosen randomly and new individuals are 
created from the interchange of the genetic material. The descendants will be different, however, with genetic 
characteristics of both. This method (single-point crossover) is the most applied one and was used in this work. The 
chromosomes created from the crossover operator are, later, submitted to the mutation operation. Based on the 
probability pm of mutation, the content of a chromosome position is modified. 

 
5. RESULTS 

 
Before the calculation of all the points of the linear trajectory between the initial point and the final coordinate, the 

Genetic Algorithm was applied in the inverse kinematics solution for isolated points, with objective of being determined 
the ideal values of the ponderation factors (ω1 and ω2) of the multi-objective function given for the Eq. (5). After 
several tests, it was adopted the values of 0.12 and 0.88 for ω1 and ω2 respectively, with priority for the minimum 
angular displacement. 

 
5.1. Trajector ies generation 

 
The described GA in this work was used to get a linear trajectory of an initial point to an final point. For each point 

(p1, p2, ..., pn) of the trajectory, the GA is executed, in an iterative process, until the limit of 500 generations be reached. 
After the point pi is found, its values are brought up to date as initial point to find the point pi+1 (Nunes et. al., 2006). 
The simulated trajectories in this work have 120 points. To facilitate the identification of the simulated trajectories, they 
will be cited by numbers, according to the Tab. 1. All the simulations were carried out from the same initial 
configuration of the manipulator, reaching different final points. 

 
Table 1. Identification of the Simulations 

 
Simulation nº. Final Point  

1 (20, 10) 

2 (-10, 20) 

3 (26,5, 5,5) 

4 (-20, 20) 
 
The following parameters of control were used for the Genetic Algorithm: population size = 90 individuals, crossing 

probability = 0.7 and mutation probability = 0.09. 
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In relation to the simulation 1, the Fig. 4 shows an amplified region of the reference trajectory to be followed by the 
manipulator from its initial position until the final point (20, 10). The trajectory generated by the GA, inspite of being 
very near to the reference trajectory, presents acceptable small deviations in the task. 

 

 
 

Figure 4. Trajectory gotten through GA 
 
The Figure 5 shows the distances between each point of the reference trajectory and the correspondent points of the 

trajectory generated by the genetic algorithm. In this simulation, the biggest deviation in relation to the reference 
trajectory was 0.0056 cm. 

 

 
 

Figure 5. Distances between the trajectory points 
 
To permit the manipulator covers the reference trajectory with minimum angular displacements, calculation of the 

angular errors was adopted in the Eq. (5), these errors were added in the fitness function. The Figure 6 illustrates the 
succeeding configurations of the manipulator between the initial point and the final point. 

 

 
 

Figure 6. Succeeding Configurations of simulation 1 



The results of the subsequent simulations are shown in the Figure 7 (a), (b) and (c), that correspond to the 
simulations from 2 to 4 respectively. These figures show the succeeding configurations of the manipulator from the 
initial point until the final point of each trajectory. As it can be observed in these figures, the movement of the junction 
angles of the manipulator is relatively soft and the trajectories gotten through the genetic algorithm do not present big 
leaps or deviations in relation to the reference trajectories. 

 

                     
 (a)             (b)           (c) 

 
Figure 7. Succeeding configurations of simulations 2, 3 and 4 

 
The maximum deviations of all the trajectories generated in each simulation for the genetic algorithm, in relation to 

the reference trajectories, are presented in the Table 2. With exception of the simulation 4, which presented a maximum 
deviation of 0.0558 cm, all the simulations presented small deviations. 

 
Table 2. Deviations in Relation to the Trajectory of Reference 

 
Simulation 

nº. 
Final Point  

(x,y) 
Bigger Deviation 

(cm) 

1 (20, 10) 0.0056 

2 (-10, 20) 0.0172 

3 (26.5, 5,5) 0.0324 

4 (20, 20) 0.0558 
 

The angles generated by the Genetic Algorithm for the final points of each trajectory were substituted in the Eq. (1) 
in order to get the positions x and y of the manipulator in those points. The gotten results are presented in Table 3, that 
show the biggest relative error of position was 0.1196% in x and 0.12% in y, relative errors referring to the simulation 3. 
As it can be observed in Tab. 3, inspite of the Genetic Algorithm having as priority, in this work, the total displacement 
minimization of the junction angles of the manipulator, it was gotten small positioning errors. 

 
Table 3. Relative Errors of Position 

 
Simulation 

nº. 
Final Point 

(x, y) 
Actual Position 

(x, y) 
Relative Er ror  

in x (%) 
Relative Er ror  

in y (%) 

1 (20, 10) (20.0000, 9.9999) 0 0.001 

2 (-10, 20) (-9.9993, 20.0001) 0.007 0.0005 

3 (26.5, 5.5) (26.4683, 5.5066) 0.1196 0.12 

4 (20, 20) (19.9955, 19.9971) 0.0225 0.0145 
 

The results were satisfactory, whereas the robot reached the desired positions without big oscillations in the 
generated trajectories, with soft displacement of the junction angles. 

 
6. CONCLUSION 

 
A genetic algorithm, based on the direct kinematics calculation, was implemented for the generation of linear 

trajectories for a robotic manipulator with three degrees of freedom. Whereas the GA uses the direct kinematics simply, 
singularities do not constitute problems. The evaluation function (fitness) had multi-objective character and was defined 
based on two criteria: minimum displacement of end-effector in the Cartesian space and minimum angular displacement 

 start 

 start 

 start 

 end 

 end 

 end 



Proceedings of COBEM 2007 19th International Congress of Mechanical Engineering 
Copyright © 2007 by ABCM November 5-9, 2007, Brasília, DF 

 

of the manipulator junctions, using the ponderation method of the objectives. According to the gotten results, the 
movement of the angles of the manipulator junctions was relatively soft, and the trajectories gotten for the genetic 
algorithm did not present big leaps or deviations in relation to the reference trajectories. The implemented genetic 
algorithm had, as priority in this work, the total displacement minimization of the junction angles of the manipulator, 
despite this restriction, it was gotten very small errors of positioning in the final points of each trajectory. Depending on 
the type of application, the results can be considered satisfactory, whereas the robot reached the desired positions 
without big oscillations in the trajectories generated, with soft displacement of the junction angles. 
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